TNF-α刺激下的蛋白质相互作用与细胞耐受响应的定量蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以基于质谱的细胞培养的稳定同位素氨基酸标记技术作为蛋白质组学定量研究的技术平台,系统研究了肿瘤坏死因子(TNF-α)刺激下14-3-3epsilon相互作用复合物的变化情况;以及细胞对于TNF-α耐受性响应的全谱研究和该特定条件下与14-3-3 epsilon相互作用蛋白的变化,对于研究癌逃逸机制有深远的意义。同时,我们还应用了iTRAQ标记技术研究了TNF-a不同时间点刺激下的14-3-3epsilon复合物的动态响应过程。
     论文的第一章综述了近年来蛋白质组学在方法、技术以及应用上的研究成果和进展,同时阐述了蛋白质相互作用技术的进展,特别强调了目前应用比较广泛的基于稳定同位素氨基酸标记技术的定量蛋白质组学和蛋白相互作用组学研究。总结了各种技术的优缺点及应用领域,并由此引出了本论文的研究背景,阐述了本论文的研究目的和意义。
     本论文的主要研究工作分为三章,第一章涉及了TNF-α诱导的/可诱导的14-3-3ε相互作用蛋白,以及特定复合物对于NF-κB活性调节的深入研究;第二章全面研究了细胞对于TNF-α刺激的耐受响应变化以及在此过程中,与14-3-3ε相互作用蛋白的变化情况;第三章研究了14-3-3 epsilon复合物在TNF-α不同时间点刺激下的动态变化。下面对各章内容进行详细介绍:
     1.TNF-α引起的14-3-3 epsilon复合物变化及其关键相互作用蛋白对NF-κB活性的选择性调节
     炎症是由NF-κB严格调控的,未加抑制的NF-κB的过度活化会导致细胞因子的生产过剩,由此引发包括癌症在内的各种致病后果。肿瘤坏死因子(tumor necrosis factor-α, TNF-α)作为一个促炎症因子,可用于探索在NF-κB调节的炎症响应过程中TNF-α诱导的但是未知的,却起重要作用的通路对于NF-κB活性调节的可能机制。14-3-3蛋白是一种高度保守的酸性可溶性蛋白,现有的研究表明:14-3-3蛋白通过调节细胞内多个信号转导通路而参与多种细胞生命活动的调控,涉及炎症响应、有丝分裂、细胞生存、细胞周期、凋亡、生长、增殖、DNA复制、DNA损伤、信号转导等。鉴于14-3-3家族蛋白的多功能特性,且最近有报道发现14-3-3家族蛋白出现在TNF-α/NF-κB通路网络中,我们应用了双标签定量蛋白质组学的策略,以稳定表达含有flag标签的14-3-3epsilon的大量293T细胞为研究对象,采用免疫共沉淀技术,首次研究了TNF-α可诱导的14-3-3ε相互作用蛋白,而14-3-3ε是14-3-3蛋白家族中特征性最少的亚型。表位抗原标签技术可有效提高免疫共沉淀的效率,增加复合物的鉴定几率;而基于质谱的稳定同位素氨基酸标记技术可有效去除非特异性的背景蛋白。基于这种双标记策略,我们鉴定到了包括“诱饵”蛋白在内的55个TNF-α可诱导的14-3-3ε相互作用蛋白。其中有17个是数据库己知的14-3-3家族成员或14-3-3ε的相互作用蛋白或复合物组成部分,如CDC37、Hsp90、RuvBL2等,而TAK1、PPMIB、TBK1等均是首次被报道,并对所鉴定的蛋白进行了免疫印迹(IB)验证和生物学功能分类分析。我们选择了已知的相互作用蛋白如Hsp90、RuvBL2,以及未知的DDX21、PPM1B、TAK1、TBK1等进行了IB验证,结果均与质谱结果一致,充分证明了基于质谱的双标记策略对于研究蛋白一蛋白相互作用的可行性与可靠性。并且我们的研究首次发现了TNF-α的刺激增强了14-3-3ε与MAPK信号通路中的某些关键组份的相互作用,其中包括转化生长因子一B活化激酶-1(TAK1)及其相互作用蛋白——蛋白磷酸酶2Cβ(PPMIB),而MAPK正是NF-κB的最直接的上游信号通路。通过共聚焦激光扫描,我们观察到了TNF-α诱导的14-3-3£与TAK1和PPMIB的共定位,并且在其它细胞类型中同样存在这些TNF-α诱导的相互作用。此外,我们还发现在细胞响应TNF-α刺激的全过程中,14-3-3ε与这两个蛋白的相互作用是动态变化的,且与NF-κB依赖于时间过程的活性变化紧密相关。这暗示了这些14-3-3£相互作用是集合TNF-α信号以调节NF-κB活性的关键点。之后我们假设了14-3-3ε如何通过协调与TAK1和PPM1B的动态相互作用来分别调节TNF-α诱导的NF-K B活性变化。利用生物信息学工具,应用我们蛋白质组学方法所鉴定到的大部分14-3-3£相互作用蛋白,构建了相互作用网络图。从中揭示出14-3-3ε协调MAPK信号通路与其它分子通路/生物进程的交互响应(cross talk),其中主要包括蛋白新陈代谢与合成、DNA修复以及细胞周期调控等,其中可以系统地找寻用于干预治疗的药物标靶。
     2.定量蛋白质组学解析细胞对TNF-α持久刺激的耐受响应以及在此过程中14-3-3 epsilon复合物的变化
     炎症响应是对于感染和组织损伤的复杂响应过程。而肿瘤坏死因子(tumor necrosis factor, TNF)是迄今发现的直接杀伤恶性肿瘤作用最强的生物活性因子,可以通过不同的信号途径导致细胞的生长或凋亡。由于炎症响应可引起组织生理学的明显变化,因此其失调会导致多种病理学情况。炎症响应的范围和持续时间是由多种机制调控的,正是由于这些机制的响应,因此会出现-种耐受现象:细胞或生物体对于反复的或持久的刺激出现的暂时不响应状态。借助于SILAC三标标记定量蛋白质组学技术,我们系统地研究了293T细胞对于TNF-α重复持续刺激的响应情况。在TNF-α的重复持续刺激的全过程中,我们鉴定到了706个有变化的蛋白,这些蛋白涉及了新陈代谢、细胞生物合成、基因表达、转运、程序细胞死亡、催化活性调控、细胞周期、应激反应、DNA损伤刺激响应、细胞功能负调控、细胞死亡负调控等生物过程。对TNF-a的重复持续刺激有耐受响应的蛋白有225个,主要涉及新陈代谢、细胞生物合成、基因表达、转运、有丝分裂细胞周期、染色体组成、细胞功能负调控以及有丝分裂细胞周期中泛素蛋白连接酶活性调控等。而对TNF-a的重复持续刺激始终有响应的蛋白有159个,参与了转运、蛋白定位、细胞分解代谢过程、新陈代谢、DNA损伤刺激响应等。通过耐受蛋白和不耐受蛋白的功能涉及异同可发现,细胞为了在TNF-α的重复持续刺激下存活下来,调动耐受蛋白进行基因表达、生物合成、细胞周期等功能,而不耐受的蛋白对DNA损伤刺激的响应,参与分解代谢等生物过程,由此可见,两组蛋白可能通过相互协调而使细胞避免凋亡,这也为我们深入研究癌细胞的逃逸机制提供了有效的模型和研究策略。
     由于14-3-3蛋白的多功能性,且参与炎症响应、细胞周期、有丝分裂、凋亡等过程。因此采用稳定同位素氨基酸标记和抗原表位标签的双标记技术,以稳定表达flag-14-3-3ε的293T细胞为研究对象,研究在TNF-α重复持续刺激细胞的过程中,与“诱饵”蛋白14-3-3ε相互作用蛋白的变化情况。共鉴定到295个相互作用蛋白,这些蛋白主要涉及了细胞新陈代谢、基因表达、细胞生物合成、复合物聚集、染色体组成、应激响应、DNA损伤刺激响应、细胞周期等。与全谱数据相结合,可发现与14-3-3£相互作用的蛋白所涉及的生物学过程很多与全谱中蛋白响应过程相同,暗示了14-3-3ε的多功能性及其相互作用蛋白在响应TNF-α的重复持续刺激过程中所起的关键作用。
     3.TNF-α不同时间点刺激下的14-3-3 epsilon相互作用蛋白的动态变化
     以往定量标记技术的局限在于只有两到三个标签,这导致了当有多于两个的样品需要比较时,需要进行多次实验才可完成。而细胞生物过程是一个动态变化的过程,对细胞某一时间点的蛋白相互作用研究只能说明该特定时间蛋白复合物的变化情况,这只是细胞某一生物过程中的一小部分,虽然能揭示一定的生物现象却无法得到全面的认识。因此我们应用iTRAQ标记技术,以稳定表达flag-14-3-3ε的293T细胞为研究对象,研究在TNF-α不同时间点刺激下,与“诱饵”蛋白14-3-3ε相互作用蛋白的动态变化情况。在此过程中,发现参与细胞死亡相关调控和有丝分裂细胞周期的蛋白均占有一定的比例,这暗示14-3-3ε很有可能通过调节与这两类蛋白的相互作用变化,而对细胞是生存还是走向死亡起着关键的作用。
The thesis mainly focused on the quantitative proteomics study by using amino acid-coded tagging in cell culture (AACT, also known as SILAC) strategy with the help of the mass spectrum. Based on this platform, three systematical researches were studied as follows:1) Investigated the TNF-αstimulated 14-3-3εinteracting partners changes; 2) Studied the global profile of cells resistance to TNF-a prolonged stimulation, also the 14-3-3εcomplex changes under this situation, and through this study it would provide more profound meaning for exploring cancer escape mechanism; Meanwhile,3) Applied iTRAQ labeling strategy to study the dynamic changes of 14-3-3εinteracting partners at different time points under the stimulation of TNF-α.
     In Chapter 1, recent research results and developments of proteomics and protein-protein interaction in strategy, technology and application fields were reviewed, especially emphasized currently broadly applied amino acid-coded mass tagging (AACT/SILAC) based quantitative proteomics and interactomics approaches. Summarized the advantages/weaknesses of each technology, thus lead to the background of this thesis and illustrated the purpose and significance of our study.
     The research work of this dissertation was composed of three parts. The first part involved in TNF-αintroduced/introducible 14-3-3εinteracting partners, and in-depth study of particular complex in NF-κB activity regulation. The second part comprehensively studied cell tolerant response to TNF-αprolonged stimulation, and the 14-3-3εinteracting complex changes during this process. The third part studied the dynamic changes of 14-3-3εcomplex at different time points of TNF-αstimulation. The details were described in the fallowing:
     1.14-3-3 epsilon dynamically interacts with key components of MAPK signal module for selective modulation of the TNF-α-induced time course-dependent NF-κB activity
     Inflammation is tightly regulated by NF-κB if left unchecked excessive NF-κB activation for cytokine overproduction can lead to various pathogenic consequences including carcinogenesis. A proinflammatory cytokine, tumor necrosis factor-α(TNF-a), can be used to explore possible mechanisms whereby unknown functional pathways modulate the NF-κB activity for regulating TNF-α-induced inflammation. 14-3-3 proteins are highly conserved acidic soluble proteins, existing studies have shown that 14-3-3 proteins involve in the regulation of variety cellular biological process by mediating multiple intracellular signal transduction pathways, including inflammatory responses, mitogenic and cell survival signaling, cell cycle, apoptosis, growth, proliferation, DNA replication, DNA damage, signal transduction, etc. Given the multi-functional nature of 14-3-3 family proteins and recent finding of their presence in the TNF-α/NF-κB pathway network, we used a dual-tagging quantitative proteomic method, and stably expressed flag-tagged 14-3-3ε293T cells as the study object, using co-immunoprecipitation technology, to first profile the TNF-αinducible interacting partners of 14-3-3ε, the least characterized 14-3-3 isomer in the family. The epitope tag approach can increase the efficiency of co-immunoprecipitation and therefore enhance the possibilities of protein complex being identified; and the quantitative strategy of MS-based AACT/SILAC can effectively distinguish the specific protein partners from the non-specific backgrounds. Based on this dual-tagging strategy, we identified 55 TNF-αinducible 14-3-3εinteracting partners including the bait protein,17 proteins among them were the previously known interactors or the complex components with either 14-3-3 family members or 14-3-3ε, such as CDC37, Hsp90, RuvBL2, etc, new interactors such as TAK1, PPM1B, TBK1, etc were first reported by our study. We did immunoblot to validate the identified proteins and classified their biological process and functions. We chose the already known interactors Hsp90, RuvBL2, and also unknown ones such as DDX21, PPM1B, TAK1, TBK1 to do western blot, all results were consistent with the Mass data, fully proved the feasibility and reliability of mass-based dual tagging strategy in protein protein interaction study. And for the first time we found that TNF-αstimulation enhances the interactions between 14-3-3εand some key components in the MAPK signal module which is located at the immediate upstream of NF-κB, including transforming growth factor-beta activated kinase-1 (TAK1) and its interacting protein, protein phosphatase 2Cβ(PPM1B). By using confocal laser scanning we observed the TNF-α-induced co-localizations among 14-3-3ε, TAK1, and PPM1B and these interactions were also TNF-a-inducible in different cell types. Further, we found that during the full course of cellular response to TNF-αthe interactions between 14-3-3εand these two proteins were dynamic and were closely correlated with the time course-dependent changes in NF-κB activity, suggesting these 14-3-3εinteractions are the critical points of convergence for TNF-a signaling for modulating NF-κB activity. We then postulated a mechanistic view describing how 14-3-3εcoordinates its dynamic interactions with TAK1 and PPM1B for differentially modulating TNF-α-induced changes in NF-κB activity. By using bioinformatics tools we constructed the network involving most of 14-3-3εinteracting proteins identified in our proteomic study. We revealed that 14-3-3εcoordinate the cross talks between the MAPK signal module and other molecular pathways/biological processes primarily including protein metabolism and synthesis, DNA repair, and cell cycle regulation where pharmacological targets for therapeutic intervention could be systematically located.
     2. Quantitative study of cell tolerance to TNF-αprolonged stimulation and the 14-3-3εinteracting partners changes during this process
     Inflammation is a complex response to infection and tissue injury. By far, TNF that was found to have the strongest activity in directly killing tumor cells, can lead cells to grow or apoptosis through different signal pathways. Because the inflammatory response causes marked changes in tissue physiology, dysregulated inflammation can lead to a variety of pathological conditions. Multiple mechanisms control the extent and duration time of inflammation response. Because of the regulations of these mechanisms, that contributes to the phenomenon 'tolerance' :the transient unresponsiveness of cells or organisms to repeated or prolonged stimulation. With SILAC triple-labeling quantitative proteomics approach, we systematically studied the response of 293T cells to TNF-a prolonged stimulation. During the whole process of TNF-a prolonged stimulation, we finally identified 701 proteins changed. These proteins involved in metabolic process, cellular biosynthetic process, gene expression, transport, programmed cell death, regulation of catalytic activity, cell cycle, cellular response to stress, response to DNA damage stimulus, negative regulation of cellular function, negative regulation of cell death and other biological processes.225 proteins were resistant to TNF-a prolonged stimulation, mainly involved in metabolic process, cellular biosynthetic process, gene expression, transport, mitotic cell cycle, chromosome organization, negative regulation of cellular function, as well as the regulation of ubiquitin-protein ligase activity during mitotic cell cycle and so on. While there were 159 proteins continuing responsed to TNF-a prolonged stimulation, participating in transport, protein localization, cellular catabolic process, metabolic process, response to DNA damage stimulus, etc. Comparing the differences between tolerant proteins and non-tolerant proteins, we found that in order to survive from TNF-a prolonged stimulation, cell mobilized tolerant proteins to progress gene expression, biosynthesis, cell cycle and other similar functions, while the non-tolerant proteins involved in response to DNA damage stimulus and cellular catabolic process. All of these showed that these two groups of proteins might coordinate with each other to avoid apoptosis, which provides us an effective model and strategy to in-depth study the escape mechanism of cancer cells.
     Because of the multifunction of 14-3-3 proteins, they involve in many processes such as inflammation response, cell cycle, mitosis, apoptosis, etc. Therefore we applied mass spectrum-based in vivo dual-tagging strategy, using stably expressed flag-tagged 14-3-3ε293T cells to study 14-3-3εinteracting proteins' changes during TNF-αprolonged stimulation. We identified 295 interacting proteins, they mainly involved in cellular metabolic process, gene expression, cellular biosynthetic process, complex assembly, chromosome organization, cellular response to stress, response to DNA damage stimulus, cell cycle, etc. Combined with the global profile data, we found that there were many overlaps between 14-3-3εinteracting proteins and whole cell proteins responsed to TNF-αprolonged stimulation in biological process. This suggests the multifunctional character of 14-3-3εand the crucial roles of 14-3-3εcomplex during TNF-αprolonged stimulation.
     3. The dynamic changes of 14-3-3εinteracting partners during different time points of TNF-αstimulation
     The limitation of the past quantitative strategies is they only have two or three tags, which means you have to do more experiments to compare more than two samples. Whereas cellular biological process is dynamic, study protein interaction at a time point only shows the complex changes at that particular time, it's just a small part of a cellular process, although it will reveal some phenomenon we still can't get the whole picture. So we applied iTRAQ labeling strategy, using stably expressed flag-14-3-3ε293T cells, studied the dynamic changes of 14-3-3εinteracting partners during different time points of TNF-αstimulation. We found that proteins involved in regulation of cell death or mitotic cell cycle have a position in the changed proteins, indicating that 14-3-3εprobably plays key roles in cell surviving/dying through regulating its interactions with these two kinds of proteins during this process.
引文
[1]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium [J]. Electrophoresis,1995,16(7):1090-1094.
    [2]王克夷.蛋白质导论.[M].北京:科学出版社,2007:605-611.
    [3]Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver [J]. Electrophoresis,1997,18(3-4):533-537.
    [4]Gygi SP, Rochon Y, Franza BR, et al. Correlation between Protein and mRNA Abundance in Yeast [J]. Mol Cell Biol,1999,19(3):1720-1730.
    [5]Le Naour F, Hohenkirk L, Grolleau A, et al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics [J]. J Biol Chem,2001,276(21):17920-17931.
    [6]Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network [J]. Science,2001,292(5518):929-934.
    [7]Van Langenhove A, Costello CE, Biller JE, et al. A gas chromatographic/mass spectrometric method for the simultaneous quantitation of 5,5-diphenylhydantoin (phenytoin), its para-hydroxylated metabolite and their stable isotope labelled analogs [J]. Clin Chim Acta,1981,115(3):263-275.
    [8]Yergey AL, Esteban NV, Liberato DJ. Metabolic kinetics and quantitative analysis by isotope dilution thermospray LC/MS [J]. Biomed Environ Mass Spectrom,1987,14(11):623-625.
    [9]Gaskell SJ, Rollins K, Smith RW, et al. Determination of serum cortisol by thermospray liquid chromatography/mass spectrometry:comparison with gas chromatography/mass spectrometry [J]. Biomed Environ Mass Spectrom, 1987,14(12):717-722.
    [10]Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors [J]. Proc Natl Acad Sci U S A,2003,100(10):5813-5818.
    [11]Kitteringham NR, Jenkins RE, Lane CS, et al. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009, 877(13).-1229-1239.
    [12]Elliott MH, Smith DS, Parker CE, et al. Current trends in quantitative proteomics [J]. J Mass Spectrom,2009,44(12):1637-1660.
    [13]Lange V, Picotti P, Domon B, et al. Selected reaction monitoring for quantitative proteomics:a tutorial [J]. Mol Syst Biol,2008,4:222.
    [14]Gerber SA, Rush J, Stemman 0, et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS [J]. Proc Natl Acad Sci U S A,2003,100(12):6940-6945.
    [15]Addona TA, Abbatiello SE, Schilling B, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J]. Nat Biotechnol, 2009,27(7):633-641.
    [16]Kamiie J, Ohtsuki S, Iwase R, et al. Quantitative atlas of membrane transporter proteins:development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria [J]. Pharm Res,2008,25(6):1469-1483.
    [17]Ackermann BL, Berna MJ. Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers [J]. Expert Rev Proteomics,2007,4(2):175-186.
    [18]Barnidge DR, Goodmanson MK, Klee GG, et al. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-Ms/MS using protein cleavage and isotope dilution mass spectrometry [J]. J Proteome Res,2004,3(3):644-652.
    [19]Zhang F, Bartels MJ, Stott WT. Quantitation of human glutathione S-transferases in complex matrices by liquid chromatography/tandem mass spectrometry with signature peptides [J]. Rapid Commun Mass Spectrom, 2004,18(4):491-498.
    [20]Kuhn E, Wu J, Karl J, et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards [J]. Proteomics,2004,4(4):1175-1186.
    [21]Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy:a general procedure for the quantification of proteins and post-translational modifications [J]. Methods,2005,35(3):265-273.
    [22]Kuzyk MA, Smith D, Yang J, et al. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma [J]. Mol Cell Proteomics,2009,8(8):1860-1877.
    [23]Iliuk A, Galan J, Tao WA. Playing tag with quantitative proteomics [J]. Anal Bioanal Chem,2009,393(2):503-513.
    [24]Raap J, Winkel C, de Wit AH, et al. Mass spectrometric determination of isotopically labeled tyrosines and tryptophans in photosynthetic reaction centers of Rhodobacter sphaeroides R-26 [J]. Anal Biochem,1990,191(1):9-15.
    [25]Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation [J]. Proc Natl Acad Sci U S A,1999,96(12):6591-6596.
    [26]Gao HY, Shen YF, Veenstra TD, et al. Two-dimensional electrophoretic/chromatographic separations combined with electrospray ionization FTICR mass spectrometry for high throughput proteome analysis [J]. Journal of Microcolumn Separations,2000,12(7):383-390.
    [27]Conrads TP, Anderson GA, Veenstra TD, et al. Utility of accurate mass tags for proteome-wide protein identification [J]. Anal Chem,2000, 72(14):3349-3354.
    [28]S. Oeljeklaus, J. Barbour, H. E. Meyer, et al. Mass spectrometry-driven approaches to quantitative proteomics and beyond [J]. Comprehensive Analytical Chemistry,2009,52:411.
    [29]Bachi A, Bonaldi T. Quantitative proteomics as a new piece of the systems biology puzzle [J]. Journal of Proteomics,2008,71(3):357-367.
    [30]Ong S-E, Blagoev B, Kratchmarova I, et al. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics [J]. Molecular & Cellular Proteomics,2002, 1(5):376-386.
    [31]Zhu H, Pan S, Gu S, et al. Amino acid residue specific stable isotope labeling for quantitative proteomics [J]. Rapid Communications in Mass Spectrometry,2002,16(22):2115-2123.
    [32]Mann M. Functional and quantitative proteomics using SILAC [J]. Nat Rev Mol Cell Biol,2006,7(12):952-958.
    [33]Gu S, Pan S, Bradbury EM, et al. Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging [J]. Journal of the American Society for Mass Spectrometry,2003,14(1):1-7.
    [34]Ong S-E, Mittler G, Mann M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC [J]. Nat Meth,2004,1 (2):119-126.
    [35]Ong S-E, Kratchmarova I, Mann M. Properties of 13C-Substituted Arginine in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) [J]. Journal of Proteome Research,2002,2(2):173-181.
    [36]Scott L, Lamb J, Smith S, et al. Single amino acid (arginine) deprivation:rapid and selective death of cultured transformed and malignant cells [J]. Br J Cancer,2000,83(6):800-810.
    [37]Olsen JV, Blagoev B, Gnad F, et al. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks [J]. Cell, 2006,127(3):635-648.
    [38]Graumann J, Hubner NC, Kim JB, et al. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins [J]. Molecular & Cellular Proteomics,2008,7(4):672-683.
    [39]Liang X, Zhao J, Hajivandi M, et al. Quantification of Membrane and Membrane-Bound Proteins in Normal and Malignant Breast Cancer Cells Isolated from the Same Patient with Primary Breast Carcinoma [J]. Journal of Proteome Research,2006,5(10):2632-2641.
    [40]Gronborg M, Kristiansen TZ, Iwahori A, et al. Biomarker Discovery from Pancreatic Cancer Secretome Using a Differential Proteomic Approach [J]. Molecular & Cellular Proteomics,2006,5(1):157-171.
    [41]Blagoev B, Mann M. Quantitative proteomics to study mitogen-activated protein kinases [J]. Methods,2006,40(3):243-250.
    [42]Amanchy R, Kalume DE, Iwahori A, et al. Phosphoproteome Analysis of HeLa Cells Using Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) [J]. Journal of Proteome Research,2005,4(5):1661-1671.
    [43]Kruger M, Kratchmarova I, Blagoev B, et al. Dissection of the insulin signaling pathway via quantitative phosphoproteomics [J]. Proceedings of the National Academy of Sciences,2008,105(7):2451-2456.
    [44]Wang Z, Pandey A, Hart GW. Dynamic Interplay between O-Linked N-Acetylglucosaminylation and Glycogen Synthase Kinase-3-dependent Phosphorylation [J]. Molecular & Cellular Proteomics,2007, 6(8):1365-1379.
    [45]Ong S-E, Mann M. Identifying and Quantifying Sites of Protein Methylation by Heavy Methyl SILAC [J]. Current Protocols in Protein Science,2006:Dec:14.19.
    [46]Wisniewski JR, Zougman A, Kruger S, et al. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics [J]. Proteins,2008, 73(3):710-718.
    [47]Bonenfant D, Towbin H, Coulot M, et al. Analysis of Dynamic Changes in Post-translational Modifications of Human Histones during Cell Cycle by Mass Spectrometry [J]. Molecular & Cellular Proteomics,2007, 6(11):1917-1932.
    [48]Dobreva I, Fielding A, Foster LJ, et al. Mapping the Integrin-Linked Kinase Interactome Using SILAC [J]. Journal of Proteome Research,2008,7(4):1740-1749.
    [49]Wang X, Huang L. Identifying Dynamic Interactors of Protein Complexes by Quantitative Mass Spectrometry [J]. Molecular & Cellular Proteomics,2008,7(1):46-57.
    [50]Hanke S, Besir H, Oesterhelt D, et al. Absolute SILAC for Accurate Quantitation of Proteins in Complex Mixtures Down to the Attomole Level [J]. Journal of Proteome Research,2008,7(3):1118-1130.
    [51]Thelen JJ, Peck SC. Quantitative Proteomics in Plants:Choices in Abundance [J]. Plant Cell,2007,19(11):3339-3346.
    [52]Spellman DS, Deinhardt K, Darie CC, et al. Stable Isotopic Labeling by Amino Acids in Cultured Primary Neurons [J]. Molecular & Cellular Proteomics,2008,7(6):1067-1076.
    [53]Van Hoof D, Pinkse MWH, Oostwaard DW-V, et al. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics [J]. Nat Meth,2007,4(9):677-678.
    [54]Bendall SC, Hughes C, Stewart MH, et al. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells [J]. Mol Cell Proteomics,2008,7(9):1587-1597.
    [55]Yao X, Freas A, Ramirez J, et al. Proteolytic 180 labeling for comparative proteomics:model studies with two serotypes of adenovirus [J]. Anal Chem,2001,73(13):2836-2842.
    [56]Sakai J, Kojima S, Yanagi K, et al.180-labeling quantitative proteomics using an ion trap mass spectrometer [J]. Proteomics,2005, 5(1):16-23.
    [57]Bachi A, Bonaldi T. Quantitative proteomics as a new piece of the systems biology puzzle [J]. J Proteomics,2008,71 (3):357-367.
    [58]Gevaert K, Impens F, Ghesquiere B, et al. Stable isotopic labeling in proteomics [J]. Proteomics,2008,8(23-24):4873-4885.
    [59]Reynolds KJ, Yao X, Fenselau C. Proteolytic 180 labeling for comparative proteomics:evaluation of endoprotease Glu-C as the catalytic agent [J]. J Proteome Res,2002,1(1):27-33.
    [60]Gevaert K, Vandekerckhove J. Protein identification methods in proteomics [J]. Electrophoresis,2000,21(6):1145-1154.
    [61]Chen CH. Review of a current role of mass spectrometry for proteome research [J]. Anal Chim Acta,2008,624(1):16-36.
    [62]Dasari S, Wilmarth PA, Reddy AP, et al. Quantification of isotopically overlapping deamidated and 18o-labeled peptides using isotopic envelope mixture modeling [J]. J Proteome Res,2009, 8(3):1263-1270.
    [63]Munchbach M, Quadroni M, Miotto G, et al. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety [J]. Anal Chem, 2000,72(17):4047-4057.
    [64]Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels [J]. Proteomics,2005,5(1):4-15.
    [65]Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol, 1999,17(10):994-999.
    [66]Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents:the yeast salinity stress response [J]. Mol Cell Proteomics,2003,2(11):1198-1204.
    [67]Hansen KC, Schmitt-Ulms G, Chalkley RJ, et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography [J]. Mol Cell Proteomics,2003,2(5):299-314.
    [68]Zhang R, Sioma CS, Thompson RA, et al. Controlling deuterium isotope effects in comparative proteomics [J]. Anal Chem,2002, 74(15):3662-3669.
    [69]Wang YK, Quinn DF, Ma Z, et al. Inverse labeling-mass spectrometry for the rapid identification of differentially expressed protein markers/targets [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002, 782(1-2):291-306.
    [70]Leitner A, Lindner W. Current chemical tagging strategies for proteome analysis by mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1-2):1-26.
    [71]Vaughn CP, Crockett DK, Lim MS, et al. Analytical characteristics of cleavable isotope-coded affinity tag-LC-tandem mass spectrometry for quantitative proteomic studies [J]. J Mol Diagn,2006,8(4):513-520.
    [72]Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents [J]. Mol Cell Proteomics,2004,3(12):1154-1169.
    [73]Choe L, D' Ascenzo M, Relkin NR, et al.8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease [J]. Proteomics,2007,7(20):3651-3660.
    [74]Simpson KL, Whetton AD, Dive C. Quantitative mass spectrometry-based techniques for clinical use:biomarker identification and quantification [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2009,877(13):1240-1249.
    [75]DeSouza LV, Grigull J, Ghanny S, et al. Endometrial carcinoma biomarker discovery and verification using differentially tagged clinical samples with multidimensional liquid chromatography and tandem mass spectrometry [J]. Mol Cell Proteomics,2007,6(7):1170-1182.
    [76]DeSouza LV, Romaschin AD, Colgan TJ, et al. Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer [J]. Anal Chem,2009,81(9):3462-3470.
    [77]Palzkill T. Proteomics. [M]. Boston:Kulwer Academic Publisher, 2002:47-74.
    [78]Fields S, Song OK. A Novel Genetic System to Detect Protein Protein Interactions [J]. Nature,1989,340(6230):245-246.
    [79]Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions [J]. Methods,2001,24(3):201-217.
    [80]Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast [J]. Nature Biotechnology,2000,18(12):1257-1261.
    [81]Li SM, Armstrong CM, Bertin N, et al. A map of the interactome network of the metazoan C-elegans [J]. Science,2004,303(5657):540-543.
    [82]Lee JW, Lee SK. Mammalian two-hybrid assay for detecting protein-protein interactions in vivo [J]. Methods Mol Biol,2004, 261:327-336.
    [83]Stelzl U, Wanker EE. The value of high quality protein-protein interaction networks for systems biology [J]. Curr Opin Chem Biol,2006, 10(6):551-558.
    [84]Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo [J]. Proc Natl Acad Sci U S A,1994, 91(22):10340-10344.
    [85]Stagljar I, Korostensky C, Johnsson N, et al. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo [J]. Proc Natl Acad Sci U S A,1998, 95(9):5187-5192.
    [86]Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system [J]. Methods Mol Biol,2004, 261:297-312.
    [87]Thaminy S, Auerbach D, Arnoldo A, et al. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system [J]. Genome Res,2003,13(7):1744-1753.
    [88]Obrdlik P, El-Bakkoury M, Hamacher T, et al. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions [J]. Proc Natl Acad Sci U S A, 2004,101(33):12242-12247.
    [89]Karimova G, Pidoux J, Ullmann A, et al. A bacterial two-hybrid system based on a reconstituted signal transduction pathway [J]. Proc Natl Acad Sci U S A,1998,95(10):5752-5756.
    [90]Tafelmeyer P, Johnsson N, Johnsson K. Transforming a (beta/alpha)8--barrel enzyme into a split-protein sensor through directed evolution [J]. Chem Biol,2004,11(5):681-689.
    [91]Pelletier JN, Remy I, Michnick SW. Protein-fragment complementation assays:a general strategy for the in vivo detection of protein-protein interactions [J]. Journal of Biomolecular Techniques, 1999,10:32-39.
    [92]Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration [J]. Nat Biotechnol,1999,17(10):1030-1032.
    [93]Puig 0, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method:a general procedure of protein complex purification [J]. Methods,2001,24(3):218-229.
    [94]Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes [J]. Nature, 2002,415(6868):141-147.
    [95]Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips [J]. Science,2001,293(5537):2101-2105.
    [96]MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination [J]. Science,2000, 289(5485):1760-1763.
    [97]Zhu H, Snyder M. Protein chip technology [J]. Curr Opin Chem Biol, 2003,7(1):55-63.
    [98]Caputo E, Moharram R, Martin BM. Methods for on-chip protein analysis [J]. Anal Biochem,2003,321(1):116-124.
    [99]Tracey KJ, Cerami A. Tumor-Necrosis-Factor-a Pleiotropic Cytokine and Therapeutic Target [J]. Annual Review of Medicine,1994, 45:491-503.
    [100]Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives [J]. Trends in Cell Biology,2001,11 (9):372-377.
    [101]Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer [J]. Virchows Arch,2005,446(5):475-482.
    [102]Giuliani C, Napolitano G, Bucci I, et al. Nf-kB transcription factor:role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications [J]. La Clinica terapeutica, 2001,152(4):249-253.
    [103]Magnani M, Crinelli R, Bianchi M, et al. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB) [J]. Current drug targets,2000,1 (4):387-399.
    [104]Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging:NF-kappa B signaling is the molecular culprit of inflamm-aging [J]. Ageing Res Rev,2008,7(2):83-105.
    [105]Nathan C. Points of control in inflammation [J]. Nature,2002, 420(6917):846-852.
    [1]Tracey KJ, Cerami A. Tumor-Necrosis-Factor-a Pleiotropic Cytokine and Therapeutic Target [J]. Annual Review of Medicine,1994,45:491-503.
    [2]Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives [J]. Trends in Cell Biology,2001,11(9):372-377.
    [3]Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer [J]. Virchows Arch,2005,446(5):475-482.
    [4]Giuliani C, Napolitano G, Bucci I, et al. Nf-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications [J]. La Clinica terapeutica,2001, 152(4):249-253.
    [5]Magnani M, Crinelli R, Bianchi M, et al. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB) [J]. Current drug targets,2000,1 (4):387-399.
    [6]Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging:NF-kappa B signaling is the molecular culprit of inflamm-aging [J]. Ageing Res Rev,2008,7(2):83-105.
    [7]Aguilera C, Fernandez-Majada V, Ingles-Esteve J, et al. Efficient nuclear export of p65-Ⅰ kappa B alpha complexes requires 14-3-3 proteins [J]. Journal of Cell Science,2006,119(17):3695-3704.
    [8]Varfolomeev EE, Ashkenazi A. Tumor necrosis factor:An apoptosis JuNKie? [J]. Cell,2004,116(4):491-497.
    [9]Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling [J]. Cell Death and Differentiation,2003,10(1):45-65.
    [10]Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha NF-kappa B signal transduction pathway [J]. Nature Cell Biology,2004,6(2):97-105.
    [11]Choi EY, Orlova VV, Fagerholm SC, et al. Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins [J]. Blood,2008,111(7):3607-3614.
    [12]Tzivion G, Gupta VS, Kaplun L, et al.14-3-3 proteins as potential oncogenes [J]. Seminars in Cancer Biology,2006,16(3):203-213.
    [13]Winter S, Simboeck E, Fischle W, et al.14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation [J]. The EMBO journal,2008,27(1):88-99.
    [14]Zannis-Hadjopoulos M, Yahyaoui W, Callejo M.14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication [J]. Trends in biochemical sciences,2008,33(1):44-50.
    [15]Milton AH, Khaire N, Ingram L, et al.14-3-3 proteins integrate E2F activity with the DNA damage response [J]. The EMBO journal,2006, 25(5):1046-1057.
    [16]Usui T, Petrini JH. The Saccharomyces cerevisiae 14-3-3 proteins Bmhl and Bmh2 directly influence the DNA damage-dependent functions of Rad53 [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(8):2797-2802.
    [17]Lee JA, Park JE, Lee DH, et al. G(1) to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1 [J]. Oncogene,2008,27(9):1297-1305.
    [18]Porter GW, Khuri FR, Fu H. Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways [J]. Semin Cancer Biol,2006,16 (3):193-202.
    [19]Rubio MP, Geraghty KM, Wong BHC, et al.14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking [J]. Biochemical Journal,2004,379:395-408.
    [20]Jin J, Smith FD, Stark C, et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization [J]. Current Biology, 2004,14(16):1436-1450.
    [21]Meek SEM, Lane WS, Piwnica-Worms H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins [J]. Journal of Biological Chemistry,2004,279(31):32046-32054.
    [22]Satoh J, Nanri Y, Yamamura T. Rapid identification of 14-3-3-binding proteins by protein microarray analysis [J]. Journal of Neuroscience Methods,2006,152(1-2):278-288.
    [23]Angrand PO, Segura I, Volkel P, et al. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling [J]. Molecular & Cellular Proteomics, 2006,5(12):2211-2227.
    [24]Benzinger A, Muster N, Koch HB, et al. Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer [J]. Molecular & Cellular Proteomics,2005,4(6):785-795.
    [25]Pereira-Faca SR, Kuick R, Puravs E, et al. Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer [J]. Cancer research,2007,67(24):12000-12006.
    [26]Lv J, Zhu X, Dong K, et al. Reduced expression of 14-3-3 gamma in uterine leiomyoma as identified by proteomics [J]. Fertility and Sterility,2007, In Press, Corrected Proof:Epub ahead of print.
    [27]Bhawal UK, Tsukinoki K, Sasahira T, et al. Methylation and intratumoural heterogeneity of 14-3-3 sigma in oral cancer [J]. Oncology reports,2007,18(4):817-824.
    [28]Chen J, Lee CT, Errico SL, et al. Increases in expression of 14-3-3 eta and 14-3-3 zeta transcripts during neuroprotection induced by delta9-tetrahydrocannabinol in AF5 cells [J]. Journal of neuroscience research,2007,85(8):1724-1733.
    [29]Kilani RT, Maksymowych WP, Aitken A, et al. Detection of high levels of 2 specific isoforms of 14-3-3 proteins in synovial fluid from patients with joint inflammation [J]. The Journal of rheumatology,2007, 34(8):1650-1657.
    [30]Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family [J]. Journal of molecular evolution,1996,43(4):384-398.
    [31]Di Fede G, Giaccone G, Limido L, et al. The epsilon isoform of 14-3-3 protein is a component of the prion protein amyloid deposits of Gerstmann-Straussler-Scheinker disease [J]. Journal of Neuropathology and Experimental Neurology,2007,66(2):124-130.
    [32]Qi W, Liu X, Qiao D, et al. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues [J]. International journal of cancer, 2005,113(3):359-363.
    [33]Liou JY, Ghelani D, Yeh S, et al. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon [J]. Cancer research,2007,67(7):3185-3191.
    [34]Chuthapisith S, Layfield R, Kerr ID, et al. Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs [J]. International journal of oncology,2007, 30(6):1545-1551.
    [35]Seow TK, Ong SE, Liang R, et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry [J]. Electrophoresis,2000,21(9):1787-1813.
    [36]Lee SK, Park SO, Joe CO, et al. Interaction of HCV core protein with 14-3-3 epsilon protein releases Bax to activate apoptosis [J]. Biochemical and Biophysical Research Communications,2007, 352(3):756-762.
    [37]Chong SS, Tanigami A, Roschke AV, et al.14-3-3 epsilon has no homology to LIS1 and lies telomeric to it on chromosome 17p13.3 outside the Miller-Dieker syndrome chromosome region [J]. Genome Research,1996, 6(8):735-741.
    [38]Wang TY, Gu S, Ronni T, et al. In vivo dual-tagging proteomic approach in studying signaling pathways in immune response [J]. Journal of Proteome Research,2005,4(3):941-949.
    [39]Du YC, Gu S, Zhou JH, et al. The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca2+/calmodulin in the ionizing radiation-induced cell cycle arrest [J]. Molecular & Cellular Proteomics,2006,5(6):1033-1044.
    [40]Liang S, Yu Y, Yang P, et al. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(7):627-634.
    [41]Cantin GT, Venable JD, Cociorva D, et al. Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway [J]. Journal of Proteome Research,2006,5(1):127-134.
    [42]Mercurio F, Zhu HY, Murray BW, et al. IKK-1 and IKK-2: Cytokine-activated I kappa B kinases essential for NF-kappa B activation [J]. Science,1997,278(5339):860-866.
    [43]Shevchenko A, Tomas H, Havlis J, et al. In-gel digestion for mass spectrometric characterization of proteins and proteomes [J]. Nat Protoc, 2006,1(6):2856-2860.
    [44]Andrews NC, Faller DV. A RAPID MICROPREPARATION TECHNIQUE FOR EXTRACTION OF DNA-BINDING PROTEINS FROM LIMITING NUMBERS OF MAMMALIAN-CELLS [J]. Nucleic Acids Research,1991,19(9):2499-2499.
    [45]Dubois T, Rommel C, Howell S, et al.14-3-3 Is Phosphorylated by Casein Kinase I on Residue 233. PHOSPHORYLATION AT THIS SITE IN VIVO REGULATES.,Raf/14-3-3 INTERACTION [J]. J Biol Chem,1997, 272(46):28882-28888.
    [46]Spooncer E, Brouard N, Nilsson SK, et al. Developmental Fate Determination and Marker Discovery in Hematopoietic Stem Cell Biology Using Proteomic Fingerprinting [J]. Mol Cell Proteomics,2008, 7(3):573-581.
    [47]Dhar SK, Lynn BC, Daosukho C, et al. Identification of Nucleophosmin as an NF-{kappa} B Co-activator for the Induction of the Human SOD2 Gene [J]. J Biol Chem,2004,279(27):28209-28219.
    [48]Sun LJ, Deng L, Ea CK, et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes [J]. Molecular Cell,2004,14(3):289-301.
    [49]Matsuda A, Suzuki Y, Honda G, et al. Large-scale identification and characterization of human genes that activate NF-[kappa]B and MAPK signaling pathways [J]. Oncogene,22(21):3307-3318.
    [50]Prajapati S, Verma U, Yamamoto Y, et al. Protein Phosphatase 2C{beta} Association with the I{kappa} B Kinase Complex Is Involved in Regulating NF-{kappa} B Activity [J]. J Biol Chem,2004,279(3):1739-1746.
    [51]Chen GQ, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90 [J]. Molecular Cell,2002, 9(2):401-410.
    [52]Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK [J]. Oncogene,2007,26(22):3214-3226.
    [53]Takaesu G, Surabhi RM, Park KJ, et al. TAK1 is critical for I kappa B kinase-mediated activation of the NF-kappa B pathway [J]. Journal of Molecular Biology,2003,326(1):105-115.
    [54]Vidal S, Khush RS, Leulier F, et al. Mutations in the Drosophila dTAKl gene reveal a conserved function or MAPKKKs in the control of rel/NF-kappa B-dependent innate immune responses [J]. Genes & Development, 2001,15(15):1900-1912.
    [55]Shim JH, Xiao CC, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo [J]. Genes & Development,2005,19(22):2668-2681.
    [56]Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses [J]. Nature Immunology,2005, 6(11):1087-1095.
    [57]King CG, Kobayashi T, Cejas PJ, et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis [J]. Nature Medicine,2006,12(9):1088-1092.
    [58]Hanada M, Ninomiya-Tsuji J, Komaki K, et al. Regulation of the TAK1 signaling pathway by protein phosphatase 2C [J]. Journal of Biological Chemistry,2001,276(8):5753-5759.
    [59]Tamura S, Toriumi S, Saito J, et al. PP2C family members play key roles in regulation of cell survival and apoptosis [J]. Cancer Science, 2006,97(7):563-567.
    [60]Heideker J, Lis ET, Romesberg FE. Phosphatases, DNA damage checkpoints and checkpoint deactivation [J]. Cell Cycle,2007, 6(24):3058-3064.
    [61]Klumpp S, Thissen MC, Krieglstein J. Protein phosphatases types 2Calpha and 2Cbeta in apoptosis [J]. Biochemical Society transactions, 2006,34 (Pt 6):1370-1375.
    [62]Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling [J]. Trends in plant science,2004, 9(5):236-243.
    [63]Steinberg GR. Inflammation in obesity is the common link between defects in fatty acid metabolism and insulin resistance [J]. Cell Cycle, 2007,6(8):888-894.
    [64]Prajapati S, Verma U, Yamamoto Y, et al. Protein phosphatase 2C beta association with the I kappa B kinase complex is involved in regulating NF-kappa B activity [J]. Journal of Biological Chemistry,2004, 279(3):1739-1746.
    [65]Bao HM, Song PM, Liu QP, et al. Quantitative proteomic analysis of a paired human liver healthy versus carcinoma cell lines with the same genetic background to identify potential hepatocellular carcinoma markers [J]. Proteomics Clinical Applications,2009,3(6):705-719.
    [66]Aggarwal BB. Signalling pathways of the TNF superfamily:A double-edged sword [J]. Nature Reviews Immunology,2003,3(9):745-756.
    [67]Yoshida K, Yamaguchi T, Natsume T, et al. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage [J]. Nat Cell Biol,2005,7(3):278-285.
    [68]Van Der Hoeven PC, Van Der Wal JC, Ruurs P, et al.14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1:negative regulation by 14-3-3 phosphorylation [J]. Biochem J,2000,345 Pt 2:297-306.
    [69]Aitken A.14-3-3 proteins:a historic overview [J]. Semin Cancer Biol,2006,16(3):162-172.
    [70]Roberts MR.14-3-3 Proteins find new partners in plant cell signalling [J]. Trends in plant science,2003,8(5):218-223.
    [71]Shishodia S, Aggarwal BB. Nuclear factor-[kappa]B:a friend or a foe in cancer? [J]. Biochemical Pharmacology,2004,68(6):1071-1080.
    [72]Choo MK, Sakurai H, Koizumi K, et al. TAK1-mediated stress signaling pathways are essential for TNF-alpha-promoted pulmonary metastasis of murine colon cancer cells [J]. International journal of cancer,2006,118(11):2758-2764.
    [73]Jackson-Bernitsas DG, Ichikawa H, Takada Y, et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma [J]. Oncogene,2007,26(10):1385-1397.
    [74]Lammers T, Peschke P, Ehemann V, et al. Role of PP2Calpha in cell growth, in radio-and chemosensitivity, and in tumorigenicity [J]. Molecular cancer,2007,6:65.
    [75]Parfait B, Giovangrandi Y, Asheuer M, et al. Human TIP49b/RUVBL2 gene:genomic structure, expression pattern, physical link to the human CGB/LHB gene cluster on chromosome 19q13.3 [J]. Annales de genetique,2000, 43(2):69-74.
    [76]Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis [J]. Cell,2000, 102(4):463-473.
    [77]Shen XT, Mizuguchi G, Hamiche A, et al. A chromatin remodelling complex involved in transcription and DNA processing [J]. Nature,2000, 406(6795):541-544.
    [78]Kanemaki M, Kurokawa Y, Matsu-ura T, et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a [J]. Journal of Biological Chemistry,1999, 274(32):22437-22444.
    [79]Bauer A, Chauvet S, Huber O, et al. Pontin52 and Reptin52 function as antagonistic regulators of beta-catenin signalling activity [J]. Embo Journal,2000,19(22):6121-6130.
    [80]Cho SG, Bhoumik A, Broday L, et al. TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage [J]. Molecular and Cellular Biology,2001,21(24):8398-8413.
    [81]Wood MA, McMahon SB, Cole MD. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc [J]. Molecular Cell,2000,5(2):321-330.
    [82]Rousseau B, Menard L, Haurie V, et al. Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma [J]. Hepatology,2007,46:1108-1118.
    [83]Fitzgerald KA, McWhirter SM, Faia KL, et al. IKK epsilon and TBK1 are essential components of the IRF3 signaling pathway [J]. Nature Immunology,2003,4(5):491-496.
    [84]Pomerantz JL, Baltimore D. NF-kappa B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase [J]. Embo Journal,1999,18(23):6694-6704.
    [85]Ikeda F, Hecker CM, Rozenknop A, et al. Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes [J]. Embo Journal,2007,26(14):3451-3462.
    [86]Karin M. The beginning of the end:IkappaB kinase (IKK) and NF-kappaB activation [J]. The Journal of biological chemistry,1999, 274(39):27339-27342.
    [87]Tojima Y, Fujimoto A, Delhase M, et al. NAK is an IkappaB kinase-activating kinase [J]. Nature,2000,404(6779):778-782.
    [88]Westermarck J, Weiss C, Saffrich R, et al. The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription [J]. Embo Journal,2002,21(3):451-460.
    [89]Yang HS, Zhou JH, Ochs RL, et al. Down-regulation of RNA helicase II/Gu results in the depletion of 18 and 28 S rRNAs in Xenopus oocyte [J]. Journal of Biological Chemistry,2003,278(40):38847-38859.
    [90]Henning D, So RB, Jin RY, et al. Silencing of RNA helicase II/Gu alpha inhibits mammalian ribosomal RNA production [J]. Journal of Biological Chemistry,2003,278(52):52307-52314.
    [1]Nathan C. Points of control in inflammation [J]. Nature,2002, 420(6917):846-852.
    [2]Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives [J]. Trends in Cell Biology,2001,11(9):372-377.
    [3]Barnes PJ, Karin M. Nuclear factor-kappaB:a pivotal transcription factor in chronic inflammatory diseases [J]. N Engl J Med,1997, 336(15):1066-1071.
    [4]Baldwin AS, Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights [J]. Annu Rev Immunol,1996,14:649-683.
    [5]Nieuwdorp M, Stroes ES, Meijers JC, et al. Hypercoagulability in the metabolic syndrome [J]. Curr Opin Pharmacol,2005,5(2):155-159.
    [6]Karin M, Lawrence T, Nizet V. Innate immunity gone awry:linking microbial infections to chronic inflammation and cancer [J]. Cell,2006, 124(4):823-835.
    [7]Muppidi JR, Tschopp J, Siegel RM. Life And Death Decisions:Secondary Complexes and Lipid Rafts in TNF Receptor Family Signal Transduction [J]. Immunity,2004,21(4):461-465.
    [8]Muller G, Ayoub M, Storz P, et al. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid [J]. EMBO J,1995,14(9):1961-1969.
    [9]Li H, Lin X. Positive and negative signaling components involved in TNF[alpha]-induced NF-[kappa]B activation [J]. Cytokine,2008, 41(1):1-8.
    [10]Choi EY, Orlova VV, Fagerholm SC, et al. Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins [J]. Blood,2008,111(7):3607-3614.
    [11]Tzivion G, Gupta VS, Kaplun L, et al.14-3-3 proteins as potential oncogenes [J]. Seminars in Cancer Biology,2006,16(3):203-213.
    [12]Winter S, Simboeck E, Fischle W, et al.14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation [J]. The EMBO journal,2008,27(1):88-99.
    [13]Zannis-Hadjopoulos M, Yahyaoui W, Callejo M.14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication [J]. Trends in biochemical sciences,2008,33(1):44-50.
    [14]Milton AH, Khaire N, Ingram L, et al.14-3-3 proteins integrate E2F activity with the DNA damage response [J]. The EMBO journal,2006, 25(5):1046-1057.
    [15]Usui T, Petrini JH. The Saccharomyces cerevisiae 14-3-3 proteins Bmhl and Bmh2 directly influence the DNA damage-dependent functions of Rad53 [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(8):2797-2802.
    [16]Lee JA, Park JE, Lee DH, et al. G(1) to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1 [J]. Oncogene,2008,27(9):1297-1305.
    [17]Porter GW, Khuri FR, Fu H. Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways [J]. Semin Cancer Biol,2006,16(3):193-202.
    [18]Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family [J]. Journal of molecular evolution,1996,43(4):384-398.
    [19]Qi W, Liu X, Qiao D, et al. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues [J]. International journal of cancer, 2005,113(3):359-363.
    [20]Liou JY, Ghelani D, Yeh S, et al. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon [J]. Cancer research,2007,67(7):3185-3191.
    [21]Chuthapisith S, Layfield R, Kerr ID, et al. Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs [J]. International journal of oncology,2007, 30(6):1545-1551.
    [22]Seow TK, Ong SE, Liang R, et al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry [J]. Electrophoresis,2000,21(9):1787-1813.
    [23]Pan C, Gnad F, Olsen JV, et al. Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors [J]. Proteomics,2008,8(21):4534-4546.
    [24]Liang S, Yu Y, Yang P, et al. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(7):627-634.
    [25]Cox J, Matic I, Hilger M, et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics [J]. Nat Protoc,2009,4(5):698-705.
    [26]Ong SE, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC) [J]. Nat Protoc,2006,1(6):2650-2660.
    [27]Hayden MS, Ghosh S. Signaling to NF-kappaB [J]. Genes Dev,2004, 18(18):2195-2224.
    [28]Fernandes-Alnemri T, Armstrong RC, Krebs J, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains [J]. Proceedings of the National Academy of Sciences of the United States of America,1996, 93(15):7464-7469.
    [29]King D, Pringle JH, Hutchinson M, et al. Processing/activation of caspases,-3 and -7 and -8 but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells [J]. Leukemia,1998, 12(10):1553-1560.
    [30]Wang TY, Gu S, Ronni T, et al. In vivo dual-tagging proteomic approach in studying signaling pathways in immune response [J]. Journal of Proteome Research,2005,4(3):941-949.
    [31]Du YC, Gu S, Zhou JH, et al. The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca2+/calmodulin in the ionizing radiation-induced cell cycle arrest [J]. Molecular & Cellular Proteomics,2006,5(6):1033-1044.
    [32]Spooncer E, Brouard N, Nilsson SK, et al. Developmental Fate Determination and Marker Discovery in Hematopoietic Stem Cell Biology Using Proteomic Fingerprinting [J]. Mol Cell Proteomics,2008, 7(3):573-581.
    [33]Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns [J]. Proc Natl Acad Sci U S A,1998,95(25):14863-14868.
    [34]de la Cruz J, Kressler D, Linder P. Unwinding RNA in Saccharomyces cerevisiae:DEAD-box proteins and related families [J]. Trends Biochem Sci,1999,24(5):192-198.
    [35]Aubourg S, Kreis M, Lecharny A. The DEAD box RNA helicase family in Arabidopsis thaliana [J]. Nucleic Acids Res,1999,27(2):628-636.
    [36]Dreyfuss G, Swanson MS, Pinol-Roma S. Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation [J]. Trends Biochem Sci,1988,13(3):86-91.
    [37]Chambers JC, Kenan D, Martin BJ, et al. Genomic structure and amino acid sequence domains of the human La autoantigen [J]. J Biol Chem,1988, 263(34):18043-18051.
    [38]Sachs AB, Davis RW, Kornberg RD. A single domain of yeast poly (A)-binding protein is necessary and sufficient for RNA binding and cell viability [J]. Mol Cell Biol,1987,7(9):3268-3276.
    [39]Bandziulis RJ, Swanson MS, Dreyfuss G. RNA-binding proteins as developmental regulators [J]. Genes Dev,1989,3(4):431-437.
    [40]Query CC, Bentley RC, Keene JD. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K Ul snRNP protein [J]. Cell,1989,57(1):89-101.
    [41]Neuwald AF, Aravind L, Spouge JL, et al. AAA+:A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes [J]. Genome Res,1999,9(1):27-43.
    [42]Kedzierska S. [Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins] [J]. Postepy Biochem,2006, 52(3):330-338.
    [43]Neer EJ, Schmidt CJ, Nambudripad R, et al. The ancient regulatory-protein family of WD-repeat proteins [J]. Nature,1994, 371(6495):297-300.
    [44]Manning G, Plowman GD, Hunter T, et al. Evolution of protein kinase signaling from yeast to man [J]. Trends Biochem Sci,2002,27(10):514-520.
    [1]Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol, 1999,17(10):994-999.
    [2]Yao X, Freas A, Ramirez J, et al. Proteolytic 180 labeling for comparative proteomics:model studies with two serotypes of adenovirus [J]. Anal Chem,2001,73(13):2836-2842.
    [3]Sakai J, Kojima S, Yanagi K, et al.180-labeling quantitative proteomics using an ion trap mass spectrometer [J]. Proteomics,2005, 5(1):16-23.
    [4]Ong S-E, Blagoev B, Kratchmarova I, et al. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics [J]. Molecular & Cellular Proteomics,2002, 1(5):376-386.
    [5]Zhu H, Pan S, Gu S, et al. Amino acid residue specific stable isotope labeling for quantitative proteomics [J]. Rapid Communications in Mass Spectrometry,2002,16(22):2115-2123.
    [6]Mann M. Functional and quantitative proteomics using SILAC [J]. Nat Rev Mol Cell Biol,2006,7(12):952-958.
    [7]Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents [J]. Mol Cell Proteomics,2004,3(12):1154-1169.
    [8]Wiese S, Reidegeld KA, Meyer HE, et al. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research [J]. Proteomics,2007,7(3):340-350.
    [9]Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies [J]. J Exp Bot,2006, 57(7):1501-1508.
    [10]Choe L, D' Ascenzo M, Relkin NR, et al.8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease [J]. Proteomics,2007,7(20):3651-3660.
    [11]Choe LH, Aggarwal K, Franck Z, et al. A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells [J]. Electrophoresis,2005,26(12):2437-2449.
    [12]Choe L, D' Ascenzo M, Relkin NR, et al.8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease [J]. Proteomics,2007,7(20):3651-3660.
    [13]Liang S, Yu Y, Yang P, et al. Analysis of the protein complex associated with 14-3-3 epsilon by a deuterated-leucine labeling quantitative proteomics strategy [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(7):627-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700