矮牵牛PMADS9基因的启动子克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MADS-box基因是一类广泛存在于植物中的同源异型基因,在生物体不同的组织以及生长发育的不同阶段都存在MADS-box基因的表达,它属于一个古老的基因家族,是植物生长发育过程中重要的调控因子。目前对MADS-box基因调控机理的研究已成为植物分子生物学领域中的一大热点。矮牵牛PMADS9基因是MADS-box基因AGL15亚家族的成员,该亚家族基因可能具有调控开花时间、抑制花器官衰老脱落和促进体胚形成等功能。
     通过RACR技术和YADE法,我们分别从矮牵牛小花蕾RNA和叶片DNA基因组中克隆得到了PMADS9基因的编码区(GenBank登录号:DQ418547)和5'端翻译起始位点(ATG)上游1053bp的启动子序列(GenBank登录号:FJ798977)。然后在两端设计引物,利用PCR技术从基因组DNA中扩增得到了全长基因序列共5861bp(GenBank登录号为EU338501)。RACE分析发现该基因至少有4个转录起始位点(TSS),2个位于编码区第一外显子内。
     本研究,继续克隆了PMADS9基因上游未知的启动子区域,获得了更长的800bp序列,并对该启动子的功能进行了初步地研究,这对于进一步了解PMADS9基因表达调控的特点,以及更深入研究矮牵牛花器官发育的分子机理都有着重要的意义。
     本文所取得的主要实验结论如下:
     1.在已获1053bp启动子序列的基础上,利用hiTAIL-PCR技术对矮牵牛PMADS9基因上游未知启动子序列进行了再扩增,获得了更长的800bp启动子片段,用SeqMan软件对新获取的序列与原有1053bp序列进行了拼接,最终获得了PMADS9基因全长启动子序列1853bp。
     2.运用PLACE和PlantCare等在线分析软件对该序列进行了预测分析,该启动子除了具有TATA-box和CAAT-box等基本转录元件外,还富含花粉和种子发育过程中特异表达所需的调控元件,以及与环境应答相关的各种顺式调控元件。FootPrinter分析表明,AGL15同源基因启动子之间存在非常保守的RY-repeat元件,启动子的保守性与物种的遗传距离不一致;推测PMADS9基因翻译起始位点(ATG)上游200~400bp和800~1000bp区域具有重要的功能。
     3.应用PCR技术对启动子序列进行5'缺失;用各缺失片段替换表达载体pCAMBIA1305.1中的CaMV35S组成型启动子序列,与GUS报告基因连接,成功构建了所有缺失重组表达载pCAMBIA1305.1空载为阳性对照,转化矮牵牛V1。GUS染色与PCR鉴定表明,成功实现了各表达载体对矮牵牛的稳定遗传转化,获得了阳性转基因植株。
     4.待移栽后的转基因植株开花后,对其进行GUS组织化学染色分析,结果表明全长启动子序列(1853bp)转化后的阳性植株,在茎、营养叶、苞叶以及花萼中几乎检测不到GUS活性;GUS基因在雄蕊、雌蕊、子房中有较高的表达丰度,在花瓣中也有一定丰度的表达,这与之前PMADS9基因表达分析的结果基本一致。在转基因植株内,各缺失表达载体的表达模式无明显差异,最短的启动子缺失片段(298bp)就能启动报告基因在转基因植物体内表达,说明其已具备启动子所需的各种基本调控元件。
MADS-box genes are a class of homeotic genes widely distributed in plants and the expression of MADS-box genes are discoveried in different tissues, organisms, stages of growth and development.They belong to an ancient gene family and are a kind of important regulatory factors during the growth and development of plant. At present,the research of MADS-box genes regulatory mechanism has become a hot topic in the field of plant molecular biology. PMADS9 gene of Petunia is a member of AGL15 subfamily which might regulate flowering time, inhibit floral organ senescence,and promote the formation of somatic embryos.
     By RACE technology and YADE method,we had cloned coding region of PMADS9(GenBank accession number:DQ418547) from RNA Petunia flower buds and obtained 1053bp promoter sequence (GenBank accession number:FJ798977) upstream the 5'translation start site(ATG) from DNA of leaves. Then designing primers at both ends of the sequence and using PCR method, we got the full-length sequences of PMADS9 gene,5861bp (GenBank accession number EU338501). RACE analysis revealed that the gene has at least four transcription start sites(TSS),two of which located within the first exon of the coding region.
     In this study,we continued to amplify the upstream unknown promoter region of PMADS9 gene,and obtained a longer 800bp sequence.The preliminary studies of the promoter functions are great significant for understanding the characteristics of expression regulation of PMADS9 gene,as well as more in-depth studying the molecular mechanisms of floral organ development. In this paper,the main experimental results are as follows:
     1.On this basis of 1053bp promoter sequence,we used hiTAIL-PCR technology to amplify the unstream unknown promoter sequence and obtained a longer 800bp fragment.Through the comparion and splice of the new sequence and the original 1053bp by SeqMan software, we ultimately acquired the 1853bp promoter sequence of PMADS9 gene.
     2.Cis-regulatory elements of the PMADS9 promoter sequence predicted by PLACE and PlantCARE online analysis software are related with seed and pollen development and environmental response.Analysis of promoter sequences from AGL15-clade MADS-box genes by FootPrinter,showed that very conserved RY-repeat motifs were exist amony them,and the conversation of promoters between So lanaceae and the selected 5 species of Rosids is higher than that between Brassicaceae and the same selected species even though So lanaceae is less closely related to Rosids than Brassicaceae.Furthermore,the results also suggested that regions of 200~400bp and 800~1000bp upstream of the ATG were functionally important.
     3.According to the cis-regulatory elements locations on the promoter,we designed different primers and used PCR method to obtain the 5'end deletion fragments of PMADS9 promoter.New restructuring expression vectors were constructed by replacing the CaMV35S promoter of pCAMBIA1305.1 with the 6 deletion fragments respectively to drive the expression of the reporter gene GUSpus..The new vector was transferred into Agrobacterium to infect leaf disks of Petunia.The results of GUS staining and PCR identification indicated that the 6 promoter fragments were successfully transferred into the receptor plants.
     4.After transgenic plants flowering,the analysis results of GUS histochemical staining showed that the full-length promoter sequence(1853bp) can start GUS gene high express in stamens,pistils and ovarys.On the contrary,GUS activity was not detected in the stems,leaves,bracts and calyxes.This is consistent with the previous results of PMADS9 gene expression analysis.Among the different deletion fragments,there no significant difference in expression patterns.The shortest deletion promoter fragment(298bp) was able to start the GUS reporter gene expression in transgenic plants,indicating that it contained a variety of basic regulatory elements required for promoter.
引文
[1]高晶涵,李清昀.控制植物花器官发育的分子机理[J].生物学通报,2008,43(2):19-21.
    [2]刘坚.水稻花器官发育基因的研究进展[J].中国稻米,2007(3):8-9.
    [3]Coenes, Meyerowitz EM.The war of the whorls:genetic interactions controlling flower development[J].Naure,1991,353 (6339):31-37.
    [4]许智宏.植物发育与生殖的研究:进展和展望[J].植物学报,1999,41(9):909-930.
    [5]Theisseng,Saedler H.Floral quartets[J].Nature,2001,409 (6819):469-471.
    [6]丛楠.控制花器官发育的ABCDE模型[J].农业生物技术科学,2007,7(23):124-128.
    [7]Angenent G C,Franken J,Busscher M,et al.A novel class of MADS-box genes is involved in ovule development in petunia[J].Plant Cell,1995,7 (10):1569-1582.
    [8]Colomeo L,Franken J,Koetje E,et al.The Petunia MADS-box gene FBP11 determines ovule identity[J].Plant Cell,1995 (7):1859-1868.
    [9]Pelaz S,Ditta G S, Baumann E,et al.B and C floral organidentity functions require SEPALLATA MADS-box genes [J].Nature,2000,405 (6783):200-203.
    [10]张剑,徐桂霞,薛皓月,等.植物进化发育生物学的形成与研究进展[J].植物学通报,2007,24(1):1-30.
    [11]Theisseng,Saedler H.Flora lquartets[J].Nature,2001,409 (6819):469-471.
    [12]Theisseng. Development of floral organ identity:stories from theMADS house[J].Current Opinion in Plant Biology,2001 (4):75-85.
    [13]郭余龙.矮牵牛MADS-box基因.园艺学报,2008,35(6):917-925
    [14]Passmore S., Maine G.T., Elble R., Christ C., Tye B.K. (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT a cells. J. Mol. Biol.204,593-606
    [15]Yanofsky M.F., Ma H., Bowman J.L., Drews G.N., Feldmann K.A. and Meyerowitz E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 3539.
    [16]Sommer H., Beltran J.P., Huijser P., Pape H., Lonnig W.E., Saedler H., Schwarz- Sommer Z. (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors. EMBO J.9,605-613.
    [17]Norman C. et al. (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-Fos serum response element. Cell 55,989-1003.
    [18]Theissen G,Kim JT, Salder H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box subfamilies in the morphological evolution of eukaryotes.J Mol Evol,1996,43:484-516
    [19]Causier B,Castillo R,Zhou J,et al. Evolution in action:following function in duplicated floral homeotic genes[J].Curr Biol,2005,15(16):1508-1512.
    [20]Irish V F,Litt A.Flower development and evolution:gene duplication,diversification and redeployment[J]. Curr Opin Genet Dev,2005,15(4).454-460.
    [21]Nam J,Kim J,Lee S,et al.Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS—box genes in angiosperms[J].Proc Nat Acad Sci USA,2004,101 (7):1910-1915.
    [22]Pareicova L,Defolter S,Kieffer M,et al.Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J].Plant Cell,2003,15(7):1538-1551.
    [23]Hileman L C,Sundstrom J F,Litt A,et al.Molecular and phylogenetic analyses of the MADS -box gene family in tomato[J].Mol Biol Evol,2006,23(11):2245-2258.
    [24]Alvarez-Buylla E R,Peiaz S,Liljegren S J,et al.An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J].Proc Natl Acad Sci USA,2000,97(10):5328-5333.
    [25]Becker A,Saedler H,Theissen G.Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon [J].Dev Genes Evol,2003.213 (11):567-572.
    [26]Ma H,Yanofsky M F,Meyerowitz E M.AGL1-AGL6.an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes[J].Genes Dev,1991,5 (3):484-495.
    [27]蔡小钿,王金发.植物MADS-box基因的功能和调节机理[J].植物生理学通讯,2000,36(3):277-281
    [28]Yang Y, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins[J].Plant Molecular Biology,2004,55,45-59.
    [29]Alvarez-Buylla ER, Garcia-Ponce B, Garay-Arroyo A.Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes[J].Journal of Experimental Botany,2006,57 (12):3099-3107
    [30]Purugganan M D, Rousley S D, Schmidt R J. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family[J]. Genet,1995.140:345
    [31]Riechman JL. Wang M, Meyerowitz EM. DNA binding properties of Arabidopsis MADS homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J].Nucleic Acids Res,1996,24 (16):3134-314
    [32]Krizek BA, Meyerowitz EM.Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J]. Proceedings of the National Academy of Sciences,1996a,93,4063-4070.
    [33]Fan HY, Hu Y, Tudor M, Ma H. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins[J]. The Plant Journal,1997,12,999-1010.
    [34]Kaufmann K, Melzer R, Theissen G. MIKC-type MADS domain proteins:structural modularity, protein interactions and network evolution in land plants[J]. Gene,2005,347,183-198
    [35]Egea-Cortines M,Saedler H,Sommer H.Ternary complex for mation between the MADS-box proteins SQUAMOSA,DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus[J].Embo J,1999,18(19):5370-5379.
    [36]Honma T,Goto K.Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J].Nature,2001,409(6819):525-529.
    [37]Kang S G,Hannapel D J,Suh S G.Potato MADS-box gene POTM11 transcripts are temporally and spatially distributed in floral organs and vegetative meristems[J].Mol Cells,2003,15(1):48-54.
    [38]Kramer EM,Jaramillo MA,Dtilio V.Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms [J].Genetics, 2004,166(2):1011-1023
    [39]路静,赵华燕,何奕昆,宋艳茹.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862
    [40]朱玉贤,李毅.现代分子生物学(第三版).北京:高等教育出版社,2007
    [41]Joshi C P.An inspection of the domain between putative TATA box and translation start site in 79 plant genes[J].Nucleic Acids Reseach,1987,15(16).6643-6665
    [42]张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展[J].遗传学报,2004,31(12):1455-1464
    [43]李一醌,王金发.高等植物启动子研究进展[J].植物学通报,1998,15(增刊):1-6
    [44]Wu C Y,Haruhiko W,Yasuyukio.Quantitative nature of the prolamin-box,ACGT and AACA motifs in a rice glutelin gene promoter:minimal cis-element requirements for endosperm-specific gene expression[J].Plant J,2000,23:415-421
    [45]李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展[J].生物技术通讯,2006,17:658-661
    [46]王关林,方宏筠.植物基因工程原理与技术,北京:科学出版社,2002
    [47]王颖,麦维军,梁承邺,张明永.高等植物启动子的研究进展[J].西北植物学报,2003,23:2040-2048
    [48]Kumpatla SP,Chandrasekharan MB,Lyer LM,Guofu L,Hall TC.Genome intruder scanning and modulation systems and transgene silencing[J].Trends Plant Sci,1998,3:97-104
    [49]Kyozuka J,McElroy D,Hayakawa T,Xie Y,Wu R,Shimamoto K.Light-regulated and cell-specific expression of tomato rbcS-gusA and rice rbcS-gusA fusion genes in transgenic rice[J].Plant Physiol,1993,102:991-1000
    [50]毛自朝,于秋菊,甄伟,郭俊毅,胡鸯雷.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报,2002,47:444-448
    [51]Keller B,Baumgartner C.Vascular-specific expression of the bean GRP1.8gene is negatively regulated[J].Plant Cell,1991,3:1051-1061
    [52]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径[J].中国生物工程杂志,2003,23:1-4
    [53]Datla R,Anderson JW, Selvaraj G. Plant promoters for gansgene expression[J]. Biotechnology Annual Review.1997,3:269-296.
    [54]聂丽娜,夏兰琴,徐兆师等.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报,2008,9(3):385-391.
    [55]Rachael L N,et al[J].Nature,1979,277:324-325.
    [56]Donna M W,et al[J].J Bacterol,1981,146:1162-1165.
    [57]Fordor I,er al[J].Mol Biol,1990,24:1411-1418.
    [58]李姗姗,迟彦,李凌飞等.启动子克隆方法研究进展[J],中国生物工程杂志,2005,25(7):9-1.
    [59]Moore D,Wu J P, Hamilton C M,Ippen-Ihler K.Analysis of transfer genes and gene products within the traB-trac region of the Escherichia coli fertility factor F[J].JBacteriol,1987,169:3994-4002.
    [60]Vida T A,Crabam T R,Emr S D.In vitro reconstitution of intercompartmental protein transport to the yeast vacuole[J].J Cell Biol,1990,111:2871-2874.
    [61]Friedrich G,Soriano P.Promoter traps in embryonic stem cells:a genetic screen to identify and mutate development genes in rice[J].Genes Dev,1991,5:1513-1523.
    [62]Lindsey K,Wei W,Clarke M C,McArdle H F,Rooke L M,Topping J F.Tagging genomic sequences that direct transgenic expression by activation of a promoter trap in plants[J].Transgenic Res,1993,2:33-47.
    [63]周文林,曹广力,薛仁宇等.家蚕丝素蛋白轻链基因(fib-L)启动子序列的克隆及其活性分析[J].昆虫学报,2007,50(6):547-554.
    [64]Triglia T,Peterson M G,Kemp D.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequence[J].Nucleic Acids Research,1988,16(16):8186.
    [65]李竹红,刘德培,梁植权.改进的反向技术克隆转移基因的旁侧序列[J].生物化学与生物物理进展,1999,26(6):600-602.
    [66]Kim MJ, Kim H, Shin J S, et al. Seed-specific expression of sesame microsemal oleie acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron[J].Mecular Genetics and Gcnomics,2006.276:351-368.
    [67]孙晓红,陈明杰,潘迎捷.启动子克隆概述[J].食用菌学报,2002,9(3):57-62.
    [68]Xiao Yue-Hua,Peng Yi,Luo Ming,Li De-Mou,Hou Lei,Pei Yan. Sequential Amplification of Flanking Sequences by Y-shaped Adaptor Dependent Extension Using Multiple Templates[J]. Journal of Plant Physiology and Molecular Biology,2007,33(1):85-90.
    [69]肖月华,罗明,方卫国,罗克明,侯磊,罗小英,裴炎.利用YADE法进行棉花基因组PCR步行[J],遗传学报,2002,29(1):62-66.
    [70]Prarshar Y, Weissman SM. Analysis of differential gene expression by display of 3'end restriction fragments of cDNAs[J]. Proc Natl Acad Sci USA,1996,93:659-663.
    [71]方卫国,张永军,马金成.用YADE法克隆球孢白僵菌类枯草杆菌蛋白酶基因CDEP-J的启动子及启动子序列分析[J].菌物系统,2003,22(2):252-258.
    [72]闫明旭.矮牵牛PMADS9基因启动子的克隆及功能分析.In.西南大学,重庆,2009PP13-28.
    [73]Liu Y-G,and Whittier RF. Thermal asymmetric interlaced PCR:Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics 1995,25:674-681.
    [74]Liu Y-G,Mitsukawa N, Vazquez-Tello A, Whittier RF. Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking[J]. Plant J.1995 7:351-358.
    [75]刘召华,郭洪年,郑光宇,田颖川.ACA基因启动子的克隆及功能初探[J].生物工程学报,2005,21:139-143
    [76]陈军营,孙佩,王德勤等.一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术[J].植物生理学通讯.2007,43(4):754-758
    [77]Zhang Q, Liu H Z, Cao J S. Identification and preliminary analysis of a new PCP promoter from Brassica rapa ssp. Chinansis [J]. Mol Biol Rep,2007,10:1107-1114
    [78]Terauchi R,Kahl G.Rapid isolation of promoter sequences by TAIL-PCR:the 5'-flanking regions of Pal and Pgi genes from yams(Dioscorea)[J].Molecular and General Genetics,2000,263:554-560.
    [79]Wu S,Yu Z,Wang F,Li W,Ye C,Li J,Tang J,Ding J,Zhao J,Wang B. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene(ZmPEAMT1)in maize (Zea mays L.)[J] Mol Biotechnol,2007,36:102-112.
    [80]Yao-Guang Liu and Yuanling Chen.High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J].BioTechniques Vol.43, No.5:pp 649-656 (Nov 2007)
    [81]常小丽.百合查尔酮合成酶基因花特异启动子的功能分析.In.西北农林科技大学,2008,P10
    [82]郜金荣,叶林柏.分子生物学[M].武汉:武汉大学出版社,2007.
    [83]马守东,洪源,成军.酵母单杂交技术的原理及应用[J].世界华人消化杂志,2003,11(4):450-451.
    [84]]夏江东,程在全,吴渝生等.高等植物启动子功能和结构研究进展[J].云南农业大学学报:自然科学版,2006,21(1):7-14.
    [85]Vandenbussche M, Zethof J, Souer E, Koes R, Giovanni B, Tornielli, Pezzotti M, Ferrario S, Angenent GC, and Gerats T. Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches:B, C, and D Floral Organ Identity Functions Require.SEPALLATA Like MADS Box Genes in Petunia[J].Plant Cell,2003,15:2680-2693.
    [86]Adamczyk B J, Lehti-Shiu M D, Fernandez D E.The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis[J]. Plant J,2007,50:1007-1019
    [87]Heck GR, Perry SE, Nichols KW, Fernandez DE. AGL15, a MADS domain protein expressed in developing embryos[J]. Plant cell,1995,7:1271-1282
    [88]Rounsley SD, D itta GS, and Yanofsky ME.Diverse roles for MADS box genes in Arabidopsis development[J]. Plant Cell,1995,7:1259-1269
    [89]Flanagan CA, Ma H.Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers[J]. Plant Mol. Biol.1994,26,581-595.
    [90]Fernandez DE, Heck GR, Perry SE,Patterson SE, Bleecker AB, Fang SC.The embryo MADS domain fator AGL15 acts postembryonically:inhibition of perianth senescence and abscission via constitutive expression[J]. Plant cell,2000,12:183-197
    [91]Fang SC, and Fernandez DE.Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit matuuration[J]. Plant Physiology,2002,130:78-89.
    [92]陈璟,李名扬,闫明旭,郭余龙.矮牵牛PMADS9基因的结构特征和mRNA的表达分析[J].园艺学报,2011,38(1):108-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700