车辆结构系统的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以各种理论方法为依据,以车辆系统的各种零部件为模型,从智能控制、随机振动响应分析、瞬态温度场数值计算、故障诊断和可靠性分析等方面,对车辆结构系统的若干问题进行研究。其主要内容如下:
     1、汽车防滑控制系统的智能控制研究。防滑控制系统结构比较复杂,特别是影响车轮与地面间附着系数的不确定因素太多,用传统的控制理论很难建立其控制模型,为此本文没选择常用的速度差参数,而是选滑移率、加减速度和加减速度微分作为防滑判据,据此建立汽车防滑控制系统的模糊神经网络模型。
     2、随机参数车辆在随机激励下的随机振动响应分析。通过具有随机结构参数的五自由度非线性车辆模型,来研究随机激励下的随机振动响应问题。将车辆系统的质量、阻尼和刚度视为随机变量,考虑轮胎和车身之间的非线性弹簧,将路面不平整引起的对车辆的激励视为白噪声随机过程,建立其系统动力响应分析模型。先以能量差法等效线性化处理非线性车辆系统,再通过多次迭代求解李雅普诺夫方程,可高效高精度地获得等效线性化车辆系统的随机响应方差。
     3、区间参数鼓式制动器瞬态温度场数值分析。依据传热学理论和鼓式制动器的结构特点,建立了制动鼓瞬态温度场数值模拟有限元计算模型。将鼓式制动器导热中物理参数与边界条件均看作区间变量。在空间有限元离散与时间差分方法的基础上,将区间有限元分析与摄动方法相结合,推出了有界不确定参数瞬态温度场响应上、下界的摄动计算公式,获得了鼓式制动器结构的瞬态温度场响应范围。
     4、汽车悬架振动分析和动力参数优化。基于凸模型理论,利用矩阵摄动法推导出了具有不确定参数闭环系统特征值的上、下界计算公式,然后对汽车悬架系统模型的振动控制特征值进行分析。将方差的概念引入到灰色关联度中,以可靠灰色关联度作为判断依据,来对粒子群算法中的全局极值和个体极值进行选取,避免灰色粒子群算法在求解多目标问题时所出现的局部收敛现象,实现对四自由度汽车悬架系统多目标优化模型的求解。
     5、汽车制动系统故障诊断与预测。一是用改进的模糊灰色关联法对车辆制动系统模型的故障影响进行综合评估。应用合理判定分辨系数的方法,确定改进的关联系数,然后结合模糊数学中的广义权距离理论,对影响汽车制动系统的因素模糊灰色化之后,再对汽车制动系性能进行评估。二是为了加快BP神经网络的收敛速度,在权值修正公式中增加一个惯性因子对BP算法进行改进,然后利用改进的BP模糊模神经网络对汽车ABS疑难故障进行诊断。三是将灰色关联分析法应用到支持向量机模型中,建立灰色支持向量机预测模型。为了提高预测精度,用粒子群算法对灰色支持向量机相关的初始化参数进行优化,用优化后的模型对汽车制动系统进行故障诊断和预测。
     6、汽车制动系统和汽车轮胎的可靠性分配和可靠性预测。利用模糊综合评判法对汽车ABS系统的可靠性实施分配,将影响ABS系统可靠性的各种因素进行综合与量化,据此对ABS系统的可靠性进行科学合理的分配。应用概率区间理论和D-S(Dempster-Shafter)理论,提出汽车轮胎和制动系统故障树分析方法,构造了故障树区间算子,对汽车轮胎和制动系统在运行中的可靠性问题进行分析研究,并在系统故障树分析的基础上对系统的可靠度进行了定量的预测。
This dissertation studies several problems of vehicle system structure from theperspective of intelligent control, random vibration response analysis, numericalcalculation of transient temperature field, fault diagnosis, and reliability analysisthrough various theoretical methods, where models of various components of a vehiclesystem are considered. The main research contents are shown as follows:
     1. Intelligent control of automobile anti-skid control system. The structure of ananti-skid control system is complex and many uncertain factors influence the adhesioncoefficient between wheels and ground surface. Therefore, it is difficult to establish thecontrol model by means of traditional control theory. This research selects the slip rateand acceleration/deceleration rather than the parameter of speed difference as thecriterion of anti-skid control systems. A fuzzy neural network control model isestablished in this dissertation according to the three physical quantities above.
     2. Random vibration response analysis of the random parameters vehicles underrandom excitation. The question of random vibration response about nonlinear vehiclesystem with uncertainty structural parameters has been studied byfive-degree-freedom nonlinear vehicle model. The system power response analysismodel is built with respect to the following aspects:1) the mass, the damping, and thestiffness of a vehicle system are considered to be random variables,2) the nonlinearspring between tires and the body is considered,3) excitation to a vehicle caused byuneven road is thought as a white noise process. The nonlinear vehicle system isequivalently linearized by the energy difference method. Then the Lyapunov equationof the linear system is solved. Afterwards, the covariance matrix of stationary randomvibration response is obtained. Vibration response variance value of the equivalentlinear vehicle system can be got by multiple iterations, in each step of which aLyapunov equation is solved.
     3. Numerical analysis on transient temperature field of a braking drum withinterval parameters. The finite element calculation model on transient temperature fieldof a braking drum is built according to the theory of heat transfer and characteristics ofdrum brake structures. All parameters and boundary conditions of drum brake areconsidered as interval variables. Interval finite element analysis and perturbationmethod are combined based on finite element discrete and time difference method.Afterwards, a perturbation calculation formula of uncertain parameters transient temperature response is derived and the transient temperature field response range ofdrum brake structure is obtained.
     4. Vibration analysis and dynamic parameters optimization of automobilesuspension system.By using multidimensional convex model theory, the vibrationcontrol problem of automobile suspension system with uncertain parametersapproximated by a deterministic one is discussed. By using convex model theory, theuncertain parameters impacting on an automobile suspension system is analyzed basedon matrix perturbation method. In addition, the estimation of the upper and lowerbounds of both real and imaginary parts of the eigenvalue of closed-loop systems ispresented. By using four-degree-freedom automobile suspension system for models, theconcept of the variance is introduced into the gray correlation degree. In order to avoidlocal convergence phenomenon when gray particle algorithm is solving multi-objectiveproblem, and to obtain the solution of the multi-objective optimization problem ofautomobile suspension systems, the global extreme value and local extreme value ofparticle swarm algorithm are selected by reliable gray correlation degree.
     5. Fault diagnosis and prediction of automotive brake system. A comprehensiveassessment model is presented based on improved fuzzy gray relational analysis method,the influence of distinguishing coefficient size on relational degree is analyzed, andcommon rules and specific methods are given, which can solve the problem thatdistinguishing coefficient is difficult to be quantified. The improved correlationcoefficient is determined by a method that distinguishing coefficient is identifiedreasonably. The combination of fuzzy mathematics and generalized weighted distancetheory and performance of automobile brake system are assessed after its influencingfactors are fuzzy and grey. In addition, after combining the characteristics of fuzzymathematics and nerve network, difficult fault of automotive ABS is diagnosed byimproved BP fuzzy nerve network model. The gray relation analysis and support vectormachine model are combined to create a gray support vector machine prediction model.In order to improve the prediction accuracy, initialization parameters of gray supportvector machine was optimized by particle swarm optimization algorithm, using theoptimized parameters conduct fault diagnosis, and forecasting to automotive brakesystems.
     6. The reliability analysis and reliability prediction of automobile brake system andautomobile tire. The method of fuzzy synthesis evaluation is presented to implement thesystem’s reliability assignment. All elements influencing the ABS reliability aresynthesized and quantified, thus the reliability of the system is scientific and reasonable allocated. By using probability interval theory and D-S (Dempster-Shafer) theory, faulttree analysis method of automobile tires and automobile brake system is proposed. Thequestion of reliability is analyzed and studied, when automobile tires and automobilebrake system are running and the reliability of system is predicted on the basis ofsystem fault tree analysis.
引文
[1]王伟达,丁能根,张为等.汽车ABS逻辑门限值自调整控制方法研究与实验验证[J].机械工程学报,2010,46(22):90-95.
    [2]王德平,郭孔辉.汽车驱动防滑控制系统[J].汽车技术,1997,(4):22-27.
    [3] William K.L, Kevin M. P. Intelligent control for brake systems[J]. IEEE Transactions onControl System Technology,1999,17(2):188-202.
    [4]司利增.汽车防滑控制系统-ABS与ASR[M].北京:人民交通出版社,1996.
    [5]程军,袁金光,王西山.汽车防滑控制的研究[J].汽车工程,1997,19(2):96-102.
    [6]李伟.基于模糊逻辑和神经网络的汽车防抱死控制方法的仿真研究[D].合肥工业大学硕士学位论文,2001.
    [7]羊拯民,张代胜.轻型客车防抱制动系统计算机仿真研究[J].合肥工业大学学报,1999,22(3):10-16.
    [8]王家波,张成宝.汽车驱动防滑控制系统的研究[J].上海汽车,2001,(2):9-12.
    [9]晁黎波.轿车驱动防滑控制算法研究[D].吉林大学硕士学位论文,2008.
    [10] T. Yoshimura, H. Uchida, H. Nasut, etal. Traction force control of an electric vehicle in2WS-4WD mode using fuzzy reasoning[J]. Int. J. vehicle Design,1997,25(3):189-197.
    [11] Alrfed sigl, Herbert Demel. ASR-traction control, State of the art and some properts[J]. SAE,900204.
    [12]边明远.汽车主动安全控制系统路况识别技术纵览[J].试验与研究,2002,(1):31-33.
    [13]刘亮.汽车电子差速锁系统(EDS)自动控制策略及技术研究[D].重庆大学硕士学位论文,2008.
    [14]郭孔辉,王德平.汽车驱动防滑控制理论的初步研究[J].吉林工业大学学报,1997,27(3):12-16.
    [15]司利增,王忠会.驱动防滑转控制途径及原则分析[J].西安公路交通大学学报,1998,18(l):54-58.
    [16]李志远,刘昭度,张彪.基于制动控制的汽车驱动防滑系统[J].微计算机信息,2008,24(2-9):224-226.
    [17]张加才,李凯,李静.汽车牵引力控制系统的控制方法[J].吉林大学学报,2006,36(4):514-517.
    [18]张明星,宋健,赵六奇.汽车驱动防滑控制系统车轮最佳滑动率辨识方法[J].公路交通科技,2002,19(1):99-102.
    [19] Lgata H. Development of new control methods to improve response of throttle type tractioncontrol system[J]. SAE Paper920608.
    [20] Alfred sigl, Herbert Demel. ASR-traction control, state of the art and some prospects[J]. SAE900204.
    [21]熊小根.汽车驱动防滑控制系统的控制规律研究[J].合肥工业大学硕士学位论文,2010.
    [22]王德平,郭孔辉,宗昌富.汽车驱动防滑控制的控制逻辑与算法[J].汽车工程,1999,21(5):290-294.
    [23]张成宝,吴光强,丁玉兰.汽车驱动防滑的控制方法研究[J].汽车工程,2002,22(5):324-328.
    [24]黄妙华,陈胜金,陈飚.汽车防滑控制系统与动态偏航稳定控制系统[J].公路与汽车,2004,(101):1-3.
    [25]尹安东,孙骏,赵虎.汽车驱动防滑控制系统的控制模式与技术[J].合肥工业大学报,2004,27(3):325-329.
    [26]刘天浪. ABS的组成和控制原理[J].交通科技与经济,2009,(5):107-109.
    [27]陆文昌.汽车防抱死制动系统性能的研究[J].中国安全科学学报,2005,15(11):65-69.
    [28] C. Unsal, P. Kachroo. Sliding mode measurement feedback control for antilock brakingsystems[J]. IEEE Trasactions on Control Systems Technology,1999,7(2):271-281.
    [29]晏蔚光,余达太,李果等.汽车防抱制动系统自适应模糊控制算法[J].北京科技大学学报,2004,26(4):188-191.
    [30]黄英亮.防抱死制动系统模糊控制器设计[D].西北工业大学硕士学位论文,2002.
    [31] Gim, G. Choi, Y. Kim, S. A semiphysical tyre model for vehicle dynamics analysis of handlingand braking[J]. Vehicle System Dynamics,2005,43(8):267-280.
    [32]廉文利.汽车防抱死制动系统智能控制器的设计[J].燕山大学硕士学位论文,2006.
    [33] Zhou D H, Frank P M. Fault diagnostics and fault tolerant control[J]. IEEE Trans. OnAerospace and Electronic Systems,1998,34(2):420-427.
    [34] Gomez-Moreno H, Maldonado Baseonb, LoPez Ferreras F. Edge detection in noisy images byusing the support vector machines[C]. International Work Conference on Artificial NeuralNetworks. Heidelberg: Springer-Veriag,2001,685-692.
    [35]顾小军.面向旋转机械的支持向量机方法及智能故障诊断系统研究[D].浙江大学博士学位论文,2006.
    [36] Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning,1995,20:273-297.
    [37] Simon I, Hill. Adapting two-class support vector classification methods to many classproblem[C]. The22th International Conference on Machine Learning, Bonn Germany,2005,313-320.
    [38]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社,2004.
    [39]贾永枢.现代汽车故障诊断技术[M].杭州:浙江科学技术出版社,2008.
    [40]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社,2005.
    [41]王德军.故障诊断与容错控制方法研究[D].吉林大学博士学位论文,2004.
    [42]阮社楼.汽车制动可靠性分析[J].汽车研究与开发,2002,(1):29-37.
    [43]张雪.基于某轻型客车制动系统可靠性分析[J].科技咨询导报,2007,(26):31-33.
    [44]孙淑霞,朱育新.汽车制动系的故障树分析[J].沈阳工业大学学报,2000,5(22):433-434
    [45]柳卫东,徐颖强,高西亚.基于故障树的汽车制动系故障分析[J].机械设计与制造,2007,(6):118-120.
    [46]张彦.基于灰色理论的汽车产品可靠性工程研究[D].合肥工业大学博士学位论文,2006.
    [47]齐良.机械可靠性设计基础[M].大连:大连理工大学出版社,1990.
    [48]麦华健.模糊可靠性概论[J].机械设计,1987,(6):17-22.
    [49] Kaufmann A. Introduction to the fuzzy subsets[M]. New York: Academic Press,1975.
    [50] Ayyub B M, Lai K L. Structural reliability assessment with ambiguity and vagueness infailure[J]. Naval Engineers Journal,1992,104(3):21-35.
    [51] Tanaka H, Fan L T, Lai F S. et al. Fault-tree analysis by fuzzy probability[J]. IEEETransactions on Reliability,1983,32(5):453-457.
    [52] Singer D. Fault tree analysis based on fuzzy logic[J]. Computers and Chemical Engineering,1990,14(3):259-266.
    [53] Reddy R K, Haldar A. A random-fuzzy reliability analysis[C]. Proceedings of the FirstInternational Symposium on Uncertainty Modeling and Analysis Los Alamitos. IEEEComputer Society Press,1990,161-166.
    [54] Kandel A, Byatt W J. Fuzzy process[J]. Fuzzy Sets and Systems,1980,4(2):117-152.
    [55]倪明,单渊达.证据理论及其应用[J].电力系统自动化,1996,20(3):76-80.
    [56]秦良娟.证据理论在复杂系统可靠性评估中的应用[J].西安交通大学学报,1998,32(8):100-103.
    [57] Jorge E, Hurtado, Diego A, Alvarez. Neural-network-based reliability analysis: a comparativestudy[J]. Computer Methods in Applied Mechanies and Engineering:2001,191(1-2):113-132.
    [58]杨明顺,林志航,陈砚等.基于神经网络的模糊可靠性分配[J].机床与液压,2002,(1):19-21.
    [59]王涛.汽车悬架参数的多目标多标准决策优化[J].农业机械学报,2009,40(4):27-32.
    [60]贾小平,张兰勋译.非线性连续反馈控制半主动悬架的理论研究[J].国外汽车,1991,(4):17-21.
    [61] Horton DNL, Crolla D A. Theoretical analysis of a semi-active suspension fitted to anoff-road vehicle[J]. Vehicles System Dynamics,1986,15(3):351-372.
    [62] Donald L M. The response of active and semi-active suspension to realistic feedbacksignals[J]. Vehicle System Dynamics,1996,11(5-6):267-282.
    [63]丁玉庆.汽车悬架及司机座椅动态参数优化[J].振动与冲击,2003,22(2):57-59.
    [64]陈无畏,沈云鹤,张启群.汽车主动悬架的最优控制及计算机仿真[J].振动与冲击,1996,15(4):53-58.
    [65]王庆丰,韩波.非线性液压阻尼悬架控制[J].汽车工程,1999,21(4):96-100.
    [66]赵旗,车华军,李杰.基于遗传算法的汽车行驶平顺性优化仿真[J].机械设计与制造,2009,(3):203-205.
    [67]郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化[J].汽车工程,2001,23(3):172-176.
    [68]段敏,张立军,石晶等.基于神经网络的轻型客车悬架参数的优化[J].汽车工程,2003,25(2):190-192
    [69] A.E. Baumal, J.J. McPhee. Application of genetic algorithms to the design optimization of anactive vehicle suspension system[J]. Computer Methods in Applied Mechanics andEngineering,1998,163(1-4):87-94.
    [70] Zaremba A, Hampo R., Hrovat D. Optimal active suspension design using constrainedoptimization[J]. Journal of Sound and Vibration,1997,207(3):351-364.
    [71] Lu Sun. Optimum design of road-friendly vehicle suspension systems subjected to roughpavement surface[J]. Applied Mathematical Modeling,2002,26(5):635-652.
    [72]陈大跃.汽车半主动悬架的多目标优化设计[J].机械工程学报,2006,36(6):91-94.
    [73]谢俊,刘军,郭晨海,马履中.汽车半主动悬架的多目标遗传优化[J].农业机械学报,2003,34(5):25-28.
    [74]王启瑞朱婉玲,陈无畏等.汽车半主动悬架集成优化仿真研究[J].合肥工业大学学报,2001,24(6):1046-1052.
    [75]陈虹,马苗苗,孙鹏远.基于LMI优化的主动悬架多目标优化[J].自动化学报,2007,32(4):550-660.
    [76]付振,楼少敏,许沧粟.基于径向基函数神经网络的半主动悬架滑模控制[J].汽车工程,2009,31(9):854-859.
    [77]曾洁如,谷正气,李伟平等.基于遗传算法的半主动悬架模糊PID控制研究[J].汽车工程,2010,32(5):429-433.
    [78]路甬祥,韩波,王庆丰.非线性液压阻尼悬架的优化设计及最优控制[J].汽车工程,1998,20(2):96-100.
    [79]李炎,赵晓鹏.电流变液对活塞式结构振动的控制[J].振动与冲击,1998,17(1):1-5.
    [80]倪建华,张智谦,张可等.一种新型的磁流变阻尼器及其在半主动控制车辆悬架中的应用研究[J].机械科与技术,2004,23(1):4-10.
    [81] Mehrdad N, Khajavi, Vahid Abdollahi. Comparison between optimized passive vehiclesuspension system and semi active fuzzy logic controlled suspension system regarding ridandhandling[C]. Proceedings Of Word Academy Of Science, Engieering Antechology,2007,1307-6884.
    [82] Benedetto Allotta, Luca Pugi, Valentina Colla, etal. Design and optimization of a semi-activesuspension system for railway applications[J]. JMT,2011,19(4):223-232.
    [83] Gobbi M, Levi F, Mastinu G. Multi-objective stochastic optimization of the suspension systemof road vehicles[J]. J.Sound Vib,2006,298(4-5):1055-1072.
    [84]曹登庆.含不确定参数的车辆动力学模型横向稳定性分析[J].西南交通大学学报,1999,34(3):253-259.
    [85] Contreras H. The stochastic finite-element method[J]. Computers&Structures,1980,26(12):341-348.
    [86]刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126.
    [87] Moens D, Vandepitte D. Fuzzy finite element method for frequency response functionanalysis of uncertain structures[J]. AIAA Journal,2002,40(1):126-136.
    [88] Rao S S, Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely definedsystems[J]. AIAA Journal.1995,33(12):2364-2370.
    [89]禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法[J].重庆大学学报,1996,19(1):53-58.
    [90] Cherki A, Plessis G, Lallemand B. eta. Fuzzy behavior of mechanical systems with uncertainboundary conditions[J]. Computer Methods in Applied Mechanics and Engineering,2000,189(3):863-873.
    [91] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structure Safety,1994,14(4):227-245.
    [92] Guo Shu-xiang, LU Zhen-zhou. Interval arithmetic and interval finite element method[J].Applied Mathematics and Mechanics,2001,22(12):1390-1396.
    [93] Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. AIAAJournal,1997,35(4):725-735.
    [94]邱志平,顾元宪.有界不确定参数结构位移范围的区间摄动法[J].应用力学学报,1999,16(1):1-10.
    [95] Li J, Chen J B. Dynamic response and reliability analysis of structures with uncertainparameters[J]. International Journal for Numerical Methods in Engineering,2005,62(2):289-315.
    [96] Zhao L, Chen Q. Neumann dynamic stochastic finite element method of vibration forstructures with stochastic parameters to random excitation[J]. Computers and Structures,2000,77(6):651-657.
    [97]朱位秋.随机振动[M].北京:科学出版社,1992.
    [98]陈塑寰.随机参数结构的振动理论[M].长春:吉林科学技术出版社,1992.
    [99] Nagpal V K. Probabilistic structural analysis to quantify uncertainties associated withturbopump blades[J]. AIAA Journal,1989,27(6):809-813.
    [100] Hien T D, Kleiber M. Finite element analysis based on stochastic Hamilton variationprinciple[J]. Computer and Structures,1990,37(6):893-902.
    [101]朱位秋.非线性随机振动理论的近期进展[J].力学进展,1994,24(2):163-172.
    [102]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报,1999,39(8):1-9
    [103]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究[J].力学进展,1996,26(4):437-452.
    [104]赵雷,陈虬.随机有限元动力分析方法的研究进展[J].力学进展,1999,29(1):9-18.
    [105] Gao W, Chen J J, Ma H B, et al. Optimal placement of active bars in active vibration controlfor piezoelectric intelligent truss structures with random parameters[J]. Computers&Structures,2003,81(1):53-60.
    [106] Gao W, Chen J J, Ma J, et al. Dynamic response analysis of stochastic frame structures undernonstationary random excitation[J]. AIAA Journal,2004,42(9):1818-1822.
    [107] Gao W, Chen J J, Hu T B, et al. Optimization of active vibration control for random intelligenttruss structures under non-stationary random excitation[J]. Structural Engineering andMechanics,2004,18(2):137-150.
    [108] Chiang W L, Dong W M, Wong F S. Dynamic response of structures with uncertainparameters: a comparative study of probabilistic and fuzzy set models[J]. ProbabilisticEngineering Mechanics,1987,2(2):82-91.
    [109] Wood K L, Antonsson E K, Beck J L. Representing imprecision on engineering design:comparing fuzzy and probabilistic calculus[J]. Probabilistic Engineering Mechanics,1990,1(3-4):187-203.
    [110]亢战,罗阳军.基于凸模型的结构非概率可靠性优化[J].力学学报,2006,38(6):807-815.
    [111]邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社,2005.
    [112] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics[M].Amsterdam: Elsevier science Publishers,1990.
    [113] Elishakoff I, Eliseef P, Glegg S. Convex modeling of material uncertainty in vibrations of aviscoelastic structure[J]. AIAA Journal,1994,32:843-849.
    [114] Elishakoff I. Convex modeling a generalized of interval analysis for non-probabilistictreatment of uncertainty[J]. International Journal of Reliable Computing, Supplement,1995,3:76-79.
    [115] Qiu Z P, Gu Y X. Extension of convex models and its improvement on the approximatesolution[J]. Acta Mechanic Sinica (English series),1996,12(4):349-357.
    [116] Moore R. Yang G. Interval analysis. Technical Document, Lockheed Missiles and SpaceDivision, number LMSD-285875,1959.
    [117] Dief A S. Rigorous perturbation bounds for eigenvalues and eigenvectors of a matrix[J].Journal of Computational and Applied Mathematics,1995,57(3):403-412.
    [118] Chen S H, Lian H D, Yang X W. Interval eigenvalue analysis for structures with intervalparameters[J]. Finite Elements in Analysis and Design,2003,39(5):419-431.
    [119] Malan S, Milanese M, Taragna M. Robust analysis and design of control systems usinginterval arithmetic[J]. Automatic,1997,33(7):1363-1372.
    [120] Li Y Y, Yam L h. Robust vibration control of uncertain systems using variable parameterfeedback and modal based fuzzy strategies[J]. Computers and Structures,2001,79(11):1109-1119.
    [121] Chen S H, Wu J. Interval optimization of dynamic response for structures with intervalparameters[J], Computers and Structures,2004,82(l):1-11.
    [122] Chen S H, Wu J. Interval optimization of dynamic response for uncertain structures withnatural frepuency constrains[J]. Engineering Structure,2004,26(2):221-232.
    [123] Layne J R, Passino K M, Yurkorich S. Fuzzy learning control for anti-skid braking systems[A]. Proceedings of31th Conference on Decision and Control [C]. Tucson Arizona USA,1992,2523.
    [124] Mazumdar S K, Lim C C. The application of neural networks to anti-skid brake design [A].Proceedings of1995IEEE International Conference on Neural Networks[C]. Perth Aust,1995,5:2409.
    [125] Henry Lau, T N Wong. A fuzzy expert system complex closed-loop control: anon-mathematical approach[J]. Expert Systems,1998,15(2):80-95.
    [126]尚爱琴.电机车制动系统中防滑器的智能控制研究[D]:西安科技大学硕士学位论文,2006.
    [127] Rachu. Antiskid control: From flat wheel protection to braking force control[C]. Proceedingof the Seventy-sixth Annual Convention and Technological Conference of the Air BrakeAssociation Chicago Illinois,1984,22(4):21-25.
    [128]邢松寅,王士同.基于Pi-Sigma神经网络的高木-关野模糊系统用于数据关联计算的建模[J].电子与信息学报,1999,21(1):72-78.
    [129]王士同编著.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,1998.
    [130] Harvey M.Deitel, Paul J. Deitel著. Visual Basic6大学教程[M].北京:电子工业出版社,2003.
    [131]曹衍龙. Visual Basic系统开发实例精粹[M].北京:人民邮电出版社,2005.
    [132]姚寿文.长大货物列车电控空气制动系统及防滑器的智能控制研究:铁道科学研究院博士学位论文,2000.
    [133]黄涛,樊建平,何建平等.非线性弹簧汽车悬架系统的非线性振动机理研究和运动稳定性分析[J].中国机械工程,2007,18(15):1882-1884.
    [134]陈泽深,王成国.车辆随机振动的协方差分析方法[J].中国铁道科学,2001,22(4):1-7.
    [135]彭献,刘晓晖,文桂林.基于虚拟激励法的变速行驶车辆振动分析[J].湖南大学学报,2007,34(11):37-41.
    [136]张志超,赵岩,林家浩.车桥耦合系统非平稳随机振动分析[J].振动工程学报,2007,20(10):439-446.
    [137]赵春发,翟婉明,王开云.磁悬浮车辆随机振动响应分析及其平稳性研究[J].中国机械工程,2002,13(16):1402-1406.
    [138]吕锋.车辆与结构相互作用随机动力分析[D].大连理工大学博士学位论文,2008.
    [139]戴君.基于四分之一车辆模型的具有随机结构参数车辆的随机动力分析[J].振动与冲击,2010,29(6):211-217.
    [140] Müler P C, Popp K, Schielen W O. Covaviance analyses of nonlinear stochasticguideway-vchicle-sytems[C]. Proc.6th IAVSD Symp, Dynamic of Vehicle on Road andTracks, Berlin, Sept,1979.
    [141]曾春华.随机振动[J].自然杂志,1982,(4):1-3.
    [142] Thomas K, Caughey T. Equivalent linearization techniques[J]. Acoustical Society of America,1963,35(11):1706-1711.
    [143] Atalik T S, Utku S. Stochastic linearization of muti-degree-of freedom non-linear systems[J].Earthquake Eng. Struct. Dyn.1976,4(4):411-420.
    [144] Lin Y K. Probabilistic dynamics[M]. New York: Mc Graw-hill,1967.
    [145]庄表中,陈乃立,高瞻.非线性振动理论及应用[J].杭州:浙江大学出版社,1986.
    [146]张立军,何辉.车辆随机振动[M].沈阳:东北大学出版社,2007.
    [147] Yonglin Zhang, Jiafan, Zhang. Numerical simulation of stochastic road process using whitenoise filtration[J]. Mechanical System and Signal Processing,2006,20(2):363-372.
    [148] Yoshimura. A Semi-active suspension of passenger cars using fussy reasoning and the fieldtesting[J]. Int J of Vehicle Designs,1998,19(2):150-166.
    [149] Yonglin Zhang. Time domain model of road irregularities simulation using the harmonysuperposition method[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(6):32-35.
    [150] Zheng Jun, Zhong Zhihua. Neural network optimization for nonlinear vehicle ride comfortmodel[J]. Automotive Engineering,2001,23(3):172-176.
    [151]张永林,胡志安,陈立安.时空相关车辆道路的高效数值仿真[J].农业机械学报,2005,36(9):13-24.
    [152]郑兰霞.非线性悬架系统的汽车平顺性研究[D].合肥工业大学硕士学位论文,2004.
    [153]马迅,朱前进.蹄鼓式制动器瞬态温度场的仿真分析[J].机械设计与制造,2008,(6):71-73.
    [154]赵凯辉,魏朗.鼓式制动器三维热-机耦合温度场仿真[J].农业机械学报,2009,40(2):32-36.
    [155]张力军,腾旭辉.叉车制动时制动鼓温升的计算和分析[J].起重运输机械,2003,(12):32-35.
    [156]马迅,秦剑.基于有限元法的制动鼓的耦合分析[J].机械设计与研究,2005,21(1):68-71.
    [157] Sebastiao C, Pereira. Ulisses T. et al. Uncertainty in thermal basin modeling[J]: An IntervalFinite Element Approach. Reliable Computing,2006,12(6):451-470.
    [158]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60.
    [159] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures from A Mfreudenthal’s criticisms to modern convex modeling[J]. Computers&Structures,1995,56(6):871-895.
    [160]梁震涛,陈建军,朱增清等.不确定结构动力区间分析方法研究[J].应用力学学报,2008,25(1):46-50.
    [161]杨兆军,范久臣,丁树伟等.鼓式制动器应力数值模拟[J].电子科技大学出版社,2010,39(4):623-628.
    [162]郭应时,付锐,杨鹏飞等.鼓式制动器瞬态温度场数值模拟计算[J].长安大学学报,2006,26(3):87-91.
    [163]郭应时,袁伟,付锐.实验法求解汽车鼓式制动器对流换热系数[J].长安大学学报,2006,26(4):92-94.
    [164] Atray V S, Roschke P N. Neuo-fuzzy control of railcar vibration using semiactive dampers[J].Computer-Aided Civil and Infrastrcture Engineering,2004,19(1):81-92.
    [165]余森,陈伟民,廖昌荣等.基于磁流变减振器的汽车悬架振动控制[J].机械工程学报,2005,41(6):128-133.
    [166]张进秋,陆念力.履带车辆悬挂系统磁流变阻尼振动控制分析[J].兵工学报,2006,27(6):965-969.
    [167]孙涛,张振东,喻凡.油气悬架不确定性对系统鲁棒性影响的强弱分析[J].振动与冲击,2007,26(12):18-24.
    [168] Ibrahim R. Structural dynamics with parameter uncertainties[J]. Applied Mechanics Reviews,1987,40(3):309-328.
    [169] Chen S H, Liu Z S, Zhang Z F. Random vibration analysis for large-scale structures withrandom parameters[J]. Computers and Structures,1992,43(4):681-685.
    [170] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal ofApplied Mechanics,1993,60(3):683-686.
    [171] Sexsmith R G. Probability-based safety analysis: Value and drawbacks[J].Structural Safety,1999,21(4):303-310.
    [172] Ellishakoff I, Elisseeff P G, Stewart A L. Non-probabilistic, convex-theoretic modeling ofscatter in material properties[J]. AIAA Journal,1994,32(4):843-849.
    [173]邱志平.不确定参数结构静力响应和特征值问题的区间分析方法[D].吉林工业大学博士学位论文,1994.
    [174] Spentzas, Konstantinos. Design of a non-linear hybrid car suspension system using neuralnetworks[J]. Mathematics and Computers in Simulation,2002,60(3):369-378.
    [175]段敏,张立军,石晶等.基于神经网络的轻型客车悬架参数的优化[J].汽车工程,2003,25(2):190-192.
    [176]陈侃松,何翔.运用MATLAB语言进行控制系统极点配置的方法[J].中南民族学院学报,2001,20(2):34-40.
    [177] Rao S S. Optimization theory and applications[M].2nd Edu. Wiley Eastern,1984.
    [178]吕彭民,和丽梅,尤晋闽.基于舒适性和轮胎动载的车辆悬架参数优化[J].中国公路学报,2007,20(1):112-117.
    [179] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE InternationalConference on Neural Networks. Australia: IEEE,1995,1942-1948.
    [180] M Dorigo, V Maniezzo, A Colorni. Ant system: Optimization by a colony of cooperatingagents[J]. IEEE Transaction on Systems, Man and Cybernatics,1996,26(1):29-43.
    [181]张干清,龚宪生,王欢欢等.基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J].机械工程学报,2010,46(23):136-147.
    [182]吕红兵,罗智中.汽车发动机故障诊断模糊专家系统研究[J].内燃机工程,1999,20(4):6-10.
    [183]程力旻,谢志江,刘利云等.运用免疫遗传神经网络的汽轮机振动故障诊断[J].振动、测试与诊断,2010,30(6):675-680.
    [184]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业版社,2002.
    [185]李国臣,陈丽君,张锐.人工神经网络技术在机械故障诊断中的应用探讨[J].沈阳农业大学学报,2002,33(1):60-62.
    [186]张绪锦,谭剑波,韩江洪.基于BP神经网络的故障诊断方法[J].系统工程理论与实践,2002,22(6):61-66.
    [187] Kabore P, Wang H. Design of fault diagnosis filters and fault tolerant contrtol for a class ofnonlinear systems[J]. IEEE Trans Automatic Control,2001,46(11):1805-1810.
    [188] Trunov A B, Polycarpou M M. Automated fault diagnosis in nonlinear multivariable systemsusing a learning methodology[J]. IEEE Trans Neural Networks,2000,11(1):91-101.
    [189] Ehsan Nbsbahi. An intelligent sensor validation and fault diagnostic technique for dieselengines[J]. Journal of Dynamic Systems Measurement and Control,2001,123(1):141-144.
    [190]金林,张洪才.一种基于模糊神经网络的故障诊断方法研究[J].西北工业大学学报,2004,22(5):657-661.
    [191]曲晓慧,乔新勇,陈枚等.基于灰色关联分析的柴油机状况评估[J].兵工学报,2005,26(4):557-559.
    [192]石勇民.灰色关联分析的改进与应用[J].西安公路学院学报,1994,14(3):94-95.
    [193]吕峰.灰色系统关联度之分辨系数的研究[J].系统工程理论与实践,1997,17(6):49-54.
    [194]陈举华,赵建国,郭毅之.电力系统可靠性研究的灰关联和模糊贴近度分析方法[J].中国电机工程学报,2002,22(1):59-63.
    [195]祁翠琴.基于模糊理论的汽车ABS故障诊断研究[J].煤炭技术,2010,(7):185-189.
    [196]王敬敏,郭继伟,连向军.两种改进的灰色关联分析法的比较研究[J].华北电力大学学报,2005,32(6):72-77.
    [197]姚成玉,赵静一.两栖车液压系统及其故障诊断搜索策略研究[J].兵工学报,2006,27(4):58-60.
    [198]肖云魁.汽车故障诊断学(第二版)[M].北京:北京理工大学出版社,2006.
    [199]姚永玉,陈中友.模糊诊断技术在汽车ABS故障分析中的应用[J].机械研究与应用,2009,(2):105-111.
    [200]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641.
    [201]林耀进,周忠眉,吴顺祥.集成灰色支持向量机预测模型研究与应用[J].计算机应用,2009,29(12):3287-3289.
    [202]赵洪波,冯夏庭.非线性位移时间序列预测的进化支持向量机方法及应用[J].岩土工程学报,2003,25(4):468471.
    [203] Cristianini N, Taylor S T.支持向量机导论[M].北京:电子工业出版社,2004.
    [204]沈志熙,黄席樾.基于EMD和支持向量机的柴油机故障诊断[J].振动、测试与诊断,2010,30(1):19-24.
    [205]赵俊杰.基于模糊神经网络的汽车故障诊断方法研究[D].杭州电子科技大学硕士学位论文,2010.
    [206]朱文俊,周刚,王红斌等.基于粒子群优化支持向量机的变压器故障诊断[J].水电能源科学,2012,30(4):179-183.
    [207]刘惟信.机械零件的可靠性设计[M].北京:清华大学出版社,1996.
    [208] R Tavakkoli-Moghaddam, J Safari, F Sassani. Reliability optimization of series-parallelsystems with a choice of redundancy strategies using a genetic algorithm[J]. IEEE ReliabilityEngineering and System Safety,2008,93(4):550-556.
    [209] Yalaoui A, Chu C, Chatelt E. Reliability allocation problem in series-parallel system[J].Reliab Eng Syst Safety,2005,90(1):55-61.
    [210] Kuo W, Prasad VR. An annotated overview of system reliability optimization[J]. IEEE TransReliab,2000,49(2):176-187.
    [211] K Kabe, I Shimomura. Application of tyre stress analysis and thermal analysis to tyredurability[J]. International Polymer Science and Technology,1984,11(8):32-39.
    [212] Cui W, Block D I. Interval probability theory for evidential support[J]. International Journalof Intelligent System,1990,5(2):183-192.
    [213]何丹娅.模糊数学在汽车故障诊断中的应用.[J].西安公路交通大学学报,1999,19(1):89-92.
    [214]张新锋,赵彦,施浒立.基于D-S理论的故障树区间分析方法[J].机械科学与技术,2007,26(5):659-667.
    [215] Moor R E. Methods and Applications of Interval Analysis[M]. Philadephia: Society forIndustrial and Applied Mathematics Publications,1979.
    [216]王明文.基于概率区间的Bayes决策方法[J].系统工程理论与实践,1997,(11):79-82.
    [217]邱志平,陆强华.雷达探测距离估计的非概率区间方法[J].国防科技,2008,29(2):3-6.
    [218]柳卫东,徐颖强,高西亚.基于故障树的汽车制动系故障分析[J].机械设计与制造,2007,(6):118-120.
    [219]崔涛,刘刚,邹鸿雁.故障树分析法在汽车故障诊断中的应用[J].长春工业大学学报,2009,30(6):661-663.
    [220]陈朝阳,张代胜,任佩奇等.基于故障树分析法的汽车故障诊断专家系统[J].农业机械学报,2003,34(5):130-134.
    [221]赵韩,张彦,方艮海等.灰色关联分析法在汽车零部件分析中的应用[J].农业机械学报,2005,38(8):125-128.
    [222]韦家增.故障树分析和模糊理论在机械故障诊断中的应用[D].合肥工业大学硕士学位论文,2002.
    [223]吴素平.基于故障树分析法与模糊理论的汽车制动系统故障诊断研究[D].广西大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700