复杂动态网络系统的同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将复杂系统抽象成相互作用的个体组成的复杂网络,是描述和理解复杂系统的重要方法,受到国内外学者的广泛关注.由此展开的复杂网络研究已渗透到物理学、生物科学、社会科学、计算机科学与工程等众多领域,涉及到其中的诸多研究内容.网络系统的同步就是其中一项代表性课题.同步是复杂网络上典型的集体行为和涌现现象.它普遍存在于各类复杂网络系统中,并关系着众多具体问题.研究网络系统上同步行为的控制问题对消除或增强同步影响,仿真、控制与设计复杂系统等具有积极的现实意义和理论价值.本文以连续时间耦合网络的同步控制展开研究,依次针对静态线性耦合网络、时变线性耦合网络以及更一般的不确定时滞耦合网络等设计有效的控制器,保证网络同步的实现.本文主要包括以下内容:
     1.提出了一类随机伪分形演化网络,为本文随后章节的相关讨论提供了网络拓扑结构模型.该模型通过分形生长和边权竞争机制实现网络演化.利用连续域方法解析计算了网络的度分布、簇系数和平均路径长度,并执行数值仿真加以验证.结果表明这一类随机伪分形网络同时具有现实网络系统的两个普适特性—小世界效应和无标度特性,并且其幂律分布下的斜率可通过调节竞争参数α使之位于(2,3)之间,与绝大多数真实网络的分布斜率相符合.
     2.设计了一种自适应牵制反馈控制手段用于同步加权耦合网络,并解决了实施牵制时的两个基本问题:牵制节点数目估计和牵制节点选择策略.考虑到一般的线性反馈牵制需要预估反馈增益,提出了利用局部余差自主调节反馈增益的自适应牵制控制手段,并给出了控制加权网络局部同步和全局同步的理论保证.特别地,证明了这种自适应牵制手段在理论分析研究时可等价为一般的线性反馈牵制,故可用线性牵制来研究自适应牵制的节点选择问题.以此为基础,利用矩阵论和线性矩阵不等式相关知识展开讨论.一方面,基于网络耦合矩阵特征值谱已知的情况,给出了牵制节点数目估计的必要条件和充分条件.另一方面,给出了判定是否为牵制节点的线性矩阵不等式判据,进而提出了基于节点度选择牵制节点的策略,并制定了可应用到一般网络拓扑结构的牵制节点搜索策略.
     3.研究了一类快速切换耦合网络的同步控制问题.本文尝试用随机牵制控制策略来同步一类快速切换耦合网络模型,其中,网络节点是由位于平面上快速移动的智能体及其上的混沌振子构成,节点间的耦合关系则是通过智能体位置的邻近程度确定,网络的同步状态由振子来定义.以R(o丨¨)ssler振子为例,针对其两种典型耦合方式分别从理论和仿真实验上探讨了牵制控制同步的条件.研究结果表明,在具有无界同步化区域的网络中,牵制控制能力由牵制密度决定,与网络规模、牵制概率及节点密度无关;而具有有界同步化区域的网络实施牵制时对反馈增益、节点密度和牵制概率等有苛刻的要求,这导致牵制控制难以实施,需要新的控制手段如随机快速切换牵制网络节点来实现.
     4.设计了不确定时滞耦合网络的同步控制器.针对一般时滞线性不确定耦合网络,考虑网络中的耦合关系有界且界值在已知和未知的情况下,分别引入线性反馈控制和自适应反馈控制手段来同步网络.针对时滞非线性耦合网络中的节点未知和存在不确定参数这两种情况,分别设计了自适应反馈控制律以保证网络同步.通过构造Lyapunov-Krasovskii范函给出理论证明,并用仿真示例进一步说明这两种自适应控制手段都对不确定参数如节点函数、耦合矩阵和时滞等表现出非常强的鲁棒性.
Representing a complex system as a network consisting of numerous coupled individuals is a key approach to describe and understand different behaviors of a complex system. Complex network has become highly active, with many new systems being proposed in application areas ranging from physics to biology to social science and computer science. Synchronization problem, as a common phenomenon of a population of dynamically interacting units, is one of the most demonstrating topics in complex networks. Ubiquitous in various kinds of complex networks, synchronization is closely related to multiple external flock behaviors. Therefore it is potentially of great significance to investigate synchronization control problem of dynamical systems on complex networks. The main objective of this dissertation is to investigate the synchronization control of a class of continuous-time coupled dynamical networks. We introduce several effective controllers for synchronization of distinct networks, which primarily encompass static coupled networks, time-varying networks and general uncertain delayed coupled networks. The main content of this dissertation are summarized as follows:
     1. A class of random pseudofractal network models (RPNs) is proposed for modeling the network topology in the sequel. RPNs are generated and evolved according to the rules of fractal growth and competition. Aspects of degree distribution, clustering coefficient and average path length of the RPNs can be obtained by taking continuous approximation. In addition, analytical and numerical results indicate that the PRN model possess a power-law distribution with the exponents tuned by model parameters between 2 and 3, and small-world effect, consistent with most real networks.
     2. An adaptive pinning control scheme is proposed for synchronizing coupled weighted dynamical networks. Number estimation and selection strategy of pinned nodes, as two fundamental pinning design problems, are solved. To avoid the prediction of linear feedback gains in pinning process, an adaptive pinning scheme are proposed, with the criteria of local and global synchronization being given by construction of Lyapunov functions. In particular, adaptive pinning and linear pinning, in the aspect of pinning strategy, are proven to be equivalent. As a result, number estimation and selection strategy of pinned nodes can be solved by using matrix theory and linear matrix inequality theory, which also set the foundation for subsequent discussion. Firstly, necessary and sufficient condition of the number of pinned nodes is given in form of eigenvalues of coupling matrix. Secondly, LMI-based criteria are given to determine the pinned nodes. As an extension to networks with general topology, several pinning and searching strategies are introduced respectively according to degrees of nodes.
     3. Synchronization control of fast switching coupled network is studied, with the specific task of dictating multiple mobile agents in a plane towards a desired orbit. The problem in this dissertation is investigated by means of pinning, where each agent is associated with a chaotic oscillator coupled with those of neighboring ones. In addition, the pinning strategy is achieved by exerting common linear feedback on a small fraction of agents that are chosen randomly. We explore aspects of pinning probability, feedback gains and agent density under the assumption of fast switching constraint. Particularly, we show that in cases where network synchronization region is unbounded, synchronization of the dynamical network is exclusively determined by pinning density. However, such control strategy works little for or even weakens the synchronizability for networks with single bounded synchronization region.
     4. Synchronization controllers for uncertain dynamical networks with delays are designed. We consider linearly-coupled networks with uncertain delay, typified by bounded entries of coupling matrix. Synchronization schemes based on linear feedback and adaptive control are demonstrated respectively. For a nonlinearly-coupled network with completely unknown or partially known nodes, two adaptive synchronization controllers are proposed respectively. Several criteria guaranteeing synchronization of these systems are established by employing the Lyapunov-Krasovskii functionals as well as numerical results for validation. In particular, we show that such controllers are highly robust against uncertain parameters, such as node functions, coupling matrix and time delays.
引文
[1]N.Winener:Cybernetics,or Control and Communication in the Animal and the Machine,John Wliey & Sons,Inc,1949.
    [1]Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks.Nature,1998,393:440-442.
    [2]Barabasi A L,Albert R.Emergence of Scaling in Random Networks.Science,1999,286:509-512.
    [3]Barabasi A L,Albert R,Jeong H.Mean-field theory for scale-free random networks.Physica A,1999,272(1-2):173-187.
    [4]Albert R,Barabasi A L.Statistical mechanics of complex networks.Review of Modern Physics,2002,74(1):47-97.
    [5]Newman M E J.Mixing pattern in networks.Physical Review E,2003,67:026126.
    [6]Watts D J.Networks,dynamics,and the small world phenomenon.American Journal of Sociology,1999,105:493-527.
    [7]Dorogovtsev S N,Mendes J F F.Evolution of networks.Oxford University Press,2003.
    [8]Boccaletti S,Latora V,Moreno Y,et al.Complex networks:strucuture and dynamics.Physics Reports,2006,424:175-308.
    [9]汪小帆,李翔,陈关荣编著.复杂网络理论及其应用.清华出版社,2006.
    [10]郭雷,许晓鸣主编.复杂网络.上海科技教育出版社,2006.
    [11]许国志主编.系统科学.上海科技教育出版社,2000.
    [12]Pikovsky A,Rosenblum M,Kurths J.Synchronization,a universal concept in nonlinear sciences.New York:Cambridge University Press,2001.
    [13]郑志刚著.耦合非线性系统的时空动力学与合作行为.高等教育出版社,2004.
    [14]Winfree A T.The geometry of biological time.New York:Spinger-Verlag,1980.
    [15]Arenas A,Diaz-Guilera A,Kurths J,et al.Synchronization in complex networks.Physics Reports,2008,469:93-153.
    [16]Grigoriev R O,Cross M C,Schuster H G.Pinning Control of Spatiotemporal Chaos.Physical Review Letters,1997,79:2795-2798.
    [17]Parekh N,Parthasarathy S,Sinha S.Global and local control of spatiotemporal chaos in coupled map lattices.Physical Review Letters,1997,81:1401-1404.
    [18]Wang X,Chen G.Pinning control of scale-free dynamical networks.Physica A,2002,310:521-531.
    [19]Weisbuch G,Deffuant G,Amblard F.Persuasion dynamics.Physica A,2004,353:555-575.
    [20]Neda Z,Ravasz E,Brechet Y,et al.Self-organizing processes:The sound of many hands clapping.Nature,2000,403:849-850.
    [21] Peskin C. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematics and Science, New York, 1977.
    
    [22] Guevara M, Lewis T. A minimal single-channel model for the regularity of beating in the sinoatrial node. Chaos, 1995,5:174-183.
    
    [23] Ding D Q. Applying complex network theory to analyze mechanism of cascading large blackouts failure. Electric Power, 2007, 40:25-32.
    
    [24] Manfredi S. A cooperative control approach for queue stabilization in communication networks. Applied & Computational Mathematics, 2007, 6(2): 192-217.
    
    [25] Feeeman L A. A Set of measures of Centrality Based upon Betweenness. Sociometry, 1977, 40:35-41.
    
    [26] Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science, 2002, 296:910-913.
    
    [27] Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet. Physical Review Letters, 2001, 87:258701.
    
    [28] Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet. Physical Review E, 2002, 65:066130.
    
    [29] Newman M E J. Assortative mixing in networks. Physical Review Letters, 2002, 89(20):208701.
    
    [30] Barthélemy M. Betweenness centrality in large complex networks. The European Physical Journal B, 2004, 38:163-168.
    
    [31] Albert R, Jeong H, Barabási A L. Attack and error tolerance of complex networks. Nature, 2000, 406:378-382.
    
    [32] Erd(o|¨)s P, Réyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17-61.
    
    [33] Solomonoff R, Rapoport A. Connectivity of random nets. The Bulletin of Mathematical Biophysics, 1951, 13:107-117.
    
    [34] Milgram S. The Small World Problem. Psychology Today, 1967, 1(1):61-67.
    
    [35] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physical Letters A, 1999, 263:341-346.
    
    [36] Newman M E J, Watts D J. Scaling and percolation in the small-world network model. Physical Review E, 1999, 60:7332-7342.
    
    [37] Barthélémy M, Amaral L A N. Small-world networks: Evidence for a crossover picture. Physical Review Letters, 1999, 82:3180-3183.
    
    [38] Kasturirangan R. Multiple Scales in Small-World Graphs. cond-mat/9904055..
    
    [39] Barrat A, Weigt M. On the properties of small-world networks. The European Physical Journal B, 2000, 13:547-560.
    [40] Dorogovtsev S N, Mendes J F F. Exactly solvable small-world network. Europhysics Letters, 2000,50:1-7.
    
    [41] Kleinberg J. Navigation in a small world. Nature, 2000, 406:845-845.
    
    [42] Ozik J, Hunt B R, Ott E. Growing Networks with Geographical Attachment Preference: Emergence of Small Worlds. Physical Review E, 2004, 69:026108.
    
    [43] Mour A P S. Thin Watts-Strogatz networks. Physical Review E, 2006, 73:016110.
    
    [44] Fronczak A, Holyst J A, Jedynak M, et al. Higher order clustering coefficients in Barabási-Albert networks. Eprint arxiv, 2002. http://arXiv:cond-mat/0212237.
    [45] Fronczak A, Fronczak P, Holyst J A. Mean-field theory for clustering coefficients in Barabási- Albert networks. Physical Review E, 2003, 68(4):046126.
    [46] Kaneko K. Coupled Map Lattices. World Scientific, Singapore, 1992.
    [47] Chua L O. Special issue on nonlinear wave, pattern, and spatiotemporal chaos in dynamical arrays. IEEE Transaction on Circuits and Systems, 1995,42.
    [48] Chua L O. A Paradiam for Complexity. World Scientific, Singapore, 1998.
    
    [49] Wu C W. Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore, 2002.
    
    [50] Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems. Physics Reports, 2002,366:1-101.
    
    [51] Pecora L M, Carrol T L. Master Stability Functions for Synchronized Coupled Systems. Physical Review Letters, 1998, 80:2109.
    
    [52] Nishikawa T, Motter A E. Synchronization is optimal in nondiagonalizable networks. Physical Review E, 2006, 73:065106.
    
    [53] Zhou C, Kurths J. Dynamical weights and enhanced synchronization in adaptive complex networks. Physical Review Letters, 2006, 96:164102.
    
    [54] Barahona M, Pecora L M. Synchronization in small-world systems. Physical Review Letters, 2002,89:054101.
    
    [55] Hu G, Yang J, Liu W. Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Physical Review E, 1998, 58:4440.
    
    [56] Wang X, Chen G. Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Transaction on Circuits and Systems 1: Regular Papers, 2002, 49:54-62.
    
    [57] Wang X, Chen G. Synchronization in complex dynamical networks and its applications. International Journal of Bifurcation & Chaos, 2002, 12:187-192.
    
    [58] Wu C W, Chua L O. Synchronization in an array of linearly coupled dynamical systems. IEEE Transaction on Circuits and Systems 1: Regular Papers, 1995, 42:430-447.
    
    [59] Rangarajan G, Ding M. Stability of synchronized chaos in coupled dynamical systems. Physica A, 2002, 296:204-209.
    [60] Chen Y, Rangarajan G, Ding M. General stability analysis of synchronized dynamics in coupled systems. Physical Review E, 2003, 67:026209.
    
    [61] Kocarev L, Amato P. Synchronization in power-law networks. Chaos, 2005, 15:024101.
    
    [62] Duan Z, Chen G, Huang L. Disconnected synchronized regions of complex dynamical networks. IEEE Transactions on Automatic Control, 2009, 54(4):845-849.
    
    [63] Liu C, Duan Z, Chen G, et al. Analyzing and controlling the network synchronization regions. Physica A, 2007, 386:531-542.
    
    [64] Newman M E J. The structure and function of complex networks. SIAM Review, 2003, 45(2).
    
    [65] Zhao M, Wang B H, Jiang P, et al. Recent advancement in research of synchronization of dynamical systems on complex networks. Progress in Physics, 2005, 25:273-295.
    
    [66] Zhao M, Zhou T, Chen G, et al. A review on synchronization of dynamical systems on complex networks: how to enhance the network synchronizability. Progress in Physics, 2008, 28:22-34.
    
    [67] Nishikawa T, Motter A E, Lai Y C, et al. Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Physical Review Letters, 2003, 91:014101.
    
    [68] Motter A E, Zhou C S, Kurths J. Enhancing complex-network synchronization. Europhysics Letters, 2005, 69:334-340.
    
    [69] Motter A E, Zhou C S, Kurths J. Network synchronization, diffusion, and the paradox of heterogeneity. Physical Review E, 2005, 71:016116.
    
    [70] Hwang D H, Chavez M, Amann A, et al. Synchronization in Complex Networks with Age Ordering. Physical Review Letters, 2005, 94:138701.
    
    [71] Zou Y, Zhu J, Chen G. Synchronization in weighted aging scale-free networks. Physical Review E, 2006, 74:046107.
    
    [72] Chavez M, Hwang D H, Amann A. Synchronization is Enhanced in Weighted Complex Networks. Physical Review Letters, 2005, 94:218701.
    
    [73] Zhao M, Zhou T, Wang B H, et al. Better synchronizability predicted by a new coupling method. The European physical journal B, 2006, 53:375-379.
    
    [74] Hong H, Kim B J, Choi M Y, et al. Factors that predict better synchronizability on complex networks. Physical Review E, 2004, 69:067105.
    
    [75] Zhao M, Zhou T, B. H. Wang W X W. Enhanced synchronizability by structural perturbations. Physical Review E, 2005, 72:057102.
    
    [76] Zhou T, Zhao M, Wang B H. Better Synchronizability Predicted by Crossed Double Cycle. Physical Review E, 2006, 73:037101.
    
    [77] Yin C Y, Wang W X, Chen G, et al. Decoupling process for better synchronizability on scale-free networks. Physical Review E, 2006, 74:047102.
    
    [78] Huang D. Synchronization in adaptive weighted networks. Physical Review E, 2006, 74:046208.
    [79]Chen T,Liu X,Lu W.Pinning complex networks by a single controller.IEEE Transactions on Circuits & Systems I,2007,54(6):1317-1326.
    [80]Boccaletti S,Hwang D U,Chavez M,et al.Synchomization in dynamical networks:evolution along commutative graphs.Physical Review E,2006,74:016102.
    [81]Sorrentino F,Ott E.Adaptive Synchronization of Dynamics on Evolving Complex Networks.Physical Review Letters,2008,100:114101.
    [82]Duan Z,Chen G,Huang L.Complex network synchronizability:Analysis and control.Physical Review E,2007,76:056103.
    [83]Jamshidi M.Large-Scale Systems Modeling and Control.North-Holland,1983.
    [84]席裕庚编著.动态大系统方法导论.国防工业出版社,1988.
    [85]陈禹六编著.大系统理论及其应用.
    [86]高为炳,霍伟编著.大系统的稳定性,分散控制及动态递阶控制基础.北京航空航天大学出版社.1994.
    [87]Sezer M E,Siljak D D.On structural decomposition and stabilization of large scale control systems.IEEE Transactions on Automatic Control,1981,26:439-444.
    [88]关新平,范正平,陈彩莲等编著.混沌控制及其在保密通信中的应用.国防工业出版社,2002.
    [89]Ott E,Grebogi C,Yorke J A.Controlling chaos.Physical Review Letters,1990,64:1196.
    [90]Ditto W L,Rausco S N,Spano M L.Experimental control of chaos.Physical Review Letters,1990,65:3211.
    [91]Roy R,Murphy T W,Maier T.Dynamical control of a chaotic laser:experimental stabilization of a globally coupled system.Physical Review Letters,1992,68:1259.
    [92]Pecora L M,Carroll T L.Synchronization in chaotic system.Physical Review Letters,1990,64:821.
    [93]吴祥兴,陈忠编著.混沌学导论.上海科技文献出版社,1996.
    [94]Li X,Wang X,Chen G.Pinning a Complex Dynamical Network to Its Equilibrium.IEEE Transactions on Circuits & Systems I,2004,51(10):2074-2087.
    [95]Xiang L Y,Chen Z Q,Liu Z X,et al.Stabilizing weighted complex networks.Journal of Physics A,2007,40(48):14369-14382.
    [96]Xiang L,Chen Z,Liu Z,et al.Stability and controllability of asymmetric complex dynamical networks:eigenvalue analysis.International Journal of Modern Physics C,2009,20:237-252.
    [97]Zou Y,Chen G.Pinning controllability of asymmetrical weighted scale-free networks.The Europhysis Letters,2008,84:58005.
    [98]Liu Z,Z.Chen Z Y.Pinning control of weighted general complex dynamical networks with time delay.Physica A,2007,375:345-354.
    [99] Xiang L Y, Chen Z Q, Liu Z X, et al. Pinning control of complex dynamical networks with heterogeneous delays. Computers & Mathematics with Applications, 2008, 56(5): 1423-1433.
    
    [100] Xiang L Y, Liu Z X, Chen Z Q, et al. Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers. Science in China Series F, 2008, 51(5):511- 523.
    
    [101] Duan Z, Wang J, Chen G, et al. Stability analysis and decentralized control of a class of complex dynamical networks. Automatica, 2008, 44:1028-1035.
    
    [102] Xiang J, Chen G. On the V-stability of complex dynamical networks. Automatica, 2007,43:1049-1057.
    
    [103] Porfiri M, Bernardo M. Criteria for global pinning-controllability of complex networks. Au-tomaitica, 2008, 44:3100-3106.
    
    [104] Sorrentino F, Bernardo M, Garofalo F, et al. Controllability of complex networks via pinning. Physical Review E, 2007, 75:046103.
    
    [105] Sorrentino F. Effects of the Network Structural Properties on Its Controllability. Chaos, 2007, 17:033101.
    
    [106] Wu C W. On the relationship between pinning control effectiveness and graph topology in complex networks of dynamical systems. Chaos, 2004, 18:037103.
    
    [107] Wang L, Kong X J, Shi H, et al. LMI-based criteria for synchronization of complex dynamical networks. Journal of Physics A; Mathematical and Theoretical, 2008,41:285102.
    
    [108] Li R, Duan Z, Chen G. Cost and effects of pinning control for network synchronization. Chinese Physics B, 2009, 18:106-118.
    
    [109] Lu W. Adaptive dynamical networks via neighborhood information: synchronization and pinning control. Chaos, 2008, 17.
    
    [110] Zhou J, Wu X, Yu W, et al. Pinning synchronization of delayed neural networks. Chaos, 2008, 18.
    
    [111] Zhou J, Lu J, Lu J. Pinning adaptive synchronization of a general complex dynamical network. Automatica, 2008,44:996-1003.
    
    [112] Wang L, Dai H P, Dong H, et al. Adaptive synchronization of weighted complex dynamical networks through pinning. European Physical Journal B, 2008, 61.
    
    [113] Yu W, Chen G, Lü J. On pinning synchronization of complex dynamical networks. Automatica, 2009,45:429-435.
    
    [114] Miao Q, Z. Rong Y T, Fan J. Effects of degree correlation on the controllability of networks. Physica A, 2008, 387:6225-6230.
    
    [115] Li K, Small M, Fu X. Generation of clusters in complex dynamical networks via pinning control. Journal of Physics A: Mathematical and General, 2008, 41:505101.
    [116] Stojanovski T, kocarev L, Parlitz U, et al. Sporadic driving of dynamical systems. Physical Review E, 1997, 55:4035-4048.
    
    [117] Ito J, Kaneko K. Spontaneous structure formation in a network of chaotic units with variable connection strengths. Physical Review Letters, 2002, 88:028701.
    
    [118] Zanette D H, Mikhailov A S. Dynamical systems with time-dependent coupling: clustering and critical behavior. Physica D, 2004, 194:203-218.
    
    [119] Belykh I V, Belykh V N, Hasler M. Blinking model and synchronization in small-world networks with a time-varying coupling. Physica D, 2004, 195:188-206.
    
    [120] Porfiri M, Stilwell D J, Bolt E M, et al. Random talk: random walk and synchronizability in a moving neighborhood network. Physica D, 2006, 224:102-113.
    
    [121] Lü J, Chen G. A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 2005, 50:841-846.
    
    [122] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003,48:988-1001.
    
    [123] Liu Y, Passino K M, Polycarpou M M. Stability analysis of Mdimensional asynchronous swarms with a fixed communication topology. IEEE Transactions on Automatic Control, 2003,48:76-95.
    
    [124] Lin Z, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents. IEEE Transactions on Automatic Control, 2004, 49:622-629.
    
    [125] Ogren P, Fiorelli E, Leonard N E. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control, 2004, 49:1292-1302.
    
    [126] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004,49:1465-1476.
    
    [127] Saber R O, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004,49:1520-1533.
    
    [128] Marshall J A, Broucke M E, Francis B A. Formations of vehicles in cyclic pursuit. IEEE Transactions on Automatic Control, 2004, 49:1963-1974.
    
    [129] Tanner H G, Pappas G J, Kumar V. Leader-to-formation stability. IEEE Transactions on Automatic Control, 2004, 49:443-455.
    
    [130] Mu S, Chu T, Wang L. Coordinated collective motion in a motile particle group with a leader. Physica A, 2005, 351:211-226.
    
    [131] Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 2005, 50:169-182.
    
    [132] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50:655-661.
    [133] Gao L, Cheng D. Comment on 'Coordination of groups of mobile autonomous agents using nearest neighbor rules'. IEEE Transactions on Automatic Control, 2005, 50:1913-1916.
    
    [134] Saber R O. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 2005, 50:401-420.
    
    [135] Wang W, Slotine J E. A theoretical study of different leader roles in networks. IEEE Transactions on Automatic Control, 2006, 51:1156-1161.
    
    [136] Shi H, Wang L, Chu T. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica A, 2006, 213:51-65.
    
    [137] Xiao F, Wang L. State consensus for multi-agent systems with switching topologies and time-varying delays. International Journal of Control, 2006, 79:1277-1284.
    
    [138] Xie G, Wang L. Consensus control for a class of networks of dynamic agents. International Journal of Robust Nonlinear Control, 2007, 17:941-959.
    
    [139] Hong Y, Hua J, Gao L. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42:1177-1182.
    
    [140] Hong Y, Hua J, Gao L. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007, 52:943-948.
    
    [141] Stilwell D J, Bolt E M, Roberson D G. Sufficient conditions for fast switching synchronization in time varying network topologies. SIAM Journal on Applied Dynamical Systems, 2006, 5:140- 156.
    
    [142] Frasca M, Buscarino A, Rizzo A, et al. Synchronization of moving Chaotic agents. Physical Review Letters, 2008, 100:044102.
    
    [143] Buscarino A, Fortuna L, Frasca M. Dynamical network interactions in distributed control of robots. Chaos, 2006, 16:015116.
    
    [144] Danφ S, Sφrensen P G, Hynne F. Sustained oscillations in living cells. Nature, 1999,402:320-322.
    
    [145] Dane S, Hynne F, Monte S D, et al. Synchronization of glycolitic oscillations in intact yeast cells. Faraday Discuss, 2001, 120:261-276.
    
    [146] Li Z, Chen G. Robust adaptive synchronization of uncertain dynamical networks. Physics Letters A, 2004, 324:166-178.
    
    [147] Liu B, Liu X Z, Chen G R, et al. Robust impulsive synchronization of uncertain dynamical networks. IEEE Transactions on Circuits & Systems I, 2005, 52:21431-1441.
    
    [148] Zhang G, Liu Z R, Ma Z J. Synchronization of complex dynamical networks via impulsive control. Chaos, 2007, 17:043126.
    
    [149] Chen M Y, Zhou D H. Synchronization in uncertain complex networks. Chaos, 2006, 16:013101.
    
    [150] Zhou J, Lu J, Lu J. Adaptive Synchronization of an Uncertain Complex Dynamical Network. IEEE Transactions on Automatic Control, 2006, 51(4):652-656.
    [151] Xiao X Y, Xu W, Li X C, et al. Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters. Chaos, 2007, 17:033118.
    
    [152] Yu W W, Cao J D. Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. PHYSICA A, 2007, 375:467-482.
    
    [153] Yeung M K S, Strogatz S H. Time Delay in the Kuramoto Model of Coupled Oscillators. Physical Review Letters, 1999, 82(3):648-651.
    
    [154] Heil T, Fischer I, Elsasser W. Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Physical Review Letters, 2001, 86(5):795- 798.
    
    [155] Strogatz S H. Death by delay. Nature(London), 1998, 394:316-317.
    
    [156] Reddy D V R, Sen A, Johnston G L. Time delay induced death in coupled limit cycle oscillators. Physical Review Letters, 1998, 80(23):5109-5112.
    
    [157] Schuster H G, Wagner P. Mutual Entrainment of Two Limit Cycle Oscillators with Time Delayed Coupling. Progress of Theoretical Physics, 1989, 81(5):939-945.
    
    [158] Niebur E, Schuster H G, Kammen D M. Collective frequencies and metastability in networks in limit-cycle oscillators with time delay. Physical Review Letters, 1991, 67(20):2753-2756.
    
    [159] Kim S, Park S H, Ryu C S. Multistability in coupled oscillator with time delay. Physical Review Letters, 1997, 79(15):2911-2914.
    
    [160] Li Z, Feng G, Hill D. Controlling complex dynamical networks with coupling delays to a desired orbit. Physics Letters A, 2006, 359(1):42-46.
    
    [161] Lu J Q, Ho D W C, Liu M. Globally exponential synchronization in an array of asymmetric coupled neural networks. Physics Letters A, 2007, 369:444-451.
    
    [162] Liu T, Dimirovski G M, Zhao J. Exponential synchronization of complex delayed dynamical networks with general topology. Physica A, 2008, 387:643-652.
    
    [163] Wu J, Jiao L H. Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers. Physica A, 2008, 387:2111-2119.
    
    [164] Yang M, Wang Y, H. O. Wang K T, et al. Delay independent synchronization of complex network via hybrid control. Proceedings of 2008 American Control Conference (ACC '08), Seattle, WA, USA, 2008. 11-13.
    
    [165] Luo Q, W. Wu L L, Yang X, et al. Adaptive synchronization research on the uncertain complex networks with time-delay. Acta Physica Sinica, 2008, 57(3): 1529-1534.
    
    [166] Cai S, Zhou J, Xiang L, et al. Robust impulsive synchronization of complex delayed dynamical networks. Physics Letters A, 2008, 372(30):4990-4995.
    
    [167] Hua C C, Wang Q G, Guan X. Global adaptive synchronization of complex networks with nonlinear delay coupling interconnections. Physics Letters A, 2007, 368:281-288.
    [168] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking. Physical Review Letters, 2000, 85(21).
    [169] Kullmann L, Kertész J. Preferential growth: exact solution of the time-dependent distributions. Physical Review E, 2001, 63:051112.
    [170] Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks. Physical Review Letters, 2000, 85(21).
    [171] Newman M E J, Strogatz S H, Watts D J. Random Graphs with Arbitrary Degree Distribution and Their Applications. Physical Review E, 2001, 64:026118.
    [172] Dorogovtsev S N, Mendes J F F. Scaling behaviour of developing and decaying networks. Euro-physics Letters, 2000, 52:33-39.
    [173] Amaral L A N, Barthélémy M, Stanley H E. Classes of small-world networks. Proceedings of the National Academy of Science, 2000, 97(21).
    [174] Dorogovtsev S N, Mendes J F F. Evolution of reference networks with aging. Physical Review E, 2000,62:1842-184.
    [175] Bianconi G, Barabasi A L. Competition and multiscaling in evolving networks. Europhysics Letters, 2001,54:436-442.
    [176] Kleinberg J M, Kumar R, Raghavan P, et al. The web as a graph: Measurements, models and methods. Proceedings of Proceedings of the 5th Annual International Conference, Tokyo, Japan, 1999. 1-17.
    [177] Kumar R, Raghavan P, Rajagopalan S, et al. The web as a graph. Proceedings of Proceedings of the 19th ACM Symposium on Principles of Database Systems, Dallas, USA, 2000. 1-10.
    [178] Kumar R, Raghavan P, Rajagopalan S, et al. Stochastic models for the web graph. Proceedings of Proceedings of the 41st IEEE Symposium on Foudations of Computer Science, Washington, DC, USA, 2000. 57-66.
    [ 179] Vazquez A. Knowing a network by walking on it: emergence of scaling. Eprint arxiv, 2000. http://arxiv.org/abs/cond-mat/0006132.
    [180] Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks. Physica A, 1999,299:559-564.
    [181] Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297:1551-1555.
    [182] Ravasz E, Barabasi A L. Hierarchical organization in complex networks. Physical Review E, 2003,67:026112.
    [183] Dorogovtsev S N, Goltsev A V, Mendes J F F. Pseudofractal scale-free web. Physical Review E, 2002,65:066122.
    [184] Cornelias F, Fertin G, Raspaud A. Recursive graphs with small-word scale-free properties. Physical Review E, 2004, 69:037104.
    [185] Jr. J S A, Herrmann H J, Andrade R F S, et al. Apollonian Networks : Simultaneously Scale-Free, Small. World, Euclidean, Space Filling, and with Matching Graphss. Physical Review Letters, 2005,94:018702.
    
    [186] Zhou T, Yan G, Wang B H. Maximal planar networks with large clustering coefficient and power- law degree distribution. Physical Review E, 2005, 71:046141.
    
    [187] Xuan Q, Li Y, Wu T J. Growth model for complex networks with hierarchical and modular structures. Physical Review E, 2006, 73:036105.
    
    [188] Zhang Z, Rong L, Zhou S. Evolving Apollonian networks with small-world scale-free topologies. Physical Review E, 2006, 74:046105.
    
    [189] Zhang Z, Rong L, Zhou S. A deterministic small-world network created by edge iterations. Physica A, 2006, 363:567-572.
    
    [190] Wang L, Du F, Dai H P, et al. Random pseudofractal scale-free networks with small-world effect. The European Physical Journal B, 2006, 53:361-366.
    
    [191] Zhang Z, Rong L, Zhou S. A general geometric growth model for pseudofractal scale-free web. Physica A, 2007, 377:329-339.
    
    [192] Wang L, Dai H P, Sun Y X. Random pseudofractal networks with competition. Physica A, 2007, 383:763-772.
    
    [193] Wang L, Dai H P, Sun Y X. Gerneral random pseudofractal networks. Journal of Physics A: Mathematical and Theoretical, 2007,40:13279-13289.
    
    [194] Yook S H, Jeong H, Barabási A L, et al. Weighted evolving networks. Physical Review Letters, 2001,86:5835-5838.
    
    [195] Zheng D, Trimper S, Zheng B, et al. Weighted scale-free networks with stochastic weight assignments. Physical Review E, 2003, 67:040102(R).
    
    [196] Barrat A, Barthélemy M, Vespignani A. Weighted Evolving Networks: Coupling Topology and Weight Dynamics. Physical Review Letters, 2004, 92:228701.
    
    [197] Park K, Lai Y, Ye N. Characterization of weighted complex networks. Physical Review E, 2004, 70:026109.
    [198] Li C, Chen G. A comprehensive weighted evolving network model. Proceedings of the National Academy of Sciences, 2004, 343:288-294.
    [199] Goh K, Noh J D, Kahng B, et al. Load distribution in weighted complex networks. Physical Review E, 2005, 72:017102.
    
    [200] Wang W, Wang B, Hu B, et al. General Dynamics of Topology and Traffic on Weighted Technological Networks. Physical Review Letters, 2005, 94:188702.
    
    [201] Antal T, Krapivsky P L. Weight-driven growing networks. Physical Review E, 2005, 71:026103.
    
    [202] Wu Z, Xu X, Wang Y. Generating structured networks based on a weight-dependent deactivation mechanisms. Physical Review E, 2005, 71:066124.
    [203]Angel A G,Hanney T,Evans M R.Condensation transitions in a model for a directed network with weighted links.Physical Review E,2006,73:016105.
    [204]Pan Z,Li X,Wang X.Generalized local-world models for weighted networks.Physical Review E,2006,73:056109.
    [205]Barrat A,Barthelemy M,Pastor-Satorras R,et al.The architecture of complex weighted networks.Proceedings of the National Academy of Sciences,2004,101:3747-3752.
    [206]Dorogovtsev S N,Mendes J F F.Effect of the accelerating growth of communications networks on their structure.Physical Review E,2001,63:025101(R).
    [207]Song C M,Havlin S,Makese H A.Self-similarity of complex networks.Nature,2005,433:392-395.
    [208]Leonov G,Bunin A,Koksch N.Attractor localization of the Lorenz system.Zeitschrift fur Angewandte Mathematik und Mechanik,1987,67:649-656.
    [209]L(u|¨)J,Chen G.A new chaotic attractor coined.International Journal of Bifurcation and Chaos,2002,12(3):659-661.
    [210]Zhou C S,Motter A E,Kurths J.Universality in the Synchronization of Weighted Random Networks.Physical Review Letters,2006,96:034101.
    [211]Horn R A,Johnson C R.Matrix Analysis.Cambridge University Press,1985.
    [212]Khargonekar P P Petersen I R,Zhou K.Robust stabilization of uncertain linear systems:Quadratic stabilizability and H~∞ control theory.IEEE Transactions on Automatic Control,1990,35(3):356-361.
    [213]Taussky O.A Recurring Theorem in Determinants.The American Mathematical Monthly,1949,56:672-676.
    [214]Dummit D S,Foote R M.Abstract Algebra(2nd ed.).John Wiley & Sons,Inc,New York,1999.
    [215]卢文联.动力系统与复杂网络:理论与应用.复旦大学应用数学专业博士学位论文,2005.上海.
    [216]Boyd S,Ghaoui L E,Feron E,et al.Linear Matrix Inequalities in System and Control Theory.SIAM,Philadelphia,1994.
    [217]Gerschgorin S.(U|¨)ber die Abgrenzung der Eigenwerte einer Matrix.lzv.Akad.Nauk.USSR Otd.Fiz.-Mat.Nauk,1931,7:749-754.
    [218]Doye J P K,Massen C P.Characterizing the network topology of the energy landscapes of atomic clusters.Physical Review E,2005,71:016128.
    [219]Zhang Z Z,Comellas F,Fertin G,et al.High-dimensional Apollonian networks.Journal of Physics A:Mathematical and General,2006,39:1811-1818.
    [220]Karl H,Willig A.Protocols and Architectures for Wireless Sensor Networks.John Wiley & Sons,Inc,New York,2005.
    [221] Gerla M, Tsai J T. Multicluster, mobile, multimedia radio network. Wireless Networks, 1995, 1:255-265.
    
    [222] Basagni S, Chlamtac I, Farago A. A generalized clustering algorithm for peer-to-to networks. Proceedings of Proceedings of the workshop on algorithmic aspects of communication, Bologna, Italy, 1997. invited paper.
    
    [223] Skufca J D, Bolt E. Communication and synchronization in disconnected networks with dynamic topology: moving neighborhood networks. Mathematical Biosciences and Engineering, 2004, 1:347-359.
    
    [224] Galam S. The dynamics of minority opinions in democratic debate. Physica A, 2004, 336:56-62.
    
    [225] Amblard F, Deffuant G. The role of network topology on extremism propagation with the relative agreement opinion dynamics. Physica A, 2004, 343:725-738.
    
    [226] Amblard F, Deffuant G. Architecture of wireless sensor networks with mobile sinks : Sparsely deployed sensors. IEEE Transactions on vehicular technology, 2007, 56:1826-1836.
    
    [227] Takamatsu A, Fujii T, Endo I. Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Physical Review Letters, 2000, 85(9):2026-2029.
    
    [228] Gray C M, P. K(o|¨)nig W S. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature(London), 1989, 338(6213):334- 337.
    
    [229] Eckhorn R, Bauer R, Jordan W, et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biological Cybernetics, 1988, 60(2):121-130.
    
    [230] Dhamala M, Jirsa V K, Ding M. Enhancement of neural synchrony by time delay. Physical Review Letters, 2004, 92(7):074104.
    
    [231 ] Kozyreff G, Vladimirov A, Mandel P. Global Coupling with Time Delay in an Array of Semiconductor Lasers. Physical Review Letters, 2000, 85(18):3809-3812.
    
    [232] Wirkus S, Rand R. The Dynamics of Two Coupled van der Pol Oscillators with Delay Coupling. Nonlinear Dynamics, 2002, 30(3):205-221.
    
    [233] Benford J, Sze H, Woo W, et al. Phase Locking of Relativistic Magnetrons. Physical Review Letters, 1989, 62(8):969-971.
    
    [234] Heath T, Wiesenfeld K, York R. Manipulated Synchronization: Beam Steering in Phased Arrays. International Journal of Bifurcation and Chaos, 2002, 10(11):2619-2627.
    
    [235] Lindsey W C, Chen J H. Mutual Clock Synchronization in Global Digital Communication Net-workss. European Transaction on Telecommunications, 1996, 7(1):25-37.
    
    [236] Reddy D V R, Sen A, Johnston G L. Experimental Evidence of Time-Delay-Induced Death in Coupled Limit-Cycle Oscillators. Physical Review Letters, 2000, 85(16):3381-3384.
    [237] Li C, Chen G. Synchronization in general complex dynamical networks with coupling delays. Physica A, 2004, 343:263-278.
    [238] Li C, Xu H, Liao X, et al. Synchronization in small-world oscillator networks with coupling delays. Physica A, 2004, 335:359-364.
    
    [239] Li C, Liao X, Yu J. Synchronization in coupled map lattices with small-world delayed interactions. Physica A, 2004, 335:365-370.
    
    [240] Li C P, Sun W G, Xu D L. Synchronization of Complex Dynamical Networks with Nonlinear Inner-Coupling Functions and Time Delays. Progress of Theoretical Physics, 2005, 114(4):749- 761.
    [241] Gao H, Lam J, Chen G. New criteria for synchronization stability of general complex dynamical networks with coupling delays. Physics Letters A, 2006, 360:263-273.
    [242] Lu W, Chen T, Chen G. Synchronization analysis of linearly coupled systems described by deif- ferential equations with a coupling delay. Physica D, 2006, 221:118-134.
    
    [243] Zhou J, Chen T. Synchronization in general complex delayed dynamical networks. IEEE Transactions on Circuits & Systems 1, 2006, 53(3):733-744.
    
    [244] Li C P, Sun W G, Kurths J. Synchronization of complex dynamical networks with time delays. Physica A, 2006, 361(1):24-34.
    
    [245] Wang Q Y, Chen G, Lu Q S, et al. Novel criteria of synchronization stability in complex networks with coupling delays. Physica A, 2007, 378(2):527-536.
    
    [246] Wang L, Dai H P, Sun Y X. Synchronization criteria for a generalized complex delayed dynamical network model. Physica A, 2007, 383(2):703-713.
    [247] Cao J, Wang Z, Sun Y. Synchronization in an array of linearly stochastically coupled networks with time delays. Physica A, 2007, 385(2):718-728.
    
    [248] Wang L, Dai H P, Dong H, et al. Adaptive synchronization of weighted complex dynamical networks with coupling time-varying delays. Physics Letters A, 2008, 372:3632-3639.
    
    [249] Lellis P D, Bernardo M D, Sorrentino F, et al. Adaptive synchronization of complex networks. International Journal of Computer Mathematics, 2008, 85(8): 1189-1218.
    
    [250] Lu J, Cao J. Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dynamics, 2008, 53( 1-2): 107-115.
    [251] Yu W, Cao J, Lue J. Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM Journal on Applied Dynamical Systems, 2008, 7(1): 108-133.
    
    [252] Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
    
    [253] Huang D. Adaptive-feedback control algorithm. Physical Review E, 2006, 73:066204.
    
    [254] Chua L O, Wu C W, Huang A, et al. A universal circuit for studying and generating chaos I: Routes to chaos. IEEE Transactions on Circuits & Systems I, 1993, 40(10):732-744.
    [255]赵明.复杂网络上动力系统同步现象的研究.中国科技大学复杂性科学专业博士学位论文,2007.合肥.
    [256]Solis R,Borkar V,Kumar P.A new distributed time synchronization protocol for multihop wireless networks.University of Illinois,Yech.Rep.,April 2005..
    [257]汪秉宏,周涛,王文旭等.当前复杂系统研究的几个方向.复杂系统与复杂性科学,2008,5:21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700