复杂混沌动力学网络系统的同步及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂性与复杂系统是21世纪的重点研究课题。复杂网络是描述和理解复杂系统的重要工具和方法,它将复杂系统高度概括为由相互作用的多个个体(节点)组成的网络系统。复杂动力学网络系统的同步是复杂网络理论中的一个重要研究课题,它以非线性动力学的研究,尤其是混沌及混沌同步控制的研究,为有效的理论基础和工具,并在保密通信、网络拥塞控制、调和振子生成、多智能体一致等领域有巨大的应用潜力。
     本文在研究(分数阶)超混沌系统同步及其保密通信应用的基础上,依次对分数阶混沌动力学网络、时滞混沌动力学网络、时变混沌动力学网络展开研究,设计有效的控制器,以保证实现动力学网络系统的同步。本文的主要研究工作概括如下:
     (1)研究了不确定超混沌系统的广义函数投影时滞同步及其在保密通信中的应用。考虑驱动系统与响应系统的参数完全未知和部分未知的情况,基于Lyapunov稳定性理论和自适应控制方法,本文分别提出了两种通用的自适应广义函数投影时滞同步方法,并给出了严格的理论证明;数值仿真结果验证了同步方法的有效性和鲁棒性,进一步讨论了比例因子和时滞对同步效果的影响。在上述研究基础上,基于超混沌系统的广义函数投影同步,并结合使用参数调制和混沌掩盖技术,设计了两种不同的超混沌保密通信方案,理论证明和数值仿真验证了超混沌保密通信方案的有效性和可行性。
     (2)研究了分数阶超混沌系统的动力学特性与同步问题。首先,基于分数阶微积分理论和计算机模拟,分析了两个新的分数阶四维系统的动力学特性,并给出了系统产生超混沌的最低阶次。然后,基于分数阶系统稳定性理论,利用状态观测器方法、主动控制方法和系统耦合方法,提出了三种通用的分数阶混沌同步方法,并设计了一种基于分数阶超混沌广义投影同步和混沌掩盖的保密通信方案;与整数阶混沌保密通信相比,该保密通信方法具有更大的密钥空间和更高的安全性能。最后,基于分数阶系统稳定性理论,提出并理论证明了一种通用的实现具有未知参数的分数阶混沌系统同步和参数辨识方法,数值仿真结果证实了该同步方法的有效性。
     (3)研究了分数阶复杂混沌动力学网络系统的同步问题。首先,利用非线性控制方法和双向耦合方法,分别研究了具有相同和不同拓扑结构的两个分数阶混沌动力学网络系统的外同步,并给出了实现外同步的充分条件。研究表明,分数阶次和反馈增益越大,网络外同步速度越快;具有相同拓扑结构和相同节点动力学系统的两个网络更容易达到外同步。其次,通过设计非线性控制器,实现了具有不同节点的分数阶混沌动力学网络系统的广义内同步,并得到了实现同步的充分条件。数值仿真结果表明,网络同步速度敏感依赖于分数阶次和反馈增益;对于相同的反馈增益,整数阶动力学网络系统的同步效果要远好于对应的分数阶动力学网络系统;当噪声和参数干扰存在时,利用所设计的控制器仍然可有效实现网络的广义同步。
     (4)研究了时滞耦合的复杂混沌动力学网络系统的同步问题。首先,给出了一类无时滞耦合与时滞耦合并存的复杂动力学网络模型,节点内部可以是非线性耦合或线性耦合,网络可以是无向或有向的;接着,仅利用网络外部耦合配置矩阵的部分信息来设计控制器,实现了该类混沌动力学网络系统的指数同步,理论分析和数值仿真实例均证明了同步方法的有效性。其次,基于LaSalle不变集原理和自适应控制方法,研究了完全不同的两个时滞耦合复杂动力学网络系统的广义投影同步问题,设计了自适应控制器并给出了理论证明;数值仿真进一步表明了所给出的理论结果的正确性。
     (5)研究了时变复杂混沌动力学网络系统的同步问题。首先,提出了一类自适应耦合的复杂动力学网络模型,网络由社团构成且具有时变的耦合强度,属于同一社团的节点彼此相同,否则,不相同。为使得自适应耦合的混沌动力学网络达到聚类同步,设计了局部控制器和耦合强度自适应律,并给出了相应的理论证明。分别以BA无标度网络和WS小世界网络为例,数值分析了网络拓扑结构、内部耦合矩阵、边重连概率、控制增益对网络同步的影响,并考虑了噪声干扰问题。研究表明,网络的聚类同步性能与上述要素密切相关,BA无标度网络比WS小世界网络更容易获得聚类同步,且提出的聚类同步方法具有一定的抗噪能力。其次,给出了一类时滞耦合的时变动力学网络模型,该网络模型具有时变的外部耦合矩阵,且包含时滞耦合项和不同的节点。并根据Barbalat引理和自适应控制方法,设计了自适应控制器和参数更新规则,使得具有未知参数的时滞耦合时变动力学网络系统达到外同步,同时辨识出系统参数。理论分析和数值仿真均证明了所提同步方法的正确性。
     (6)基于牵制控制策略,研究了无时滞耦合与时滞耦合并存的复杂动力学网络系统的混合同步问题。基于LaSalle不变集原理和线性矩阵不等式,通过对网络中部分节点分别施加线性反馈控制器和自适应控制器,得到了实现网络混合同步的充分条件。数值仿真结果表明,仅使用单个控制器,即仅控制网络中的单个节点,即可实现动力学网络的混合同步;时滞越小,混合同步的性能越好;并且,在牵制控制策略下,使用自适应控制方法比使用线性反馈控制方法更易实现混合同步且实现成本更低。
Complexity and complex systems are the important topics in the 21st century. Complex networks are presently significant tools and methods to describe and understand the complex system, which highly summarize the complex system as the networks consisting of many interacting individuals or nodes. Synchronization of complex dynamical networks is one of significant topic in complex networks, which has great potential applications in secure communication, network congestion control, the generation of harmonic oscillator, multi-agent consensus, and so forth. The research on the nonlinear dynamics, especially on chaos and chaotic synchronization, are used as theoretical basis and tools for studying synchronization of complex networks.
     In this dissertation, based on the research on synchronization of (fractional-order) hyperchaotic systems and its application in secure communication, different types of complex networks, i.e., the fractional-order chaotic dynamical networks, the general chaotic dynamical networks with delay coupling and the time-varying chaotic dynamical networks, are investigated. The effective controllers for complex dynamical networks are designed to guarantee to achieve the desired network synchronization. The main contributions of this dissertation are summarized as follows:
     (1) Generalized function projective lag synchronization of uncertain hyperchaotic systems and its application in secure communication are studied. When the parameters of the drive and response systems are fully unknown or only the parameters of the response system are unknown, based on Lyapunov stability theory and the adaptive control method, two different universal adaptive generalized function projective lag synchronization schemes are proposed. Both rigorous theoretical proofs and numerical simulations are given to validate the effectiveness and robustness of the proposed synchronization methods. The influence of the scaling factor and time delay on the synchronization effect is further discussed. On the basis of the above studies, combining the parameter modulation and chaotic masking techniques, two distinct hyperchaotic secure communication schemes are proposed by applying generalized function projective synchronization of Chen hyperchaotic system. Corresponding theoretical proofs and numerical simulations demonstrate the validity and feasibility of the presented hyperchaotic secure communication schemes.
     (2) The problem of the dynamical properties and synchronization of the fractional-order hyperchaotic systems is investigated. Firstly, based on the fractional calculus theory and computer simulations, the dynamical properties of two new fractional-order four-dimensional systems are analyzed. The lowest orders to have hyperchaos in two systems are also obtained, respectively. Secondly, based on the stability theory of the fractional-order systems, by using the state observer method, the active control method and the system coupling method, three general fractional-order chaos synchronization methods are presented. Furthermore, by applying generalized projective synchronization of the fractional-order hyperchaotic system and chaotic masking technique, a fractional-order hyperchaotic secure communication scheme is constructed, which has a larger key space and is more secure than the integer-order chaotic communication. Finally, a general method for parameter identification and synchronization of uncertain fractional-order chaotic systems is proposed and proved theoretically based on the stability theory of the fractional-order systems. The simulation results are performed to verify the validity of the presented method.
     (3) Synchronization of the fractional-order complex chaotic dynamical networks is considered. Firstly, the outer synchronization between two fractional-order chaotic dynamical networks with identical or different topology is studied by applying the nonlinear control and bidirectional coupling methods. The sufficient criteria for the outer synchronization are derived analytically. Numerical results show that the larger the fractional order and the feedback gain, the faster is to achieve the outer synchronization; it is much easier to realize the outer synchronization between two networks with identical topology and uniform node dynamics. Secondly, the nonlinear controllers are designed to realize generalized synchronization of the fractional-order chaotic dynamical networks with distinct nodes, and some sufficient synchronization criteria are obtained. Simulation results show that the synchronization speed sensitively depends on both the fractional order and the feedback gain. For the same feedback gain, the synchronization effect of the integer-order dynamical network is much better than that of the fractional-order one. Furthermore, by the nonlinear controllers, the network synchronization can still be achieved effectively in presence of noise and parameter perturbations.
     (4) We study synchronization of complex chaotic dynamical networks with delayed coupling. Firstly, a general complex dynamical network model with non-delayed and delayed coupling is proposed. The nodes in the network may be coupled nonlinearly or linearly. And the network can be directed or undirected. Only partial information of the coupling configuration matrix is used to design the controllers to achieve the exponential synchronization of the dynamical networks with non-delayed and delayed coupling. Both theoretical analysis and numerical simulations have validated the effectiveness of the synchronization method. Secondly, based on the LaSalle invariant principle and adaptive control method, generalized projective synchronization between two completely different complex dynamical networks with delayed coupling can be obtained by constructing the adaptive controllers. Corresponding theoretical proofs are also given. Numerical simulations further demonstrate the validity of the theoretical results.
     (5) Synchronization of the time-varying complex chaotic dynamical networks is investigated. A general complex dynamical network model with adaptive coupling strengths and community structure is firstly proposed. The local dynamics of individual nodes in each community are identical, while those of any pair of nodes in different communities are diverse. The local controllers and the adaptive law for the coupling strengths are designed to achieve cluster synchronization in the adaptive dynamical networks. We take the BA scale-free network and the WS small-world network as the examples to do the simulations. Numeric evidences show that the synchronization performance is sensitively affected by the network topological structure, the inner-coupling matrix, the rewiring probability and the control gain; the BA scale-free network is much easier to achieve cluster synchronization than the WS small-world network; the presented scheme is robust against noise. Secondly, we present a general delayed dynamical network model with different nodes and time-varying coupling configuration matrix. The adaptive controllers and corresponding parameter update rule are constructed to achieve the outer synchronization and parameter identification of uncertain time-varying delayed dynamical networks. Theoretical analysis and numerical simulations have verified the effectiveness of the proposed scheme.
     (6) The hybrid synchronization problem of two coupled complex dynamical networks with non-delayed and delayed coupling is investigated by the pinning control strategy. Based on the LaSalle invariance principle and linear matrix inequality technique, we obtain some sufficient synchronization conditions by applying the simple linear feedback controllers and adaptive controllers to a part of nodes, respectively. Numerical results show that the hybrid synchronization of two coupled networks can be realized by a single controller; the synchronization effect turns better with the decrease of time delay; the hybrid synchronization is easier to realize with low cost by the adaptive control method than that by the linear feedback control approach.
引文
[1]郝柏林.分岔、混沌、奇怪吸引子、湍流及其他[J].物理学进展. 1983, 3(3): 329-416.
    [2] Hold, A.V. Chaos[M]. England: Manchester University Press. 1986.
    [3] Watts, D.J., Strogatz, S.H. Collective dynamics of“small-world”networks[J]. Nature. 1998, 393: 440-442.
    [4] Barabási, A.L., Albert, R. Emergence of scaling in random networks[J]. Science. 1999, 286: 509-512.
    [5] Chen, G., Dong, X. From Chaos to Order: Methodologies, Perspectives and Applications[M]. Singapore: World scientific. 1998.
    [6]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社. 2003.
    [7] Lorenz, E.N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences. 1963, 20(2): 130-141.
    [8] Hénon, M. A two dimensional mapping with a strange attractor[J]. Communications in Mathematical Physics. 1976, 55(1): 69-77.
    [9] Ruelle, D., Takens, F. On the nature of turbulence[J]. Communications in Mathematical Physics. 1971, 20(3): 167-192.
    [10] Li, T.Y., Yorke, J.A. Period three implies chaos[J]. American Mathematics Monthly. 1975, 82: 985-992.
    [11] Podlubny, I. Fractional Differential Equations[M]. New York: Academic Press. 1999.
    [12] Butzer, P.L., Westphal, U. An Introduction to Fractional Calculus[M]. Singapore: World Scientific. 2000.
    [13] Hifer, R. Applications of Fractional Calculus in Physics[M]. New Jersey: World Scientific. 2001.
    [14] Mandelbort, B.B. The Fractal Gemetry of Nature[M]. New York: Freeman. 1983.
    [15]韩建兵.分数阶混沌稳定性理论及同步方法研究[博士论文].太原:中北大学. 2008.
    [16] Hartley, T.T., Lorenzo, C.F., Qammer, H.K. Chaos in a fractional order Chua’s system[J]. IEEE Transactions on Circuits and Systems I. 1995, 42(8): 485-490.
    [17] Wu, X.J., Shen, S.L. Chaos in the fractional-order Lorenz system[J]. International Journal of Computer Mathematics. 2009, 86(7): 1274-1282.
    [18] Li, C.G., Chen, G. Chaos in the fractional order Chen system and its control[J]. Chaos Solitons & Fractals. 2004, 22(3): 549-554.
    [19] Wu, X., Lu, Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system[J]. Nonlinear Dynamics. 2009, 57(1-2): 25-53.
    [20]赵明.复杂网络上动力系统同步现象的研究[博士论文].合肥:中国科学技术大学. 2007.
    [21] Glass, L., Mackay, M.C. From Clocks to Chaos: The Rhythms of Life[M]. Princeton NJ: Princeton University Press. 1988.
    [22] Winfree, A.T. Geometry of Biological Time[M]. New York: Springer-Verlag. 1990.
    [23] Ott, E., Grebogi, C., Yorke, J.A. Controlling chaos[J]. Physical Review Letters. 1990, 64(11): 1196-1199.
    [24] Ditto, W.D., Rauseo, S.N., Spano, M.L. Experimental control of chaos[J]. Physical Review Letters. 1990, 65(26): 3211-3214.
    [25] Pecora, L.M., Carroll, T.L. Synchronization in chaotic systems[J]. Physical Review Letters. 1990, 64(8): 821-825.
    [26] Li, C.G., Liao, X.F., Yu, J.B. Synchronization of fractional order chaotic systems[J]. Physical Review E. 2003, 68(6): 067203.
    [27] Zheng, Z.G., Hu, G. Generalized synchronization versus phase synchronization[J]. Physical Review E. 2000, 62(6): 7882-7885.
    [28] Pikovsky, A.S., Rosenblum, M.G., Kurths, J. From phase to lag synchronization in coupled chaotic oscillators[J]. Physical Review Letters. 1997, 78(22): 4193-4197.
    [29] Rosenblum, M.G., Pikovsky, A.S., Kurths, J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters. 1996, 76(11): 1804-1807.
    [30] Mainieri, R., Rehacek, J. Projective synchronization in three-dimensional chaotic systems[J]. Physical Review Letters. 1999, 82(15): 3042-3045.
    [31]陶朝海,陆君安,陈士华. Lorenz混沌系统的错位自适应控制[J].系统工程与电子技术. 2004, 26(1): 81-82.
    [32] Femat, R., Solis-Perales, G. On the chaos synchronization phenomena[J]. Physics Letters A. 1999, 65(1): 50-60.
    [33] Zaks, M.A., Park, E.H., Rosenblum, M.G., Kurths, J. Alternating locking ratios in imperfect phase synchronization[J]. Physical Review Letters. 1999, 82(21): 4228-4231.
    [34] Yan, Z.Y. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems—A symbolic-numeric computation approach[J]. Chaos. 2005,15(2): 023902.
    [35] Li, G.H., Zhou, S.P., Yang, K. Generalized projective synchronization between two different chaotic systems using active backstepping control[J]. Physics Letters A. 2006, 355(4-5): 326-330.
    [36]闵富红,王恩荣.超混沌Qi系统的错位投影同步及其在保密通信中的应用[J].物理学报. 2010, 59(11): 7657-7662.
    [37] Li, G.H. Projective lag synchronization in chaotic systems[J]. Chaos Solitons & Fractals. 2009, 41(5): 2630-2634.
    [38] Hu, M., Xu, Z., Zhang, R. Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems[J]. Communications in Nonlinear Science and Numerical Simulation. 2008, 13(2): 456-464.
    [39] Chen, Y., Li, X. Function projective synchronization between two identical chaotic systems[J]. International Journal of Modern Physics C. 2007, 18(5): 883-888.
    [40] Luo, R.Z. Adaptive function projective synchronization of R?ssler hyperchaotic system with uncertain parameters[J]. Physics Letters A. 2008, 372(20): 3667-3671.
    [41] Lee, T.H., Park, J.H. Adaptive functional projective lag synchronization of a hyperchaotic R?ssler system[J]. Chinese Physics Letters. 2009, 26(9): 090507.
    [42] Pyragas, K., Pyragas, V., Kiss, I.Z., Hudson, J.L. Adaptive control of unknown unstable steady states of dynamical systems[J]. Physical Review E. 2004, 70(2): 026215.
    [43] Kapitaniak, T., Chua, L.O., Zhong, G.Q. Experimental synchronization of chaos using continuous control[J]. International Journal of Bifurcation & Chaos. 1994, 4(2): 483-488.
    [44] Pyragas, K., Tama?evi?ius, A. Experimental control of chaos by delayed self-controlling feedback[J]. Physics Letters A, 1993, 180(1-2): 99-102.
    [45] Huberman, A. Dynamics of adaptive systems[J]. IEEE Transactions on Circuits and Systems I. 1990, 37(4): 547-550.
    [46] John, J.K., Amritkar, R.E. Synchronization of unstable orbits using adaptive control[J]. Physical Review E. 1994, 49(6): 4843-4848.
    [47] Bai, E.W., Lonngren, K.E. Sequential synchronization of two Lorenz Systems using active control[J]. Chaos Solitons & Fractals. 2000, 11(7): 1041-1044.
    [48] Kokotovi?, P.V. The joy of feedback: nonlinear and adaptive[J]. IEEE Control Systems Magazine. 1992, 12(3): 7-17.
    [49] Perruquetti, W., Barbot, J.P. Sliding Mode Control in Engineering[M]. New York: Marcel Dekker Hardcover. 2002.
    [50] Li, C., Liao, X., Zhang, R. Impulsive synchronization of nonlinear coupled chaotic systems[J]. Physics Letters A. 2004, 328(1): 47-50.
    [51] Luenberger, D.G. Observers for multi variable systems[J]. IEEE Transactions on Automatic Control. 1966, 11(2): 190-197.
    [52] Sun, Y.J. A simple observer design of the generalized Lorenz chaotic systems[J]. Physics Letters A. 2010, 374(7): 933-937.
    [53] Meda-Campa?a, J.A., Castillo-Toledo, B., Chen, G. Synchronization of chaotic systems from a fuzzy regulation approach[J]. Fuzzy Sets and Systems. 2009, 160(19): 2860-2875.
    [54] Chang, W.D. PID control for chaotic synchronization using particle swarm optimization[J]. Chaos Solitons & Fractals. 2009, 39(2): 910-917.
    [55] dos Santos Coelho, L., de Andrade Bernert, D.L. A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization[J]. Expert Systems with Applications. 2010, 37(6): 4198-4203.
    [56]关新平,范正平,陈彩莲,华长春.混沌控制及其在保密通信中的应用[M].北京:国防工业出版社. 2002.
    [57] Cuomo, K.M., Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to communication[J]. Physical Review Letters. 1993, 71(1): 65-68.
    [58] Sun, Y., Cao, J., Feng, G. An adaptive chaotic secure communication scheme with channel noises[J]. Physics Letters A. 2008, 372(33): 5442-5447.
    [59] Uyaro?lu, Y., Pehlivan, ?. Nonlinear Sprott94 Case A chaotic equation: synchronization and masking communication applications[J]. Computers & Electrical Engineering. 2010, 36(6): 1093-1100.
    [60] Dedieu, H., Kennedy, M.P., Hasler, M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits[J]. IEEE Transactions on Circuits and Systems II. 1993, 40(10): 634-643.
    [61] Uchida, A., Yoshimori, S., Shinozuka, M., Ogawa, T., Kannari, F. Chaotic on off keying for secure communications[J]. Optics Letters. 2001, 26(12): 866-868.
    [62] Yang, T., Chua, L.O. Secure communication via chaotic parameter modulation[J]. IEEE Transactions on Circuits and Systems I. 1996, 43(9): 817-819.
    [63] Wu, X.J. A new chaotic communication scheme based on adaptive synchronization[J]. Chaos. 2006, 16(3): 043118.
    [64] Batini, G.H., McGillem, C.D. A chaotic direct-sequence spread-spectrum communication system[J]. IEEE Transactions on Communications. 1994, 42(2/3/4): 1524-1527.
    [65]纪飚,陆佶人.一种新的混沌同步及保密通信方式[J].通信学报. 1998, 19(9): 47-53.
    [66] Volkovskii, A.R., Tsimring, L.S., Rulkov, N.F., Langmore, I. Spread spectrum communication system with chaotic frequency modulation[J]. Chaos. 2005, 15(3): 033101.
    [67] Wang, X., Zhan, M., Gong, X., Lai, C.H., Lai, Y.C. Spread-spectrum communication using binary spatiotemporal chaotic codes[J]. Physics Letters A. 2005, 334(1): 30-36.
    [68] Yang, T., Yang, L.B., Yang, C.M. Application of neural networks to unmasking chaotic secure communication[J]. Physica D. 1998, 124(1-3): 248-257.
    [69]álvarez, G., Montoya, F., Romera, M., Pastor, G. Cryptanalyzing a discrete-time chaos synchronization secure communication system[J]. Chaos Solitons & Fractals. 2004, 21(3): 689-694.
    [70]赵耿,郑德玲,方锦清.混沌保密通信的最新进展[J].自然杂志. 2003, 23(2): 97-106.
    [71] Sushchik, M., Tsimring, L.S., Vokkovskii, A.R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I. 2000, 47(12): 1684-1691.
    [72] Galias, Z., Maggio, G. Quadrature chaos-shifts keying: theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I. 2001, 48(12): 1510-1518.
    [73] Bai, E.W., Lonngren, K.E., U?ar, A. Secure communication via multiple parameter modulation in a delayed chaotic system[J]. Chaos Solitons & Fractals. 2005, 23(3): 1071-1076.
    [74] Erd?s, P., Rényi, A. On the evolution of random graphs[J]. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5: 17-61.
    [75] Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L. The large-scale organization of metabolic networks[J]. Nature. 2000, 407: 651-654.
    [76] Ebel, H., L. Mielsch, Bornholdt, S. Scale-free topology of E-mail networks[J]. Physical Review E. 2002, 66(3): 035103.
    [77] Li, W., Cai, X. Statistical analysis of airport network of China[J]. Physical Review E. 2004, 69(4): 046106.
    [78] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U. Complex networks: structure and dynamics[J]. Physics Reports. 2006, 424(4-5): 175-308.
    [79] Albert, R., Barabási, A.L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics. 2002, 74: 47-97.
    [80] Dorogovtsev, S.N., Mendes, J.F.F. Evolution of networks with aging of sites[J]. Physical Review Letters. 2000, 62(2): 1842-1845.
    [81] Wang, W.X., Wang, B.H., Hu, B., Yan, G., Ou, Q. General dynamics of topology and traffic onweighted technological networks[J]. Physical Review Letters. 2005, 94(18): 188702.
    [82] Zhang, Z.Z., Rong, L.L., Zhou, S.G. A general geometric growth model for pseudofractal scale-free web[J]. Physica A. 2007, 377(1): 329-339.
    [83]方锦清,李永.网络科学中统一混合理论模型的若干研究进展[J].力学进展. 2008, 38(6): 663-678.
    [84]刘宏鲲,张效莉,曹莨,汪秉宏,周涛.中国城市航空网络航线连接机制分析[J].中国科学G辑. 2009, 39(7): 935-942
    [85] Pastor-Satorras, R., Vespignani, A. Epidemic spreading in scale-free networks[J]. Physical Review Letters. 2001, 86(14): 3200-3203.
    [86] Wu, C.W. Synchronization in Complex Networks of Nonlinear Dynamical Systems[M]. Singapore: World Scientific. 2007.
    [87] Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C. Synchronization in complex networks[J]. Physics Reports. 2008, 469(3): 93-153.
    [88]赵明,周涛,陈关荣,汪秉宏.复杂网络上动力系统同步的研究进展II—如何提高网络的同步能力[J].物理学进展. 2008, 28(1): 22-34.
    [89] Sun, Y.G., Wang, L. Consensus problems in networks of agents with double-integrator dynamics and time-varying delays[J]. International Journal of Control. 2009, 82(10): 1937-1945.
    [90] Vespignani, A. Complex networks: The fragility of interdependency[J]. Nature. 2010, 464: 984-985.
    [91] Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S. Catastrophic cascade of failures in interdependent networks[J]. Nature. 2010, 464: 1025-1028.
    [92] Li, X., Wang, X., Chen, G. Pinning a complex dynamical network to its equilibrium[J]. IEEE Transactions on Circuits and Systems I. 2004, 51(10): 2074-2087.
    [93]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社. 2006.
    [94] Newman, M.E.J., Watts, D.J. Renormalization group analysis of the small-world network model[J]. Physics Letters A. 1999, 263(4-6): 341-346.
    [95] Pecora, L.M., Carroll, T.L. Master stability functions for synchronized coupled systems[J]. Physical Review Letters. 1998, 80(10): 2109-2112.
    [96] Barahona, M., Pecora, L.M. Synchronization in small-world systems[J]. Physical Review Letters. 2002, 89(5): 054101.
    [97] Wang, X.F. Complex networks: topology, dynamics and synchronization[J]. International Journal of Bifurcation & Chaos. 2002, 21(5): 885-916.
    [98] Wang, X.F., Chen, G. Synchronization in small-world dynamical networks[J]. International Journal of Bifurcation & Chaos. 2002, 12(1): 187-192.
    [99] Hu, G., Yang, J., Liu, W. Instability and controllability of linearly coupled oscillators: Eigenvalue analysis[J]. Physical Review E. 1998, 58(4): 4400-4453.
    [100] Chen, Y., Rangarajan, G., Ding, M. General stability analysis of synchronized dynamics in coupled systems[J]. Physical Review E. 2003, 67(4): 026209.
    [101] Lu, W., Chen, T. New approach to synchronization analysis of linearly coupled ordinary diffrential systems[J]. Physica D. 2006, 213(2): 214-230.
    [102] Chen, T., Zhu, Z.M. Exponential synehronization of nonlinear coupled dynamical networks[J]. International Journal of Bifurcation & Chaos. 2007, 17(3): 999-1005.
    [103] Belykh, V., Belykh, I., Hasler, M. Connection graph stability method for synchronized coupled chaotic systems[J]. Physica D, 2004, 195(l-2): 159-187.
    [104] Lü, J.H., Chen, G. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control. 2005, 50(6): 841-846.
    [105] Zhang, R., Hu, M., Xu, Z. Synchronization in complex networks with adaptive coupling[J]. Physics Letters A. 2007, 368(8): 276-280.
    [106] Li, Z., Jiao, L., Lee, J.J. Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength[J]. Physica A. 2008, 387(5-6): 1369-1380.
    [107] Liu, H., Chen, J., Lu, J., Cao, M. Generalized synchronization in complex dynamical networks via adaptive couplings[J]. Physica A. 2010, 389(8): 1759-1770.
    [108] Lu, J., Cao, J. adaptive synchronization of uncertain dynamical networks with delayed coupling[J]. Nonlinear Dynamics. 2008, 53(1-2): 107-115.
    [109] Lu, W.L., Chen, T.P., Chen, G. Synchronization analysis of linearly coupled systems described by diffrential equations with a coupling delay[J]. Physica D. 2006, 221(2): 118-134.
    [110] Gao, H.J., Lam, J., Chen, G. New criteria for synchronization stability of general complex dynamical networks with coupling delays[J]. Physics Letters A. 2006, 360(2): 263-273.
    [111] Yu, W., Cao, J., Lu, J. Global Synchronization of linearly hybrid coupled networks with time-varying delay[J]. SIAM Journal on Applied Dynamical Systems. 2008, 7(1): 108-133.
    [112] Dai, Y., Cai, Y.Z., Xu, X.M. Synchronization criteria for complex dynamical networks with neutral-type coupling delay[J]. Physica A. 2008, 387(18): 4673-4682.
    [113] He, Y., Wu, M., She, J.H., Liu, G.P. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems & Control Letters. 2004, 51(1): 57-65.
    [114] Yao, J., Wang, H.O., Guan, Z.H., Xu, W. Passive stability and synchronization of complex spatio-temporal switching networks with time delays[J]. Automatica. 2009, 45(7): 1721-1728.
    [115] Yue, D., Li, H. Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays[J]. Neurocomputing. 2010, 73(4-6): 809-819.
    [116] Wang, X.F., Chen, G. Synchronization in scale-free dynamical networks: robustness and fragility[J]. IEEE Transactions on Circuits and Systems I. 2002, 49(1): 54-62.
    [117] Gu, Z.M., Zhao, M., Zhou, T., Zhu, C.P., Wang, B.H. Phase synchronization of non-Abelian oscillators on small-world networks[J]. Physics Letters A. 2007, 362(2-3): 115-119.
    [118] Fumito, M., Takashi, O. Synchronization of coupled oscillators on small-world networks[J]. Physica D. 2009, 238(14): 1180-1185.
    [119] Zou, Y., Chen, G. Choosing effective controlled nodes for scale-free network synchronization[J]. Physica A. 2009, 388(14): 2931-2940.
    [120] Sorrentino, F., di Bernardo, M., Huerta Cuéllar, G., Boccaletti, S. Synchronization in weighted scale-free networks with degree-degree correlation[J]. Physica D. 2006, 224(1-2): 123-129.
    [121] Duan, Z., Chen, G., Huang, L. Synchronization of weighted networks and complex synchronized regions[J]. Physics Letters A. 2008, 372(21): 3741-3751.
    [122] Wu, X., Lu, H. Exponential synchronization in delayed and non-delayed coupling dynamical networks[J]. Computers and Mathematics with Applications. 2010, 60(8): 2476-2487.
    [123] Li, C., Sun, W., Kurths, J. Synchronization between two coupled complex networks[J]. Physical Review E. 2007, 76(4): 046204.
    [124] Wu, X., Lu, H. Cluster synchronization in the adaptive complex dynamical networks via a novel approach[J]. Physics Letters A. 2011, 375(14): 1559-1565.
    [125] Liu, H., Lu, J.A., Lü, J., Hill, D.J. Structure identification of uncertain general complex dynamical networks with time delay[J]. Automatica. 2009, 45(8): 1799-1807.
    [126] Tang, Y., Wang, Z., Fang, J. Pinning control of fractional-order weighted complex networks[J]. Chaos. 2009, 19(1): 013112.
    [127] Tang, Y., Fang, J. Synchronization of N-coupled fractional-order chaotic systems with ring connection[J]. Communications in Nonlinear Science and Numerical Simulation. 2010, 15(2): 401-412.
    [128] Wang, J., Zhang, Y. Network synchronization in a population of star-coupled fractional nonlinear oscillators[J]. Physics Letters A. 2010, 374(13-14): 1464-1468.
    [129] Wu, X.J., Lu, H.T. Outer synchronization of two different fractional-order complex dynamical networks[J]. Chinese Physics B. 2010, 19(7): 070511.
    [130] Nishikawa, T., Motter, A.E., Lai, Y.C., Hoppensteadt, F.C. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize[J]? Physical Review Letters. 2003, 91(1): 014101.
    [131] Hong, H., Kim, B.J., Choi, M.Y., Park, H. Factors that predict better synchronizability on complex networks[J]. Physical Review E. 2004, 69(6): 067105.
    [132] McGraw, P.N., Menzinger, M. Clustering and the synchronization of oscillator networks[J]. Physical Review E. 2005, 72(1): 015101.
    [133] Hao, B., Yu, H., Jing, Y., Zhang, S. On synchronizability and heterogeneity in unweighted networks[J]. Physica A. 2009, 388(9): 1939-1945.
    [134] Motter, A.E., Zhou, C.S. Kurths, J. Enhancing complex networks sychronization[J]. Europhyics Letters. 2005, 69(3): 334340.
    [135] Gu, Y., Sun, J. Altering synchronizability by adding and deleting edges for scale-free networks[J]. Physica A. 2009, 388(15-16): 3261-3267.
    [136] Estrada, E., Gago, S., Caporossi, G. Design of highly synchronizable and robust networks[J]. Automatica. 2010, 46(11): 1835-1842.
    [137]卢文联.动力系统与复杂网络:理论与应用[博士论文].上海:复旦大学. 2005.
    [138] Xu, D. Control of projective synchronization in chaotic systems[J]. Physical Review E. 2001, 63(2): 27201–27204.
    [139] Xu, D., Chee, C.Y. Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension[J]. Physical Review E. 2002, 66(4): 046218.
    [140] Li, Z., Xu, D. A secure communication scheme using projective chaos synchronization[J]. Chaos Solitons & Fractals. 2004, 22(2): 477-481.
    [141] Yu, Y., Li, H.X. Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design[J]. Nonlinear Analysis: Real World Applications. 2011, 12(1): 388-393.
    [142] Gao, T., Chen, G., Chen, Z., Cang, S. The generation and circuit implementation of a new hyper-chaos based upon Lorenz system[J]. Physics Letters A. 2007, 361(1): 78-86.
    [143] Li, Y.X., Tang, W.K.S., Chen, G.R. Generating hyperchaos via state feedback control[J]. International Journal of Bifurcation & Chaos. 2005, 15(10): 3367-3375.
    [144] Chen, A., Lu, J., Lü, J.L., Yu, S. Generating hyperdhaotic Lüattractor via state feedback control[J]. Physica A. 2006, 364: 103-110.
    [145] Stenflo, L. Generalized Lorenz equations for acousticgravity waves in the atmosphere[J]. Physica Scripta. 1996, 53(1): 83-84.
    [146] Podlubny, I. Fractional-order systems and PIλDμ-controllers[J]. IEEE Transactions on AutomaticControl. 1999, 44(1): 208-214.
    [147] Wu, X., Lu, H., Shen, S. Synchronization of a new fractional-order hyperchaotic system[J]. Physics Letters A. 2009, 373(27-28): 2329-2337.
    [148]胡建兵,韩焱,赵灵冬.自适应同步参数未知的异结构分数阶超混沌系统[J].物理学报. 2009, 58(3): 1441-1445.
    [149]胡建兵,韩焱,赵灵冬.一种新的分数阶系统稳定理论及在Backstepping方法同步分数阶混沌系统中的应用[J].物理学报. 2009, 58(4): 2235-2239.
    [150] Laskin, N. Fractional market dynamics[J]. Physica A. 2000, 287(3-4): 482-492.
    [151] Kiani, B.A., Kia, F., Naser, P., Henry, L. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter[J]. Communications in Nonlinear Science and Numerical Simulation. 2009, 14(3): 863-879.
    [152] Sheu, L.J. A speech encryption using fractional chaotic systems[J]. Nonlinear Dynamics. 2011, 65(1-2): 103-108.
    [153] Caputo, M. Linear models of dissipation whose Q is almost frequency independent-II[J]. Geophysical Journal Royal Astronomical Society. 1967, 13(5): 529-539.
    [154] Keil, F., Mackens, W., Werther, J. Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties[M]. Heidelberg: Springer-Verlag. 1999.
    [155] Samko, S.G., Klibas, A.A., Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications[M]. Amsterdam: Gordan and Breach. 1993.
    [156] Diethelm, K., Ford, N.J., Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics. 2002, 29(1-4): 3-22.
    [157] Gao, T., Chen, Z., Yuan, Z., Yu, D. Adaptive synchronization of a new hyperchaotic system with uncertain parameters[J]. Chaos Solitons & Fractals. 2007, 33(3): 922-928.
    [158] Gao, T., Chen, G., Chen, Z., Cang, S. The generation and circuit implementation of a new hyper-chaos based upon Lorenz system[J]. Physics Letters A. 2007, 361(1-2): 78-86.
    [159] Matignon, D. Stability results of fractional differential equations with applications to control processing[C]. In Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, vol. 2, pp. 963-968, Lille, France, July 1996.
    [160] Li, C., Sun, W., Kurths, J. Synchronization between two coupled complex networks[J]. Physical Review E. 2007, 76(4): 046204.
    [161] Tang, H., Chen, L., Lu, J., Tse, C.K. Adaptive synchronization between two complex networkswith nonidentical topological structures[J]. Physica A. 2008, 387(22): 5623-5630.
    [162] Wu, X., Zheng, W.X., Zhou, J. Generalized outer synchronization between complex dynamical networks[J]. Chaos. 2009, 19(1): 013109.
    [163] Wu, X., Lu, H. Generalized projective synchronization between two different general complex dynamical networks with delayed coupling[J]. Physics Letters A. 2010, 374(38): 3932-3941.
    [164] Chen, W.C. Nonlinear dynamics and chaos in a fractional-order financial system[J]. Chaos Solitons & Fractals. 2008, 36(5): 1305-1314.
    [165] Diethelm, K., Ford, N.J. Analysis of fractional differential equations[J]. Journal of Mathematical Analysis and Applications. 2002, 265(2): 229-248.
    [166] Khalil, H.K. Nonlinear Systems(3rd Edition)[M]. Englewood Cliffs, NJ: Prentice-Hall. 2002.
    [167] Lu, J. Chaotic dynamics of the fractional-order Lüsystem and its synchronization[J]. Physics Letters A. 2006, 354(4-5): 305-311.
    [168] Wang, X., Wang, M. Dynamic analysis of the fractional-order Liu system and its synchronization[J]. Chaos. 2007, 17(3): 033106.
    [169] Li, C.G., Chen, G. Sychronization in general complex dynamical networks with coupling delays[J]. Physica A. 2004, 343: 263-278.
    [170] Zhou, J., Chen, T. Synchronization in general complex delayed dynamical networks[J]. IEEE Transactions on Circuits and Systems I. 2006, 53(3): 733-744.
    [171] Lu, J., Ho, D.W.C. Local and global synchronization in general complex dynamical networks with delay coupling[J]. Chaos Solitons & Fractals. 2008, 37(5): 1497-1510.
    [172] Zhu, Q., Cao, J. Adaptive synchronization of chaotic Cohen-Crossberg neural networks with mixed time delays[J]. Nonlinear Dynamics. 2010, 61(3): 517-534.
    [173] Wang, Z., Wang, Y., Liu, Y. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays[J]. IEEE Trsactions on Neural Networks. 2010, 21(1): 11-25.
    [174] Lu, J., Cao, J. Synchronization-based approach for parameters identification in delayed chaotic neural networks[J]. Physica A. 2007, 382(2): 672-682.
    [175] Lasalle, J.P. The extent of asymptotic stability[J]. Proceedings of the National Academy of Sciences of USA. 1960, 46(3): 363-365.
    [176] Belykh, I. Belykh, V., Nevidin, K., Hasler, M. Persistent clusters in lattices of coupled nonidentical chaotic systems[J]. Chaos. 2003, 13(1):165-178.
    [177] Ma, Z.J., Liu, Z.R., Zhang, G. A new method to realize cluster synchronization in connectedchaotic networks[J]. Chaos. 2006, 16(2): 023103.
    [178] Wu, W., Zhou, W., Chen, T. Cluster synchronization of linearly coupled complex networks under pinning control[J]. IEEE Transactions on Circuits and Systems I. 2009, 56(4): 829-839.
    [179] Lu, X.B., Qin, B.Z. Adaptive cluster synchronization in complex dynamical networks[J]. Physics Letters A. 2009, 373(40): 3650-3658.
    [180] Cao, J., Li, L. Cluster synchronization in an array of hybrid coupled neural networks with delay[J]. Neural Networks. 2009, 22(4): 335-342.
    [181] Kaneko, K. Relevance of clustering to biological networks[J]. Physica D. 1994, 75: 55-73.
    [182] Newman, M.E.J. The structure and function of complex networks[J]. SIAM Review. 2003, 45(2): 167-256.
    [183] Wu, X. Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay[J]. Physica A. 2008, 387(4): 997-1008.
    [184] Guo, W., Chen, S., Sun, W. Topology identification of the complex networks with non-delayed and delayed coupling[J]. Physics Letters A. 2009, 373(41): 3724-3729.
    [185] Xu, Y., Zhou, W., Fang, J., Sun, W., Pan, L. Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling[J]. Journal of the Franklin Institute. 2010, 347(4): 1566-1576.
    [186] Lü, J., Chen, G. A new chaotic attractor coined[J]. International Journal of Bifurcations & Chaos. 2002, 12(3): 659-661.
    [187] Guevara, M., Lewis, T. A milnimal single-channel model for the regularity of beating in the sinoatrial node[J]. Chaos. 1995, 5(1): 174-183.
    [188] Bohannon, J. Counterterrorism’s new tool:‘metanetwork’analysis[J]. Science. 2009, 325: 409-411,
    [189] Grigoriev, R.O., Cross, M.C., Sehuster, H.G. Pinning Control of spatiotemporal Chaos[J]. Physical Review Letters. 1997, 79(15): 2795-2798.
    [190] Wang, X., Chen, G. Pinning control of scale-free dynamical networks[J]. Physica A. 2002, 310(3-4): 521-531.
    [191] Chen, T., Liu, X., Lu, W. Pinning complex networks by a single controller[J]. IEEE Transactions on Circuits and Systems I. 2007, 54(6): 1317-1326.
    [192] Liu, Z.X., Chen, Z.Q., Yuan, Z.Z. Pinning control of weighted general complex dynamical networks with time delay[J]. Physica A, 2007, 375(1): 345-354.
    [193] Duan, Z., Wang, J., Chen, G., Huang, L. Stability analysis and decentralized control of a class ofcomplex dynamical networks[J]. Automatica. 2008, 44(4): 1028-1035.
    [194] Yu, W., Chen, G., Lü, J. On pinning synchronization of complex dynamical networks[J]. Automatica. 2009, 45(2): 429-435.
    [195] Hu, A., Xu, Z. Pinning a complex dynamical network via impulsive control[J]. Physics Letters A. 2009, 374(2): 186-190.
    [196] Guo, W., Austin, F., Chen, S., Sun, W. Pinning synchronization of the complex networks with non-delayed and delayed coupling[J]. Physics Letters A. 2009, 373(17): 1565-1572.
    [197] Song, Q., Cao, J. On pinning synchronization of directed and undirected complex dynamical networks[J]. IEEE Transactions on Circuits and Systems I. 2010, 57(3): 672-680.
    [198] Cai, S., Hao, J., He, Q., Liu, Z. Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control[J]. Physics Letters A. 2011, 375(19): 1965-1971.
    [199] Sun, W., Chen, Z., Lü, Y., Chen, S. An intriguing hybrid synchronization phenomenon of two coupled complex networks[J]. Applied Mathematics and Computation. 2010, 216(8): 2301-2309.
    [200] Wu, C.W., Chua, L.O. Synchronization in an array of linearly coupled dynamical systems[J]. IEEE Transactions on Circuits and Systems I. 1995, 42(8): 430-447.
    [201] Sprott, J.C. Some simple chaotic flows[J]. Physical Review E. 1994, 50(2): 647-650.
    [202] Wang, X.H., Jiao, L.C., Wu, J.S. Extracting hierarchical organization of complex networks by dynamics towards synchronization[J]. Physica A. 2009, 388(14): 2975-2986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700