黄河鲤性别特异片段的鉴定与性腺差异cDNA文库的构建及相关ESTS功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以黄河鲤为实验材料,选择220条10bp的随机引物、10对SSR引物及100条ISSR引物,利用RAPD-PCR、SSR-PCR及ISSR-PCR三种分子标记技术对黄河鲤基因组进行扫描,试图发现一些与黄河鲤性别相关的连锁标记。SSR结果显示,虽然在对其DNA池进行扫描的过程中,在1对引物的扩增谱带上发现了1条可能与性别连锁的疑似条带,但当利用这对引物在更多的个体中验证时,没有发现其性别特异性;而ISSR结果表明,在所有筛选出来的10条引物的扩增谱带上,未发现与性别连锁的疑似条带。
     利用RAPD技术对黄河鲤雌、雄基因池进行扫描的结果表明,其中的5条随机引物的扩增谱带中有疑似性别特异条带的存在,利用这5条随机引物在个体中进行反复验证,只有随机引物S2107的扩增产物中存在一条稳定的雄性特异条带。经回收、克隆、测序后获得了一条大小为909bp的候选雄性特异条带,命名为Ccmf1。BLAST检索发现该片段与位于斑马鱼连锁群1的一段重复序列(DKEY-24 H 22)有一定的相似性。
     此外,本研究还利用抑制性消减杂交技术,成功构建了黄河鲤鱼基因组DNA的消减文库,随机挑选150个克隆经巢式引物PCR验证后,获得88个阳性克隆,以正、反向二次PCR产物为探针,与88个阳性克隆质粒DNA进行Southern dot blotting杂交,从中挑选了22个候选性别特异阳性克隆进行序列测定,经特异引物的PCR验证后,获得了两个长度分别为387bp和183bp雄性特异的DNA片段,BLASTN和BLASTX检索未发现与其同源的核苷酸和氨基酸序列,将其命名为Ccmf2和Ccmf3。
     根据3个雄性特异片段的序列分别设计特异引物,以管家基因GAPDH为内部对照,雌雄个体基因组为模板进行特异PCR扩增。结果表明,在所有的雄性个体中均扩增出了稳定的目的特异性条带,而雌性个体中没有该条带的出现。由于分离到的三个片段都与雄性性别连锁,所以推测黄河鲤的染色体类型应该为XX/XY型。
     为了进一步了解三个片段的性别特异性,利用特异PCR技术对100个黄河鲤的雌、雄基因组进行了验证,结果发现,Ccmf1和Ccmf2的性别特异性分别为99%和98%;Ccmf3的性别特异性达到了100%,故3个雄性特异片段在两染色体(性染色体和常染色体)间的重组值都很低,可以用于黄河鲤的遗传性别的鉴别。
     分别以Ccmf1、Ccmf2和Ccmf3为探针,与鲤鱼的其他三个品种:野生黄河鲤、建鲤以及丰鲤的基因组进行斑点印迹杂交(雌、雄各5尾),以期判断这3个性别特异片段的分子性别有效性(即雌雄鉴别的效率)。结果发现,在雌性个体中,Ccmf1、Ccmf2和Ccmf3的分子性别有效性分别为67%,80%和93%;而在雄性个体中,其分子性别有效性分别为67%,100%,和73%。充分说明在鲤鱼不同种间性染色体的分子类型的多样性。3个雄性连锁标记的发现与鉴定,能够作为鉴别黄河鲤遗传性别以及识别该鱼种性染色体的分子切入点,从而为探讨该物种性别决定及分化机制提供依据。
     为了更加全面的了解黄河鲤性腺发育机制,本研究还从mRNA水平上,分别以精巢与卵巢互为验证方,成功构建了黄河鲤成熟期雌、雄性腺的双向差减文库,经菌液PCR对文库进行初步筛选,分别获得了280个(来自雄性文库)和240个(来自雌性文库)含有插入片段的阳性克隆;然后利用Southern dot bltting对随机挑选的180个克隆(雌、雄各90个)在正、反杂交膜上进行了鉴定,从中找到了64个(其中来自雄性文库21个,雌性文库43个)候选差异表达克隆,经序列测定后,通过BLASTN和BLASTX对这些候选差异基因片段进行功能分类,得到了50个ESTS序列。其中雄性文库的18个差异ESTS中,包括14个已知功能的和4个未知功能的基因片段。按照其功能,14个ESTS分属于结构蛋白基因、蛋白质翻译机制相关基因、离子通道和蛋白转运基因、肿瘤相关和肿瘤抑制因子及其他基因等;而来自雌性文库的32个差异ESTS代表了27个已知功能基因和5个未知功能的基因,在已知功能基因中,出现频率较高的是来自呼吸链上的相关基因片段,以及与蛋白合成有关的基因片段;除一些未知功能蛋白外,其他的则出现了1次。参照斑马鱼及其他脊椎动物基因功能分析,雌性文库中已知功能EST分属调节因子、结构蛋白、酶类、转录因子、信号调控等。
     根据部分同源基因在黄河鲤精、卵巢中的半定量表达情况,在雄性差异文库中找到10个差异表达基因片段:5个为精巢特异表达基因;5个为精巢高效表达基因;其中包括2个首次发现的未知功能基因。在雌性差异文库中找到8个差异表达基因片段:2个为卵巢特异表达基因;6个为卵巢高效表达基因,其中包括1个未知功能基因。
     根据各基因片段的性质及编码功能,选择了可能参与性腺发育的3个基因片段,利用RACE技术对其全长进行了扩增,分别获得了大小为2173bp、1763bp以及884bp的全长基因,他们分别是Hmwt1a基因、HmSetd6基因以及HmPsmb2基因。最后,通过在成体不同组织的半定量和荧光定量表达模式分析,发现这3个基因均为性腺差异表达基因,其中Hmwt1a基因主要在精巢中表达,HmSetd6基因则主要在卵巢中表达,且表达量远远高于精巢,而HmPsmb2基因则是卵巢特异表达基因;通过与脊椎动物性腺发育相关基因功能的对比,推测Hmwt1a基因可能是黄河鲤雄性性别发育的重要调控基因;Hmsetd6基因则作为表观调控基因参与了黄河鲤雌性性状的发育;而HmPsmb2基因是在生理上或行为上维持黄河鲤雌性性别性别偏向基因;这些基因的发现及相关性腺差异表达EST文库的构建,将对了解黄河鲤性腺发育及性别分化的分子机制奠定基础,同时为黄河鲤性别控制机制的研究提供丰富的基因鉴定资源。
In this study, we identified a sex-specific DNA marker using randomly amplified polymorphic DNA (RAPD) fingerprinting, simple sequence repeat(SSR) and inter-simple sequence repeat (ISSR) in Yellow River carps (C. carpio from the Yellow River). Two hundred twenty random primers for RAPD fingerprinting, ten primes for SSR and one hundred primes for ISSR were used in pooled DNA samples and individual DNA samples from male and female fish. The results of SSR-PCR showed one candidate band which were different between male and female pools, however, no sex-specific band was found when was tested repeatedly in male and female individuals by dot boltting hybridization. The results of ISSR-PCR showed as SSR, no sex-linked suspected bands were found among all the amplification bands with 10 primers selected.
     In RAPD-PCR, Five candidate bands, which were different between male and female, were tested five times repeatedly in male and female individuals to verify their stability. Ultimately we found that one of the primers, S2107 (CACCATCGTG), produced a stable sex-specific band in the DNA fingerprints of all males tested, but not females. DNA sequencing revealed that this 909 bp long DNA fragment has a low similarity to a repetitive sequence in zebrafish, which was named as Ccmf1. The BLAST search revealed that the sequence of the sex-specific fragment in Yellow River C.carpio had a low similarity to a repetitive sequence (DKEY-24 H 22) located in linkage group 1 of zebrafish.
     Furthermore, a sex subtractive genomic DNA library was successfully constructed using suppression subtractive hybridization (SSH) between male and female Cyprinus carpio. To eliminate the false positives from self-ligations, we screened 150 clones from the sex subtractive genomic DNA library by PCR with the nested primers and identified 88 out of 150 clones carrying the distinguishable insertions. These clones selected were dotted onto two duplicate nylon membranes and hybridized separately with DIG-labeled forward or reverse subtracted DNA. 22 clones exhibited distinct differences. These positive clones were the candidate sex-specific fragments. Specific primers were designed for the 22 clones. PCR was used to further confirm the SSH results by using specific primers to amplify the fragments from the individual male and female genomic DNA. Only the DNA fragments in clones f9 and f10 could be amplified in genomic DNA samples from all males but not in any of the females. which were named as Ccmf2 (387 bp) and Ccmf3 (183 bp) respectively. BLASTN and BLASTX search results showed there are no homologous sequences at the DNA level and no significant similarity (E-value>10-4) at the protein level in other species for the two sequences. As the three fragments isolated were linked to male sex, we speculate that the chromosome type of the Yellow River carp is XX / XY.
     To confirm male-specificity of Ccmf1, Ccmf2 and Ccmf3 sequences, we tested an additional 50 male and 50 female Yellow River C. carpio. The Ccmf1&2 reached 99% and 98% overall efficiency respective; the Ccmf3 was 100% accuracy. So they have the low number of presumed recombinants among the individuals tested as Ccmf1 and Ccmf2 markers in the Yellow River strain of C. carpio, and can be used to rapidly and accurately identify the gender of Yellow River C. carpio.
     Three sex-specific markers were used as probes in an attempt to search for homologous sequences in the genome of other common carp strains and C. idellus by a dot blotting hybridization experiment. in the three tested common carp strains the molecular sexing efficiency for Ccmf1, Ccmf2, and Ccmf3 was 67%, 80%, and 93% in the females and 67%, 100% and 73% in the males, respectively. The results revealed that the molecular diversity exists on the Y chromosome of common carps. We may provide a very efficient selective tool for practically breeding monosex female populations in aqua-cultural production, and the sex-specific chromosome region may be characterized and used to study mechanisms of chromosome evolution in this fish species.
     To comprehensive understand the mechanisms of gonadal development in Yellow River carp, the two-way cDNA subtractive libraries from mature male and female gonads was constructed. 280 clones from male libraries and 240 from female’s carrying the distinguishable insertions were identified by PCR with the nested primers. 180 clones (90 of each library for male and female) were screened with dot bltting, 64 positive clones were obtaind, of which 21 from male libraries and 43 from famales were sequenced. Blast anaysis was performed to find some differentially expressed genes related to gonad development in Yellow River carp. The results showed that of 14 ESTs of 21 sequenced clones shared significant similarities in Genbank datdbase. In accordance with their function, 14 ESTs belong to structural protein genes, the protein translation mechanism related genes, ionic channels proteins and transporters genes, tumor-related and tumor suppressor genes, etc. 4 ESTS of 21 had no significant similarities in Genbank datdbase, whose function were unknown. 32 differences ESTs from the female libraries represented 27 known genes and 5 unknown function genes. In the known genes, the occurence frequencies of respiratory chain-related and protein synthesis-related genes were higher than others. Reference to the gene function of zebra fish and other vertebrates, the known function genes from female EST library belong to regulatory factors, structural proteins, enzymes, transcription factors, signal control, etc.
     According to semi-quantitative expression in sperm and ovarian of the Yellow River carp, we found 10 differentially expressed gene fragments in the male libraries: 5 of which are testis-specific genes (Including 1 unknown gene discovered firstly); the others are highly expressed genes in the testis (Including 1 unknown gene discovered firstly). In the female libraries, we found 8 differentially expressed gene fragments: 2 of which are ovarian-specific gene; the others are highly expressed genes in the ovarian (Including 1 unknown gene discovered firstly).
     3 genes (Hmwt1a, HmSetd6, HmPsmb2) which may be involved in gonadal development were chosen to amplify their full-length sequences by RACE-PCR. The results shown Hmwt1a is 2173 bp long, HmSetd6 is 1763bp long, and HmPsmb2 is 884 bp long; Semi-quantisative RT-PCR and fluorescent quantitation RT-PCR were employed to analyse the expression of three genes in the different organizations of Yellow River carps at sexual maturity stages, and the result indicated that Hmwt1a was expressed at highest levels in the testis than ovary, so we speculated that the Hmwt1a gene may be important regulatory genes in male sexual development in Yellow River carp. On the contrary, the Hmsetd6 gene whose expression was higher in the ovary than testis, The HmPsmb2 gene differentially expressed genes in ovarian. Base on the comparison of gene function associated with gonadal development in vertebrates,we speculated that the Hmsetd6 gene involved in the female character development as epigenetic regulation of genes in the Yellow River carp and the HmPsmb2 gene maintained mainly the female characters in the physical or behavioral as sex-bias genes in the Yellow River carp. The discovery of these genes and the construction of gonadal differential EST library, which will help us to learn about of the molecular mechanism gonad development and sex differentiation in the Yellow River carp, as well as provide rich resources of genetic identification for understanding the mechanism of sex control in the Yellow River carp.
引文
[1]余先觉,周暾,李康等.中国淡水鱼类染色体[M], 1989,北京:科学出版社.
    [2] Ferreiro, C., Medrano, J.F., Gall, G.A.E. Genome analysis of rainbow trout and sturgeon with restriction enzymes and hybridization with a Zfy gene derived probe to identify sex [J]. Aquaculture, 1989, 81, 245– 252.
    [3] Fukada, S., Tanaka, M., Iwaya, M., et. al. The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes) [J]. Dev., Growth Differ, 1995, 37, 379–385.
    [4] Tiersch, T.R., Simco, B.A., Davis, K.B., et. al. Molecular genetics of sex determination in channel catfish: studies on SRY, ZFY, Bkm, and human telomeric repeats [J]. Biol. Reprod. 1992, 47, 185– 192.
    [5] Wachtel, S., Demas, S., Tiersch, T, et. al. Bkm satellite DNA and ZFY in the coral reef fish Anthias squamipinnis [J]. Genome, 1991, 34, 612– 617.
    [6] Husebye, H., Lund, S., Moeller, M., et. al. A Bkm-related DNA sequence gives individual DNA fingerprints in turbot (Scophthalmus maximus), but neither Bkm-related, human SRY or human ZFY probes detect genetic sex differences [J]. Comp. Biochem. Physiol. 1994, 107B, 69–73.
    [7] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental in?uences [J]. Aquaculture, 2002;208: 191–364.
    [8] McConnell, S.K.J., Skibinski, D.O.F., Beardmore, J.A. A search for sex-specific DNA regions in Oreochromis niloticus [J]. ICLARM Conference Proceedings, Makati City, Philippines. ICLARM, Makati City, Philippines, 1996, 349– 353.
    [9]钱国英.鱼类性别及人工控制[J].动物学杂志, 2000, 35(1): 47-52.
    [10] Young, W.P., Wheeler, P.A., Coryell, V.H., et. al. A detailed linkage map of rainbow trout produced using doubled haploids [J]. Genetics, 1998, 148: 839– 850.
    [11] Naruse, K., Fukamachi, S., Mitani, H., et. al. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution [J]. Genetics, 2000, 154: 1773– 1784.
    [12] Sato, T., et al. Gene-centromere mapping of medaka sex chromosomes using triploid hybrids between Oryzias latipes and O. luzonensis [J]. Genetica, 2001, 111: 71– 75.
    [13] Griffiths, R., Orr, K.J., Adam, A.et al. DNA sex identification in the three-spined stickleback [J]. J. Fish Biol. 2000, 57: 1331– 1334.
    [14] Withler, R.E., McPhail, J.D., Devlin, R.H. Electrophoretic polymorphism and sexual dimorphism in the freshwater and anadromous threespine sticklebacks (Gasterosteus aculeatus) of the Little Campbell River [J], British Columbia. Biochem. Genet. 1986, 24: 701–713.
    [15] Hawkins, J.R. Sex determination [J]. Hum. Mol. Genet. 1994, 3:1463– 1467.
    [16] Capel, B., Sex in the 90s: SRY and the switch to the male pathway. Annu [J]. Rev. Physiol. 1998, 60: 497– 523.
    [17]张俊玲,施志仪.几种DNA分子标记技术及其在水产动物中的应用[J].现代渔业信息, 2006, 21(8): 7-10.
    [18] Williams, J.G.K., Kubelik, A.R., Livak, K.J., et. al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res. 1990, 18: 6531– 6535.
    [19] Welsh, J., McClelland, M., Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res. 1990, 18: 7213–7218.
    [20] CUSHWA, W. T. & MEDRANO, J.F. Applications of the random amplified polymorphic DNA (RAPD) assay for genetic analysis of livestock species [J]. Animal Biotechnology 7, 1996, 11–31.
    [21] Giovannoni, J., R. Wing, M. Ganal and S. Tanksley, Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations [J]. Nucl Acids Res 19: 1991, 6553-6558.
    [22] Fevzi bardakci. The use of random amplified polymorphic DNA(RAPD) markers in sex discrimination in NileTilapia , Oreochromis niloticus ( Pisces :Cichlidae) [J]. Turk. J . Biol . 2000, 24 :169-175.
    [23] McGowan , C., and Davidson , W. S. The RAPD technique fails to detect a male-specific genetic marker in Atlantic Salmon [J]. Fish Biology, 1998, 53 (5) : 1134-1136.
    [24] Moran, P., Martinez, J.L., Garcia-Vazquez, E., et. al. Sex chromosome linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss) [J]. Cytogenet. Cell Genet. 1996, 75: 145– 150.
    [25] Li , Y. Hill , J . A. Yue , G. H. et. al. Extensive search does not identify genomic sex markers in Tert raodon nigroviridis [J]. Fish Biology , 2002, 60 :1-4.
    [26]常重杰,周荣家,余其兴.两种泥鳅不同群体遗传变异的RAPD分析[J].动物学报, 2001, 47 (1) :89-93.
    [27]宋平,潘云峰,向筑等.黄颡鱼RAPD标记及其遗传多样性的初步分析[J].武汉大学学报(理学版) , 2001, 47 (2) :233-237.
    [28]李建中,刘少军,张轩杰等.异源四倍体鲫鲤雌雄差异的RAPD标记[J].水生生物学报, 2004,28 (6) : 674-676.
    [29] Sakamoto , T., Danzmann , R. G. , Gharbi , K., et al. A microsatellite linkage map of rainbow trout (Oncorhy nchusmykiss) characterized by large sex-specific differences in recombination rates [J]. Genetics, 2000, 155 : 1 331-1345.
    [30] Rachael , A. Woram , Karim Gharbi , Takashi Sakamoto , et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes [J]. Genome Research. 2003, 13 :272-280.
    [31] Lee , B. Y., Penman , D. J ., and Kocher , T. D. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis [J]. Anim. Genet . 2003, 34 (5) :379-383.
    [32] Waldbieser , G. C., Boswort h , B. G. , Nonneman , D. J ., et al. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus [J]. Genetics, 2001, 158 (2) :727-734.
    [33] Matsuda , M., Sato , T., Toyazaki , Y., et al. Oryzias curvinotus has DMY, a gene t hat is required for male development in the medaka, O. latipes [J]. Zoolog Sci. 2003, 20 (2) :159-161.
    [34] Lee , B. Y., Hulata, G., and Kocher, T. D. Two unlinked loci cont rolling the sex of blue tilapia (Oreochromis aureus) [J]. Heredity , 2004, 92 (6) :543-549.
    [35]刘晓红,陈惠明,许亮等.黄瓜性别决定基因相关的分子标记[J].湖南农业大学学报(自然科学版), 2008, 34(4): 403-408.
    [36] ZABEAU M, VOS P. Selective restriction fragment amplification; a general method for DNA fingerprinting [P] . European Patent Application 94202629. 7 (Publication No. 0534858A1) . Paris: European Patent Office , 1993.
    [37] Ezaz , M. T., Harvey , S. C., Boonphakdee , C., et al. Isolation and physical mapping of sex-linked AFLP markers in nile tilapia (Oreochromis ni loticus L. ) [J] . Mar . Biotechnol (N Y) , 2004, 6 (5): 435-445.
    [38] Watanabe , T., Yoshida , M., Nakajima , M., et al. Linkage mapping of AFLP and microsatellite DNA markers with the body color- and sex-determining loci in the guppy ( Poeci liareticulata) [J] . Zoolog Sci . 2005, 22 (8): 883-889.
    [39] Hinegardner, R., Rosen, D.E. Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 1972, 106, 621–644.
    [40] Du, S.J., Devlin, R.H., Hew, C.L. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II, and a male-specific pseudogene, GH-psi. DNA Cell Biol. 1993, 12, 739–751.
    [41] Prodohl, P.A., Taggart, J.B., Ferguson, A. Single locus inheritance and joint segregation analysis of minisatellite (VNTR) DNA loci in brown trout (Salmo trutta L.). Heredity 1994, 73, 556– 566.
    [42] Devlin, R.H., Stone, G.W., Smailus, D.E., Extensive direct-tandem organization of a long repeat DNA sequence on the Y chromosome of chinook salmon (Oncorhynchus tshawytscha). J. Mol. Evol. 1998, 46, 277– 287.
    [43] Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proceedings of National Academy of Science of USA, 1996, 93 (12): 6025-6030.
    [44]肖丙秀,郭俊明,赵青.抑制性消减杂交方法的建立[J].宁波大学学报(理工版), 2002, 15(1): 97-99.
    [45] Nakayama I, Foresti F, Tewari R, et al. Sex chromosome polymorphism and Heterogametic males revealed by two cloned DNA probes in the ZW/ZZ fish Leporinus elongates[J]. Chromosoma, 1994, 103, 31-39.
    [46] Devlin R H, NcNeil B K, Groves T D D,et al. Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha)[J]. Can. J. Fish. Aquat. Sci., 1991, 48: 1606–1612.
    [47] Wachtel, S. S., Koo, G. C., Boyse, E. A. Evolutionary conservation of H-Y (male) antigen[J]. Nature (Lond.) , 1975a 254, 270--272.
    [48] Mardon, G., Mosher, R., Disteche, C.M., et al. Duplication, deletion, and polymorphism in thesex-determining region of the mouse Y chromosome [J]. Science. 1989a, 243, 78-80.
    [49] Singh L, Purdom IF, Jones KW . Behaviour of sex chromosome associated satellite DNAs in somatic and germ cells in snakes [J]. Chromosoma, 1979, 71:167-181.
    [50] Page DC , Brown L G, Chapelle A. Exchange of terminal portions of X - and Y- chromosomal short arms in human XX males[J]. Nature, 1987, 328 : 437-440.
    [51] Sinclar A H , Berta P , Palmer M S , et al. A gene frome the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif [ J ] . Nature, 1990 , 346 : 240-242.
    [52] Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic for Sry[J]. Nature , 1991, 351 (6322): 117-121.
    [53] Gubbay J, Collignon J, Koopman P B, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expresses genes [J]. Nature , 1990, 346: 245-250.
    [54]常重杰,杜启艳,余其兴.大鳞副泥鳅粗线期二价染色体分带研究[J].动物学杂志, 2001, 36(1): 23-26.
    [55]郭新红,刘少军,向兵.三倍体湘云鲫3个Sox基因保守区的序列分析[J].水生生物学报, 2005, 29 (1): 102-104.
    [56]周荣家,余其兴,程汉华. PCR扩增黄鳝和刺鳅SRY盒基因[J].科学通报, 1996, 41(7): 41-42.
    [57]张勇,陈淳,徐晋麟,等.黄鳝性别决定与SRY基因不相关[J].自然科学进展, 2001, 11(4): 365-367.
    [58] Josephine Bowles, Goslik Schepers and Peter Koopman. Phylogeny of the sox family of developmental transcription factors based on sequence and structural indicators[J]. Developmental Biology , 2000, 227(2): 239-255.
    [59]周荣家.参与发育的基因家族[J].遗传, 2001, 23(1):86-88.
    [60]常重杰,周荣家,余其兴. PCR扩增泥鳅和大鳞副泥SRY盒基因[J].动物学杂志, 1998, 33(1): 12-15.
    [61]杜启艳,常重杰,华慧颖,等.鲤鱼中5个Sox基因保守区的克隆和比较[J].动物学杂志, 1998, 33(1): 12-15.
    [62]董江水,张定东.罗非鱼的SRY基因PCR扩增分析[J].水产养殖, 2003, 24(6): 25-29.
    [63] Frojdman K, Harley VR, Pelliniemi LJ. Sox9 protein in rat sertoli cells is age and stage dependent [J]. Histochem Cell Biol. 2000, 113(1): 31-36.
    [64] Tommerup N, Schempp W, Meinecke P, et al. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1 [J]. Nat Genet.1993, 4(2):170-174.
    [65] Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene [J]. Nature, 1994, 372(6506): 525-530.
    [66] Liu L, Guo Y Q, Zhou R J. The cloning and verification of the Sox9 gene of the rice field eel[J]. Yi Chuan Xue Bao, 2001, 28 (6): 535-539.
    [67] Yokoi H, Kobayashi T, Tanaka M. Sox9 in a teleost fish, medaka (Oryzias latipes): Evidence fordiversified function of Sox9 in gonad differentiation [J]. Mol. Reprod Dev. 2002, 63(1): 5-16.
    [68] Galay Burgos M, Llewellyn L, Mylonas C C, et al. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax)[J]. Comp Biochem Physiol B Biochem Mol. Biol. 2004, 137(2): 279-284.
    [69] Hett A K, Pitra C, Jenneckens I, et al. Characterization of Sox9 in European Atlantic sturgeon (Acipenser sturio) [J]. J Hered, 2005, 96(2): 150-154.
    [70]杜启艳,常重杰,王凤羽等.鲤鱼中Sox9b基因的克隆和表达[J].实验生物学报, 2005,38(5): 397-341.
    [71] Raymond CS, Murphy MW, O’Sullivan MG, et al. Dmart 1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentation [J]. Genes Dev. 2000, 14: 2587-2595.
    [72] Nanda I, Kondo M, Hornung U, et al. A duplicatd copy of DMRT 1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes [J]. Proc Natl Acad SCI. 2002, 99: 1178-11783.
    [73] Guo Y, Cheng H, Huang X, et al. Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1 [J]. Biochem Biophys Res Commun, 2005, 330: 950–957.
    [74] Huang X, Guo Y, Shui Y, et al. Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel [J]. Biol Reprod. 2005, 73:1017–1024.
    [75] G. Guan, T. Kobayashi and Y. Nagahama , Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus) [J]. Biochem. Biophys. Res. Commun. 2000, 272, 662–666.
    [76] Marchard O, Gororoun M, D’Cotta H, et al. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbowtrout, Oncorchynchus mykiss[J]. Biochim Biophys Acta, 2000, 1493(1-2): 180-187.
    [77] Matsuda M, Nagahama Y, Shinomiya A, et al .DMY is a Y-specific DM domain gene required for male development in the medaka fish[J]. Nature, 2002, 417: 559-563.
    [78] Hiort O, Holterhus PM. The molecular basisi of male sexual differentiation [J]. Eur J Endocrinol. 2000, 142(2): 101-110.
    [79] Nef S, Parada LF. Hormones in male sexual development [J]. Genes Dev. 2000, 14(24): 3075-3086.
    [80] Vaiman D, Pailhoux E. Mammalian sex reversal and intersexuality: deciphering the sex-detrmaination cascade [J]. Trends Genet. 2000, 16(11): 488-494.
    [81] Bowles J, Koopman P. New clues to the puzzle of mammalian sex determination [J]. Genome Biol. 2001, 2(9): 1025.1-1025.4.
    [82] Koopman P. Gonad developmnt: signals for sex [J]. Curr Biol. 2001, 11(12): 481-483.
    [83] Ostrer H. Sex detrmination: lessons from families and embryos [J]. Clin Genet. 2001, 59(4): 207-215.
    [84] Clarkson MJ, Harley VR. Sex with two SOX on: SRY and SOX9 in testis development Trends [J]. Endocrinol Metab. 2002, 13 (3): 106-111.
    [85] Yamamoto, T., Kajishima, T. Sex-hormone induction of reversal of sex differentiation in the goldfish and evidence for its male heterogamety [J]. J. Exp. Zool. 1969,168, 215– 222.
    [86] Chan, S.T.H., Yeung, W.S.B. Sex Control and Sex Reversal in Fish Under Natural Conditions [J]. Academic Press, New York, 1983, 171– 222.
    [87] Nakayama, I., Biagi, C.A., Koide, N.,et al. Identification of a sex-linked GH pseudogene in one of two species of Japanese salmon (Oncorhynchus masou and O. rhodurus) [J]. Aquaculture, 1998,173, 65–72.
    [88] Nilsson, E., Cloud, J. Rainbow trout chimeras produced by injection of blastomeres into recipient blastulae [J]. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 9425– 9428.
    [89] Balinsky, B.I. An introduction to Embryology [J]. Saunders, Philadelphia, 1975, 648 pp.
    [90] Wei, G., Mahowald, A.P. The germline: familiar and newly uncovered properties [J]. Annu. Rev. Genet. 1994, 28, 309–324.
    [91] Olsen, L.C., Aasland, R., Fjose, A. A vasa-like gene in zebrafish identifies putative primordial germ cells [J]. Mech. 1997, Dev., 66.
    [92] Yoon, C., Kawakami, K., Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells [J]. Development, 1997, 124, 3157–3166.
    [93] Hogan, J.C. The fate and fine structure of primordial gem cells in the teleost, Oryzias latipes [J]. J. Cell Biol. 1973, 59, 146.
    [94] Hamaguchi, S., A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes [J]. Cell Tissue Res. 1982, 227, 139–151.
    [95] Nagahama, Y. Gonadal steroid hormones: major regulators of gonadal sex differentiation and gametogenesis in fish[M]. Sixth Int. Symp. on the Reproductive Physiology of Fish, 1999, Bergen, Norway.
    [96] Yoshizaki, G., Takeuchi, Y., Sakatani, S.,et al. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter [J]. Int. J. Dev. Biol. 2000, 44, 323– 326.
    [97] Tanaka, M., Kinoshita, M., Kobayashi, D.,et al. Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein exclusively in germ cells: a useful model to monito germ cells in a live vertebrate [J]. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2544– 2549.
    [98] Herman, R.L., Kincaid, H.L. Gonadal dysgenesis in rainbow trout Salmo gairdneri [J]. Dis. Aquat. Org. 1986, 1, 227–228.
    [99] Ryazantseva, M.V., Sakun, O.F. The sex cells and development of the early ontogeny of the carp [J], Cyprinus carpio. J. Ichthyol. 1980, 20, 114– 122.
    [100] Satoh, N., Egami, N. Sex differentiation of germ cells in the teleost, Oryzias latipes, during normal embryonic development [J]. J. Embryol. Exp. Morphol. 1972, 28, 385–395.
    [101] Hamaguchi, S. Sex differentiation of germ cells and their supporting cells in Oryzias latipes [J]. Fish Biol. J. 1992, 4, 11– 17.
    [102] Lee, J.S., Lee, Y.D. Early gonadogenesis and sex differentiation in the viviparous teleost, Ditrema temmincki [J]. Bull. Korean Fish. Soc. 1996, 29, 34– 43.
    [103] Lee, Y.D., Rho, S., Chang, Y.J., et al. Sex differentiation of the rockfish, Sebastes schlegeli [J]. J. Korean Fish. Soc. 1996, 29, 44– 50.
    [104] Yoshikawa, H., Oguri, M. Sex differentiation in a cichlid, Tilapia zillii [J]. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 313–318.
    [105] Zhu, Y. A study of the development of the gonads of Tilapia nilotica [J]. J. Fujian Teach. Univ., Nat. Sci. Ed./Fujian Shifan Daxue Xuebao, 1987, 3, 74– 81.
    [106] Tanaka, H. Gonadal sex differentiation in flounder, Paralichthys olivaceus [J]. Bull. Natl. Res. Inst. Aquacult.1987, 11, 7– 19.
    [107] Romanov, A.A., Altuf’ev, Y. Extraregional histogenesis of sexual cells in the Caspian Sea sturgeons [J]. J. Ichthyol. 1992, 32, 145–154.
    [108] Romanov, A.A., Altuf’ev, Y. Ectopic histogenesis of sexual cells of Caspian Sea sturgeons [J]. J. Ichthyol. 1993, 33, 140–150.
    [109] Wolf, L.E. The history of the germ cells in the viviparous teleost Platypoecilius maculates [J]. J. Morphol. 1931, 52, 115– 153.
    [110] Johnston, P.M. The embryonic history of the germ cells of the largemouth black bass, Micropterus salmoides salmoides (Lacepede) [J]. J. Morphol. 1951, 88, 471–542.
    [111] Mezhnin, F.I. Development of the sex cells in the early ontogeny of the common perch, Perca fluviatilis [J]. J. Ichthyol. 1978, 18, 71– 86.
    [112] Zelenkov, V.M. Earl gametogenesis and sex differentiation in the perch, Perca fluviatilis [J]. J. Ichthyol. 1982, 21, 124– 130.
    [113] Nakamura, M. Gonadal sex differentiation in whitespotted char, Salvelinus leucomaenis [J]. Jpn. J. Ichthyol. 1982, 28, 431–436.
    [114] Takemura, A., Oka, M. Immunochemical sexing of living yellowfin tuna, Thunnus albacares (Bonnaterre), using a vitellogenin-like protein [J]. Aquacult. Res. 1998,29, 245– 249.
    [115] Van Den Hurk, R., Slof, G.A. A morphological and experimental study of gonadal sex differentiation in the rainbow trout, Salmo gairdneri [J]. Cell. Tissue Res. 1981, 18, 487–497.
    [116] Lebrun, C.R., Billard, R., Jalabert, B. Changes in the number of germ cells in the gonads of the rainbow trout (Salmo gairdneri) during the first ten post-hatching weeks [J]. Reprod., Nutr., Dev. 1982, 22, 405–412.
    [117] Moiseyeva, Y. The development of the gonads of the round goby, Neogobius melanostomus (Gobiidae), during the embryonic period [J]. J. Ichthyol. 1983, 23, 64– 74.
    [118] Timmermans, L.P.M., Taverne, N. Segregation of promordial germ cells: their numbers and fate during early development of Barbus conchonius (Cyprinidae, Teleostei) as indicated by 3H-Thymidine incorporation [J]. J. Morphol. 1989, 202, 225– 237.
    [119] Parmentier, H.K., Timmermans, L.P. The differentiation of germ cells and gonads during development of carp (Cyprinus carpio L.): a study with anticarpsperm monoclonal antibodies [J]. J. Embryol. Exp. Morphol. 1985, 90, 13–32.
    [120] Shelton, W.L., Wanniasingham, V., Hiott, A.E. Ovarian differentiation in common carp (Cyprinuscarpio) in relation to growth rate [J]. Aquaculture. 1995, 137, 1– 4.
    [121] Akhundov, M.M., Fedorov, K.E. Early gameto- and gonadogenesis in sturgeons:I. Criteria of comparative assessment of gonad development in young individuals with reference to Acipenser gueldenstaedti [J]. J. Ichthyol. 1990, 30, 963– 973.
    [122] Dlugosz, M., Demska-Zakes, K. Sex differentiation in European whitefish (Coregonus lavaretus L.) [J]. Biol. Manage. Coregonid Fishes. 1990, 39, 3–4.
    [123] Lin, F., Dabrowski, K., Timmermans, L.P.M. Early gonadal development and sexual differentiation in muskellunge (Esox masquinongy) [J]. Can. J. Zool. 1997, 75, 1262– 1269.
    [124] Patzner, R.A., Kaurin, G. Sexual differentiation in Salaria (equals Blennius) pavo [J]. J. Fish Biol. 1997, 50, 887–894.
    [125] Brusle′, S., Brusle′, J. An ultrastructural study of early germ cells in Mugil (Liza) auratus Risso, 1810 (Teleostei: Mugilidae) [J]. Ann. Biol. Anim. Biochim. Biophys., 1978a, 1141– 1153.
    [126] Brusle′, S., Brusle′, J. Early sex differentiation in Mugil (Liza) auratus Risso, 1810 (Teleost Mugilidae) [J]. An ultrastructural study. Ann. Biol. Anim. Biochim. Biophys. 1978b, 18, 871– 875.
    [127] Parmentier, H.K., Timmermans, L.P. The differentiation of germ cells and gonads during development of carp (Cyprinus carpio L.): a study with anticarpsperm monoclonal antibodies [J]. J. Embryol. Exp. Morphol. 1985, 90, 13–32.
    [128] Parmentier, H.K., Timmermans, L.P., Egberts, E. Monoclonal antibodies against spermatozoa of the common carp (Cyprinus carpio L.): I. A study germ cell antigens in adult males and females [J]. Cell Tissue Res. 1984, 236, 99–105.
    [129] Van Winkoop, A., Timmermans, L.P.M., Goos, H.J.T. Stimulation of gonadal and germ cell development in larval and juvenile carp (Cyprinus carpio L.) by homologous pituitary extract [J]. Fish Physiol. Biochem. 1994, 13, 161– 171.
    [130] Guraya, S.S. Gonadal development and production of gametes in fish [J]. Proc. Indian Natl. Sci. Acad., Part B. 1994, 60, 15– 32.
    [131] Brennan, J., Karl, J., Martineau, J., et al. Sry and the testis: molecular pathways of organogenesis [J]. J. Exp. Zool. 1998, 281, 494–500.
    [132] Koopman, P. Sry and Sox9: mammalian testis-determining genes [J]. Cell. Mol. Life Sci. 1999, 55, 839–856.
    [133] Da Cruz-Huefling, M., Da Cruz-Landim, C. Ultrastructural and histochemical studies on the Leydig and Sertoli cell homologues in the testis of Triportheus elongatus (Sardinhao) and Mylossoma aureum (Pacu) [J].Cytobios, 1984, 41, 161– 174.
    [134] Pudney, J., Callard, G. Identification on Leydig-like cells in the testis of the dogfish Squalus acanthias [J].Anat. Rec. 1984, 209, 321– 330.
    [135] Van Vuren, J.H.J., Soley, J.T. Some ultrastructural observations of Leydig and Sertoli cells in the testis of Tilapia rendalli following induced testicular recrudescence [J]. J. Morphol. 1990, 206, 57–64.
    [136] Miura, C., Miura, T., Yamashita, M., et al. Hormonal induction of all stages of spermatogenesis in germ-somatic cell coculture from immature Japanese eel testis [J]. Dev., Growth Differ. 1996, 38,257–262.
    [137] Nagahama, Y., Kagawa, H., Young, G. Cellular sources of sex steroids in teleost gonads [J]. Can. J. Fish. Aquat. Sci. 1982, 39, 56– 64.
    [138] Nakamura, M., Takahashi, H., Hiroi, O. Sex differentiation of the gonad in the Masu salmon (Oncorhynnchus masou) [J]. Sci. Rep. Hokkaido Salmon Hatchery, 1974, 28, 1–8.
    [139] Foyle, T.P. A histological description of gonadal development and sex differentiation in the coho salmon (Oncorhynchus kisutch) for both untreated and oestradiol immersed fry [J]. J. Fish Biol. 1993, 42, 699– 712.
    [140] Nakamura, M., Nagahama, Y. Ultrastructural study on the differentiation and development of steroidproducing cells during ovarian differentiation in the amago salmon Oncorhynchus rhodurus [J]. Aquaculture, 1993, 112, 237– 251.
    [141] Piferrer, F., Donaldson, E.M. Gonadal differentiation in coho salmon, Oncorhynchus kisutch, after a single treatment with androgen or estrogen at different stages during ontogenesis [J]. Aquaculture, 1989, 77, 2– 3.
    [142]杨增明,孙青原,夏国良,生殖生物学[M].北京:科学出版社,2005,352-354.
    [143]王建武,丁家桐,刘春玲,等.动物科学与动物医学[J],2003,4:56~58.
    [144] Millar, S.E., Lader, E., Liang, L.F., et al. Oocyte-specific factors bind a conserved upstream sequence required for mouse Zona pellucida promoter activity [J]. Mol. Cell. Biol.1991, 11: 6197–6204.
    [145] Packer, A.I., Hsu, Y.C., Besmer, P., et al. The ligand of the c-kit receptor promotes oocyte growth [J]. Dev. Biol. 1994, 161: 194– 205.
    [146] Chai C, Chan WK. Developmental expression of a novel Ftz-F1 homologue, ff1b (NR5A4), in the zebrafish Danio rerio [J]. Mechanisms of Development, 2000, 91: 421–426.
    [147] Chiang E, Yan YL, Tong SK, et al. Characterization of duplicated zebrafish cyp19 genes [J]. Journal of Experimental Zoology, 2001, 290(7): 709-714.
    [148]郭一清,程汉华,高尚,等.脊椎动物DMRT基因家族的系统发生及同线性分析[J].遗传学报, 2004, 31(10): 1103-1108.
    [149] Stein J, Phillips RB, Devlin RH: Identification of the Y chromosome in chinook salmon (Oncorhynchus tshawytscha) [J]. Cytogenet Cell Genet, 2001, 92:108–110
    [150] Marchand O, Govoroun M, D’Cotta H, et al. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss [J]. Biochim Biophys Acta, 2000, 1493: 180–187.
    [151] Tchoudakova A, Kishida M, Wood E, et al. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish [J]. J. Steroid. Biochem. Mol. Biol., 2001, 78: 427-439.
    [152] von Hofsten, J., Larsson, A., Olsson, P. E. Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish [J]. Dev. Dyn. 2005, 233: 595-604.
    [153] Chiang EL., Pai CI., Wyatt M., et al. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites [J]. Dev. Biol. 2001, 231: 149-163.
    [154] Lamar E E , Palmer E Y. Encoded , species-specific DNA in mice : evidence that the Y chromosome exists in two polymorphic forms in inbred strains [J ] . Cell, 1984, 37 : 171 - 177.
    [155] Kunkel L M, Monaco A P , Middlesworth W, et al . Specific cloning of DNA fragments absent from the DNA of a male patient with an X2chromosome deletion [ J ] . Proc Natl Acad Sci, 1985, 82 : 4778.
    [156] Liang P , Pardee A B. Different display of eukaryotic messenger RNA by means of the polymerase chain reaction [ J ] . Science , 1992 , 257 (14) : 967 - 971.
    [157] Sompayac L , Jane S , Burn T C , et al . Overcoming limitations of the mRNA differential display technique [ J ] . Nucleic Acids Res , 1995 , 23 : 4738 - 4739.
    [158] Bertioli D J, Schichter U H, Adams M J, et al . An analysis of differentialdisplay shows a strong bias towards high copy number mRNAs [J ] . Nucleic Acids Res , 1995 , 23 (21) : 4520 - 4523.
    [159] Lisitsyn N , Wigler M. Cloning the differences between two complex genomes [J ]. Science, 1993, 259 (5097): 946 - 951.
    [160] Diatchenko L, Lau Y FC, Campbell A P, et al. Suppression subtractive hybridization : A method for generating differentially regulated or tissue-specific cDNA probes and libraries [ J ] . Proc Natl Acad Sci USA , 1996 , 93 : 6025 - 6030.
    [161]肖丙秀,郭俊明,赵青.抑制性消减杂交方法的建立[J].宁波大学学报(理工版), 2002, 15(1): 97-99.
    [162] Carmeci C, Thompson DA, Kuang WW, Lightdale N, Furthmayr H, Weigel RJ. Moesin expression is associated with the estrogen receptor-negative breast cancer phenotype [J], Surgery. 1998, 124(2): 211-7.
    [163] Rauhala HE, Porkka KP, Tholonen TT, et al.Dual-specificity phosphatase I and serum/glucocoryicoid-regulated kinase are downregulated in prostate cancer [J]. Int J Cancer. 2005, 117(5): 738-745.
    [164]范保星,笪冀平,张开泰.肺癌诊断基因的初步筛选[J].循环医学,2002, 2: 75-79.
    [165] Jin H, Cheng X, Diatchenko L, Siebert PD, et al.Differential screening of a subtracted cDNA library: a method to search for genes preferentially expressed in multiple tissues [J]. Biotechniques. 1997, 23(6): 1084-1086.
    [166] Morozov G, Verlisky O, Rechitsky S, et al.Comstruction and sequence analysisi of subtraction complemaentary DNA libraries from human preimplantation embyyos [J]. J Assist Reprod Genet. 1999, 16(4): 212-215.
    [167] Xie J , Wen J J, Yang Z A , et al. Cyclin A2 Is differentially expressed during oocyte maturation between gynogenetic silver crucian carp and gonochoristic color crucian carp [J]. J Exp Zool, 2003, 295A (1) : 1-16.
    [168]俸艳萍,彭秀丽,李世军等.应用抑制消减杂交分离雌、雄鸡胚性分化早期的差异表达基因[J].动物学报, 2007, 53 (2) : 315 - 324 .
    [169] Bayne C J , Gerwick L , Fujiki K, et al. Immune relevant (including acute phase ) genes identified in the livers of rainbow trout , Oncorhynchus mykiss, by means of suppression subtractivehybridization[ J ] . Developmental and Comparative Immunology, 2001, 25 : 205 - 217.
    [170] Zhang Y B , Zhang Q Y, Xu D Q, et al. Identification of antiviral relevant genes in the cultured fish cells induced by UV inactivated virus [J ] . Chinese Science Bulletin , 2003 , 48 (5) : 457 - 463.
    [171] Fujiki K, Shin D H, Nakao M, et al. Molecular cloning of carp ( Cyprinus carpio ) CC chemokine , CXC chemokine receptors , allograft inflammatory factor 1 , and natural killer cell enhancing factor by use of suppression subtractive hybridization [ J ] . Immuno genetic. 1999 , 49 (10) : 909 - 914.
    [172] Fujiki K, Shin D H, Nakao M, et al. Molecular cloning and expression analysis of carp ( Cyprinus carpio) interleukin 1 beta , high affinity immunoglobulin E Fc receptor gamma subunit and serum amyloid A[J ] . Fish Shellfish Immunol. 2000 , 10 (3) : 229 - 242.
    [173] Fujiki K, Shin D H, Nakao M, et al . Molecular cloning of carp ( Cyprinus carpio ) leucocyte cell derived chemotaxin 2 , gliamaturation factor beta , CD45 and lysozyme C by use of suppression subtractive hybridization [ J ] . Fish Shellfish Immunol. 2000, 10(7) : 643 - 650.
    [174] Fujiki K, Shin D H, Nakao M, et al. Molecular cloning and expression analysis of the pytative carp (Cyprinus carpio) pre-B cell enhancing factor [J ]. Fish Shellfish Immunol. 2000, 10 (4) : 383-385.
    [175] Shi Y H, Liu J , Xia J H, et al. Screen for stage-specific expression genes between tail bud stage and heartbeat beginning stage in embryogenesis of gynogenetic silver crucian carp [J ] . Cell Res. 2002, 12 (2) :133 - 142.
    [176]马长艳,周开亚,郭豫杰,等.中华绒螯蟹卵巢差减cDNA文库的构建[J ] .动物学研究, 2003 , 24 (1) : 53 - 56.
    [177] Shang-Wei Li, Zhang-Fu Longb, et al. Analysis of differential expression and characterization of PIN in the gonads during sex reversal in the red-spotted grouper [J]. Molecular and Cellular Endocrinology, 2009, 309: 32-38.
    [178] Trond M. Kortner, Eduardo Rocha, et al. Genomic approach in evaluating the role of androgens on the growth of Atlantic cod (Gadus morhua) previtellogenic oocytes [J]. Comparative Biochemistry and Physiology, 2008, Part D 3: 205-218.
    [179] Yeying Sun, Quanqi Zhang , Jie Qi, et al. Identification of differential genes in the ovary relative to the testis and their expression patterns in half-smooth tongue sole (Cynoglossus semilaevis) [J]. J. Genet. Genomics, 2010, 37: 137?145.
    [180] Rudd S. Expressed sequence tags : Alternative of complement to whole genome sequences [J].Trends Plant Sci. 2003, 8: 321-329.
    [181] Liu ZJ, Li P, Kocabas A, et al. Microsatellite-containing genes from the channel catfish brain: Evidence of trinucleatide repeat expansion in the coding region of nucleotide excision repair gene RAD23B [J]. Biochem Biophys Res Commun. 2001, 289: 317-324.
    [182] He C, Chen L, Simmons M, et al. Putative SNP discovery in interspecific hybrids of catfish by comparative EST analysis [J]. Anim Genet. 2003, 34: 445-448.
    [183] Qiu, L., Jiang, S., Huang, J., et al. Molecular cloning and mRNA expression of cathepsin C gene in black tiger shrimp (Penaeus monodon) [J]. Comp. Biochem. 2008. Physiol. 150, 320–325.
    [184] Gong Z. Zebrafish expressed sequence tags and their applications [J]. Methods Cell Biol. 1999, 60 :213-233.
    [185] Hirono I, Aoki T. Expressed sequence tags of medaka(Oryzias latipes)liver mRNA [J]. Mol Mar Biol Biotechnol. 1997, 6: 345-350.
    [186] Jaillon O, Aury JM, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype [J]. Nature, 2004, 431 : 946-957.
    [187] Kocabas MA, Li P, Cao D, et al.Expression profile of the channel catfish spleen:Analysis of genes involved in immune functions [J]. Mar Biotechnol. 2002, 4: 526-536.
    [188] Shiue YL, Wang LH, Chao TY, et al. EST based identification of genes expressed in the hypothalamus of adult tilapia,Oreochromis mossambicus [J]. Biochem Biophys Res Commun. 2004, 316: 523-527.
    [189] Douglas, S.E., Knickle, L.C., Kimball, J., et al. Comprehensive EST analysis of Atlantic halibut (Hippoglossus hippoglossus), a commercially relevant aquaculture species [J]. BMC Genomics 8 2007, 144.
    [190] Salzburger, W., Renn, S.C.P., Steinke, D., et al. Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs [J]. BMC Genomics 9 2008, 96.
    [191] Zhou L, Yao B, Xia W, et al. EST-based identification of genes expressed in the hypothalamus of male orange-spotted grouper(Epinephelus coioides) [J]. Aquaculture, 2006, 256(2): 129-139.
    [192] Zeng, S., Gong, Z., Expressed sequence tag analysis of expression profiles of zebrafish testis and ovary [J]. Gene, 2002. 294:45–53.
    [193] Li, Y., Chia, J.M., Bartfai, R., et al. Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools [J]. Comp. Funct. Genomics. 2004a, 5:403–418.
    [194] Shen, X.Y., Cui, J.Z., Gong, Q.L., et al. Transcript expression profiles of Takifugu rubripes spermatozoa and eggs by expressed sequence tag analysis [J]. Fish Physiol. Biochem. 2008b, 34:235–243.
    [195] Jianjun Chen, Youli Wang, Yuanyuan Yue, et al. A novel male-specific DNA sequence in the common carp, Cyprinus carpio [J]. Molecular & Cellular Probes, 2009,23:235~239.
    [196] LIU Liang-guo, ZHAO Jun, CUI Miao. Sex Determination and Artificial Sex Control in Fish [J]. FISHERIES SCIENCE, 2003, 22(2): 42-45.
    [197] Martin Kocour, Otomar Linhart and David Gela. Results of comparative growing test of all-female and bisexual population in two-year-old common carp (Cyprinus carpio L.) [J]. Aquaculture International, 2003, 11: 369-378.
    [198] GUI Jian-fang. Genetic Basis and Artifical Control of sexuality and reproduction in fish [J]. BeiJing: Science Press, 2007, 125-139.
    [199] Li Zhou, Yang Wang and Jian-Fang Gui. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp ( Carassius auratus gibelio Bloch) as revealed by RAPD assays [J].Journal of Molecular Evolution, 2000, 51: 98~506.
    [200] YANG Jie, WU Hong-da, FAN Zhao-ting. Advances on sex determination mechanism of fish [J]. Fisheries economy res. 2007;(3):14~19.
    [201] Yi MS, Li YQ, Liu JD et al. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch [J]. Chromosome Res. 2003; 11: 665-671.
    [202] Wang JX, Liu HJ, Min WQ, et al. Induced meiotic gynogenesis in tench, Tinca tinca (L.) using irradiated heterogenic sperm [J]. Aquaculture International, 2006; 14: 35-42.
    [203] Pask, A., Renfree, M.B., Gravs, J. A. The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRX: Implications for the evolution of mammalian sex determination [J]. Genetics, 2000, 97(24): 13198-13202.
    [204]余先觉,周敦,李康等.中国淡水鱼类染色体[M]. 1989,北京,科学出版社.
    [205]王长忠,梁宏伟,邹桂伟等.长江中上游两个鲢群体遗传变异的微卫星分析[J].遗传(Beijing), 2008, 30(10): 1341―1348.
    [206]张志伟,曹哲明,杨弘等.草鱼野生和养殖群体间遗传变异的微卫星分析[J].动物学研究, 2006, 27 (2) : 189– 196.
    [207] Zhu HP, Gui JF. Identification of genome organization in the unusual alloteraploid form of carassius auratus gibelio [J]. Aquaculture, 2007, 265: 109-117.
    [208] Okumus I, Ciftci Y. Fish population genetics and molecular markers: II- molecular markers and their applications in fisheries and aquaculture [J]. Turk. J. Fish. Aquat. Sci. 2003, 3: 51-79.
    [209] Tong JG, Yu XM, Zhang J, et al. comparison of genome size of rare minnow (gobiocypris rarus) with other model fishes [J]. Acta Hydrobiologica Sinica, 2003, 27(2): 208-210.
    [210] Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res. 1989, 17: 6463– 6471.
    [211] Litt, M., Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle actin gene [J]. Am. J. Hum. Genet. 1989, 44: 397–401.
    [212] Wright, J.M. DNA fingerprinting in fishes. In: Hochachka, P.W., Mommsen, T. (Eds.), Biochemistry and Molecular Biology of Fishes [J]. Elsevier, Amsterdam, 1993, pp. 58–91.
    [213] Liu, Z.J., Li, P., Kocabas, A. et al. Microsatellite-containing genes from the channel catfish brain: evidence of trinucleotide repeat expansion in the coding region of nucleotide excision repair gene RAD23B [J]. Biochem. Biophys. Res. Commun. 2001c, 289, 317– 324.
    [214] Ferguson A, Taggart JB, Prod?hl PA, et al. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo [J]. J Fish Biol. 2006, 47:103-126.
    [215] Chen, S. L., Li, J., Deng, S. P., et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Marine Biotechnology 9, 2007, 273-280.
    [216] Carbone, P., Vitturi, R., Catalano, E. et al. Chromosome sex determination and Y-autosome fusion in Blennius tentacularis Brunnich, 1765 (Pisces, Blennidae) [J]. J Fish Biol. 1987, 31:597–602.
    [217] Iturra, P., Medrano, J. F., Bagley, M., et al. Identification of sex chromosome molecular marker using RAPDs and fluorescent in situ hybridization in rainbow trout [J]. Genetica, 1998, 101, 209-213.
    [218] Nanda I, Feitchtinger W, Schmid M, et al. Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish [J]. J. Mol. Evol, 1990, 30: 456–62.
    [219] Nanda I, Schartl M, Feichtinger W, et al. Early sex chromosome differentiation in fish as analysed by simple repetitive DNA sequences [J]. Chromosoma, 1992, 101: 301–310.
    [220] Capriglione T, Morescalchi A, Olmo E, et al. Satellite DNAs, heterochromatin and sex chromosomes in Chionodraco hamatus (Channichthyidae, Perciformes) [J]. Polar Biol. 1994, 14 (4): 285–290.
    [221] Nakayama I, Biagi CA, Koide N, Devlin RH. Identification of a sex-linked GH pseudogene in one of two species of Japanese salmon (Oncorhynchus masou and O. rhodurus) [J]. Aquaculture 1999, 173: 65-72.
    [222] Matsuda M. Sex determination in fish: Lessons from the sex-determining gene of the teleost medaka, Oryzias latipes [J]. Dev Growth Differ. 2003, 45(5-6): 397-403.
    [223] Yusuke T, Kiyoshi N, Satoshi H, et al. Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryziashubbsi and O.dancena [J]. Chromosoma. 2007, 116: 463-70.
    [224] Khamnamtong B, Thumrungtanakit S, Klinbunga S, et al. Identification of sex-specific expression markers in the Giant tiger shrimp [J]. J. Biochem. Mol. Biol. 2006, 39, 37-45.
    [225] Felip A, Young WP, Wheeler PA, et al. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2005, 247, 35-43.
    [226] Wu CP, Horng YM, Yang KT, et al. Female-specic DNA sequences in ostriches [J]. Molecular and Cellular Probes, 2006, 20: 307-310.
    [227] Horng YM, Wu CP, Wang YC, et al. A novel molecular genetic marker for gender determination of pigeons [J]. Theriogenology, 2006, 65: 1759-1768.
    [228] Reddy A, Prakash V, Shivaji S. A rapid, non-invasive, PCR-based method for identification of sex of the endangered Old World vultures (white-backed and long-billed vultures) - Implications for captive breeding programmes [J]. Cur. Sci. 2007, 92: 659-662.
    [229] Duan W, Fuerst PA. Isolation of a Sex-Linked DNA Sequence in Cranes [J]. J. Hered. 2001, 92(5): 392-397.
    [230] Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes [J]. Hered. 2005, 95: 118-28.
    [231] Nanada I, Schartl M, Epplen J T, et al. Primitive sex chromosomes in poeciiliid fishes harbor simple repetitive DNA sequences[J]. J Exp Zool. 1993, 265(3): 301- 308.
    [232] Nanada I, Volff J N, Weis S, et al. Amplification of a long terminal repeat- like element on the Y chromosome of the platyfish, Xiphophorus maculatus [J]. Chromosoma. 2000, 109(3): 173-180.
    [233] Stein J, Phillips R B, Dvlin R H. Identification of the Y chromosome in Chinook salmon (Oncorhynchus tahawytscha)[J]. Cytogenet Cell Genet. 2001, 92: 108-110.
    [234] Borkhsenius S N, Chernov V M. A family of repetitive nucleotide sequences Sau3A family in thegenome of 2 forms of the sockeye salmon Oneorhynchus nerka [J]. Mol Biol (Mosk). 1988, 22(2): 439- 445.
    [235] Lucchesi JC. Gene dosage compensation and the evolution of sex chromosomes [J]. Science, 1978; 202: 711– 716.
    [236] Du, S. J., Devlin, R. H. & Hew, C. L. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): Presence of two functional genes, GH-I and GH-II, and a male-specific pseudogene, GH-psi [J]. DNA Cell Biology.1993, 12, 739–751.
    [237] Nelson J S. Fishes of the world[M]. New York: 1994, 600.
    [238] J. J. CHEN, Q.Y. DU, Y. Y. YUE, et al. Screening and identification of male-specific DNA fragments in common carps (Cyprinus carpio) using suppression subtractive hybridization (SSH) [J]. J Fish Bio. 2010, 77(2): 403-13.
    [239] D. Mazurais, J. Montfort, C. Delalande et al. Transcriptional analysis of testis maturation using trout cDNA macroarrays [J]. Gen. Comp. Endocrinol. 2005, 142 : 143–154.
    [240] E. Sawatari, S. Shikina, T. Takeuchi et al. A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss) [J], Dev. Biol. 2007, 301: 266–275.
    [241] J.A. Luckenbach, D.B. Iliev, F.W. Goetz, et al. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch [J]. Reprod. Biol. Endocrinol.2008, 6 (2) : 2.
    [242] Y. Shibata. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka [J]. Gene Expr. Patterns. 2010, 10: 283–289.
    [243] Curi, S. M., Ariagno, J. I., Chenlo, P. H., et al. Asthenozoospermia: analysis of a large population [J]. Arch. Androl. 2003, 49, 343–349.
    [244] Mann, T. & Lutwak-Mann, C. Male Reproductive Function and Semen[M] (Springer, New York), 1981, 198–268.
    [245] Bunch DO, Welch JE, Magyar PL. Glyceraldehyde 3-phosphate dehydrogenase-S protein distribution during mouse spermatogenesis [J]. Biol. Reprod. 1998, 58, 834–841.
    [246] Welch JE, Brown PL, O'Brien DA, et al. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells [J]. J. Androl. 2000, 21, 328–338.
    [247] Mori C, Nakamura N, Welch JE, et al. Mouse spermatogenic cell-specific type 1 hexokinase (mHk1-s) transcripts are expressed by alternative splicing from the mHk1 gene and the HK1-S protein is localized mainly in the sperm tail [J]. Mol. Reprod. Dev. 1998, 49, 374–385.
    [248] Beyler SA, Wheat TE, Goldberg E Binding of antibodies against antigenic domains of murine lactate dehydrogenase C4 to human and mouse spermatozoa [J]. Biol. Reprod. 1985, 32, 1201–1210.
    [249] Westhoff D, Kamp G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa [J]. J. Cell Sci. 1997, 110, 1821–1829.
    [250] Mori C, Welch JE, Fulcher KD, et al. Unique hexokinase messenger ribonucleic acids lacking the porin-binding domain are developmentally expressed in mouse spermatogenic cells [J]. Biol.Reprod.1993, 49, 191–203.
    [251] Mia Buehr, Anne McLaren. An electrophoretically detectable modification of glucosephosphate isomerase in mouse spermatozoa [J]. J. Reprod. Fertil.1981, 63, 169–173.
    [252] Gillis BA, Tamblyn TM. Association of bovine sperm aldolase with sperm subcellular components [J]. Biol. Reprod.1984, 31, 25–35.
    [253] Russell DL, Kim KH. Expression of triosephosphate isomerase transcripts in rat testis: evidence for retinol regulation and a novel germ cell transcript [J]. Biol. Reprod.1996, 55, 11–18.
    [254] Edwards, Y. H., Grootegoed, J. A. A sperm-specific enolase [J]. J. Reprod. Fertil. 1983, 68, 305–310.
    [255] Fraser, L.R., Quinn, P.J. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse [J]. J. Reprod. Fertil.1981, 61, 25–35.
    [256] Cooper TG. The onset and maintenance of hyperactivated motility of spermatozoa in the mouse [J]. Gamete Res.1984, 9, 55–74.
    [257] Urner F, Sakkas D. Glucose participates in sperm-oocyte fusion in the mouse [J]. Biol Reprod. 1996, 55(4): 917-922.
    [258] Bone W, Jones NG, Kamp G, et al. Effect of ornidazole on fertility of male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilization in vitro [J]. J. Reprod. Fertil. 2000, 118,127–135.
    [259] Hoshi, K., Tsukikawa, S., Sato, A. Importance of Ca2+, K+ and glucose in the medium for sperm penetration through the human zona pellucida [J]. Tohoku J. Exp. Med.1991, 165, 99-104.
    [260] Williams AC.Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa [J]. J. Androl.2001 22, 680–695.
    [261] Kiyoshi Miki, Weidong Qu, Eugenia H. et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility [J]. Proceedings of the National Academy of Sciences of the United States of America(PNAS, 2004, 101(47): 16501-16505.
    [262] Iguchi N, Tanaka H, Nakamura Y, et al. Cloning and characterization of the human tektin-t gene [J]. Mol Hum Reprod. 2002, 8: 525-530.
    [263] Wolkowicz MJ, Naaby-Hansen S, Gamble AR, et al. Tektin B1 demonstrates flagellar localization in human sperm [J]. Biol Reprod. 2002, 66:241-250.
    [264] McLachlan AD, Stewart M. Periodic charge distribution in the intermediate filament proteins desmin and vimentin [J]. J Mol Biol. 1982, 162: 693-698.
    [265] Parry DA, Strelkov SV, Burkhard P, et al. Towards a molecular description of intermediate filament structure and assembly [J]. Exp Cell Res. 2007, 313: 2204-2216.
    [266] Goldie KN, Wedig T, Mitra A, et al. Dissecting the 3-D structure of vimentin intermediate filaments by cryoelectron tomography [J]. J. Struct Biol. 2007, 158: 378-385.
    [267] Linck RW. Flagellar doublet microtubules: fractionation of minor components and alpha-tubulin from specific regions of the A-tubule [J]. J Cell Sci. 1976, 20: 405-439.
    [268] Linck RW, Langevin G. Structure and chemical composition of insoluble filamentous components of sperm flagellar microtubules [J]. J Cell Sci. 1982, 58: 1-22.
    [269] Linck RW, Stephens RE. Biochemical characterization of tektins from sperm flagellar doublet microtubules [J]. J Cell Biol. 1987, 104: 1069-1075.
    [270] Amos WB, Amos LA, Linck RW. Proteins closely similar to flagellar tektins are detected in cilia but not in cytoplasmic microtubules [J]. Cell Motil. 1985, 5: 239-249.
    [271] Norrander JM, Amos LA, Linck RW. Primary structure of tektin A1: comparison with intermediate-filament proteins and a model for its association with tubulin [J]. Proc Natl Acad Sci USA. 1992, 89: 8567-8571.
    [272] Chen R, Perrone CA, Amos LA, et al. Tektin B from ciliary microtubules: primary structure as deduced from the cDNA sequence and comparison with tektin A [J]. J Cell Sci. 1993, 106: 909-918.
    [273] Norrander JM, Perrone CA, Amos LA, et al. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules [J]. J Mol Biol. 1996, 257:385-397.
    [274] Norrander J, Larsson M, Stahl S, et al. Expression of ciliary tektins in brain and sensory development [J]. J Neurosci. 1998, 18: 8912-8918.
    [275] Linck R, Norrander JM. Protofilament ribbon compartments of ciliary and flagellar microtubules [J]. Protist. 2003, 154: 299-311.
    [276] Setter PW, Malvey-Dorn E, Steffen W, et al.Tektin interactions and a model for molecular functions [J]. Exp Cell Res. 2006, 312: 2880-2896.
    [277] Iguchi N, Tanaka H, Fujii T, et al. Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis [J]. FEBS Lett. 1999, 456: 315-321.
    [278] Larsson M, Norrander J, Gr?slund S, et al. The spatial and temporal expression of Tekt1, a mouse tektin C homologue, during spermatogenesis suggest that it is involved in the development of the sperm tail basal body and axoneme [J]. Eur J Cell Biol. 2000, 79: 718-725.
    [279] Xu M, Zhou Z, Cheng C, et al. Cloning and characterization of a novel human tektin1 gene [J]. Int J Biochem Cell Biol. 2001, 33: 1172-1182.
    [280] Ota A, Kusakabe T, Sugimoto Y, et al. Cloning and characterization of testis-specific tektin in Bombyx mori [J]. Comp Biochem Physiol B: Biochem Mol Biol. 2002, 133: 371-382.
    [281] Mallarino R, Bermingham E, Willmott KR, et al. Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes [J]. Mol Phylog Evol. 2005, 34: 625-644.
    [282] Murayama E, Yamamoto E, Kaneko T, et al. Tektin5, a new tektin family member, is a component of the middle piece of flagella in rat spermatozoa [J]. Mol Reprod Dev. 2008, 75: 650-658.
    [283] Ritzen EM. Chemical messengers between Sertoli cells and neighbouring cells [J]. J Steroid Biochem. 1983, 19:499–504
    [284] Clark AM, Samaras SE, Hammond JM, et al. Changes in the messenger ribonucleic acid for insulin-like growth factor-I and -II in the porcine testis during and between two waves of testicular development [J]. Biol Reprod. 1994, 50:993–999.
    [285] Closset J, Gothot A, Sente B, et al. Pituitary hormones dependent expression of insulin-like growth factors I and II in the immature hypophysectomized rat testis [J]. Mol Endocrinol. 1989, 3:1125–1131.
    [286] Voutilainen R, Miller WL. Developmental and hormonal regulation of mRNAs for insulin-like growth factor II and steroidogenic enzymes in human fetal adrenals and gonads [J]. DNA, 1988, 7: 9–15.
    [287] Tajima Y, Watanabe D, Koshimizu U, et al. Insulin-like growth factor-I and transforming growth factor- stimulate differentiation of type A spermatogonia in organ culture of adult mouse cryptorchid testes [J]. Int J Androl. 1995, 18: 8–12.
    [288] Lin T, Haskell J, Vinson N, Terracio L. Direct stimulatory effects of insulin-like growth factor-I on Leydig cell steroidogenesis in primary culture [J]. Biochem Biophys Res Commun.1986,137: 950–956.
    [289] Oonk RB, Grootegoed JA. Insulin-like growth factor I (IGF-I) receptors on Sertoli cells from immature rats and age-dependent testicular binding of IGF-I and insulin [J]. Mol Cell Endocrinol. 1988, 55:33–43.
    [290] Smith EP, Dickson BA, Chernausek SD. Insulin-like growth factor binding protein-3 secretion from cultured rat Sertoli cells: dual regulation by follicle stimulating hormone and insulin-like growth factor-I [J]. Endocrinology, 1990, 127: 2744–2751.
    [291] Rappaport MS, Smith EP. Insulin-like growth factor (IGF) binding protein 3 in the rat testis: follicle-stimulating hormone dependence of mRNA expression and inhibition of IGF-I action on cultured Sertoli cells [J]. Biol Reprod. 1995. 52:419–425.
    [292] Zhou J, Bondy C. Anatomy of the insulin-like growth factor system in the human testis [J]. Fertil Steril. 1993. 60:897–904
    [293] Call, K.M. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus [J]. Cel1. 1990, 60: 509–520.
    [294] Gessler, M., et al. Homozygous deletion in Wilms tumours of a zincfinger gene identified by chromosome jumping [J]. Nature, 1990, 343: 774–778.
    [295] Rivera, M.N., Haber, D.A. Wilms' tumour: connecting tumorigenesis and organ development in the kidney [J]. Nat. Rev., Cancer, 2005, 5: 699–712.
    [296] Armstrong, J.F., et al. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo [J]. Mech. Dev. 1993, 40: 85–97.
    [297] Pritchard-Jones, K., et al. The candidate Wilms' tumour gene is involved in genitourinary development [J]. Nature, 1990, 346: 194–197.
    [298] Rackley, R.R., et al. Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis [J]. Cell Growth Differ. 1993, 4: 1023–1031.
    [299] Haber DA, Sohn RL, Buckler AJ, et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1 [J]. Proc Natl Acad Sci USA, 1991, 88: 9618-9622.
    [300] Gessler, M, Konig, A, Bruns, G. A. The genomic organization and expression of the WT1 gene [J]. Genomics,1992, 12: 807-813.
    [301] Wagner KD, Wagner N, Schedl A.The complex life of WT1 [J]. J. Cell Sci. 2003, 116(9): 1653 - 1658.
    [302]李明,李江源.性别决定的分子机制[J].当代医学, 2001, 7 (2): 53-56.
    [303] Hammes A, Guo JK, Lutsch G, et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation [J]. Cell, 2001, 106 (3) : 319~329.
    [304] Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1 [J]. Genes Dev. 2002, 16(14): 1839–1851.
    [305] MacLaughlin DT, Donahoe PK. Sex determination and differentiation [J]. N Engl J Med. 2004, 350 :367-378.
    [306] Bollig, F., et al. Identification and comparative expression analysis of a second wt1 gene in zebrafish [J]. Dev. Dyn. 2006, 235, 554–561.
    [307] Drummond, I.A., et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function [J]. Development, 1998, 125, 4655–4667.
    [308] Birgit Perner, Christoph Englert, Frank Bollig. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros [J]. Developmental Biology, 2007, 309 : 87–96.
    [309] Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins [J]. Annu Rev Biochem. 1989, 58: 575–606.
    [310] Gospodarowicz D, Ferrera N, Schweigerer C, et al. Structural characterization and biological functions of fibroblast growth factor [J]. Endocr Rev. 1987, 8: 95–113.
    [311] Gospodarowicz D. Fibroblast growth factor and its involvement in developmental processes [J]. Curr Top Dev Biol. 1990,24: 75–93.
    [312] Mullaney BP, Skinner MK. Basic fibroblast growth factor (bFGF) gene expression and protein production during pubertal development of the seminiferous tubule: follicle-stimulating hormone-induced Sertoli cell bFGF expression [J]. Endocrinology, 1992, 131: 2928–2934.
    [313] Smith EP, Hall SH, Monaco L, et al. A rat Sertoli cell factor similar to basic fibroblast growth factor increases c-fos messenger ribonucleic acid in cultured Sertoli cells [J]. Mol Endocrinol. 1989, 3: 954–961.
    [314] Lahr G, Mayerhofer A, Seidl K, et al. Basic fibroblast growth factor (bFGF) in rodent testis. Presence of bFGF mRNA and of a 30 kDa bFGF protein in pachytene spermatocytes [J]. FEBS Lett. 1992, 302: 43–46.
    [315] Smith EP, Hall SH, Monaco L, et al. Regulation of c-fos messenger ribonucleic acid by fibroblast growth factor in cultured Sertoli cells [J]. Ann NY Acad Sci. 1989, 564: 132–139.
    [316] Wang P. J, John R. M, et al. An abundance of X-linked genes expressed in spermatogonia [J]. nature genetics, 2001, 27: 422-426.
    [317] Bork P, Sander C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-beta type III receptor [J]. FEBS Lett. 1992, 300:237–240.
    [318] Wassarman PM. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion [J]. Cell, 1999, 96:175–183.
    [319] McLeskey, S., Dowds, C., Carballada, R., et al. Molecules involved in mammalian sperm-egg interaction [J]. Int Rev Cytol. 1998, 177: 57–113.
    [320] Conner, S., Hughes, D. Analysis of fish ZP1/ZPB homologous genes– evidence for both genome duplication and species-specific amplification models of evolution [J]. Reproduction, 2003, 126: 347–352.
    [321] Lindsay, L., Peavy, T., Lejano, R., et al. Cross-fertilization and structural comparison of egg extracellular matrix glycoproteins from Xenopus laevis and Xenopus tropicalis [J]. Comp Biochem Physiol A Mol Integr Physiol. 2003, 136: 343–352.
    [322] Smith, J., Paton, I., Hughes, D., et al. Isolation and mapping the chicken zona pellucida genes: an insight into the evolution of orthologous genes in different species [J]. Mol Reprod Dev. 2005, 70: 133–145.
    [323] Wassarman PM. Profile of a mammalian sperm receptor [J]. Development, 1990, 108:1–17.
    [324] Kubo H, Kawano T, Tsubuki S, et al. A major glycoprotein of Xenopus egg vitelline envelope, gp41, is a frog homolog of mammalian ZP3 [J]. Dev Growth Differ. 1997, 39: 405–417.
    [325] Waclawek M, Foisner R, Nimpf J, et al. The chicken homologue of zona pellucida protein-3 is synthesized by granulosa cells [J]. Biol Reprod. 1998, 59:1230–1239.
    [326] Bausek N, Waclawek M, Schneider WJ, et al. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver [J]. J Biol Chem. 2000, 275: 28866–28872.
    [327] Del Giacco L, Vanoni C, Bonsignorio D, et al. Identification and spatial distribution of the mRNA encoding the gp49 component of the gilthead sea bream, Sparus aurata, egg envelope [J]. Mol Reprod Dev. 1998, 49:58–69.
    [328] Sugiyama H, Yasumasu S, Murata K, et al. The third egg envelope subunit in fish: cDNA cloning and analysis, and gene expression [J]. Dev Growth Differ.1998, 40:35–45.
    [329] Murata K, Sugiyama H, Yasumasu S, et al. Cloning of cDNA and estrogen-induced hepatic gene expression for choriogenin H, a precursor protein of the fish egg envelope (chorion) [J]. Proc Natl Acad Sci. U S A, 1997, 94:2050–2055.
    [330] Kanamori A. Systematic identification of genes expressed during early oogenesis in medaka [J]. Mol Reprod Dev. 2000, 55:31–36.
    [331] Kanamori A, Naruse K, Mitani H, et al. Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes) [J]. Gene. 2003, 305:35–45.
    [332] Wang H, Gong Z. Characterization of two zebrafish cDNA clones encoding egg envelope proteins ZP2 and ZP3 [J]. Biochim Biophys Acta. 1999, 1446:156–160.
    [333] Del Giacco L, Diani S, Cotelli F. Identification and spatial distribution of the mRNA encoding an egg envelope component of the Cyprinid zebrafish, Danio rerio, homologous to the mammalian ZP3 (ZPC) [J]. Dev Genes Evol. 2000, 210: 41–46.
    [334] Mold DE, Kim IF, Tsai CM, et al. Cluster of genes encoding the major egg envelope protein ofzebrafish [J]. Mol Reprod Dev. 2001, 58:4–14.
    [335] Kornberg RD, Lorch Y. Chromatin structure and transcription [J]. Annu Rev Cell Biol. 1992, 8: 563–587.
    [336] Ayyanathan K, Lechner MS, Bell P, et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation [J]. Genes Dev. 2005, 17: 1855–1869.
    [337] Katan-Khaykovich Y, Struhl K. Heterochromatin formation involves changes in histone modifications over multiple cell generations [J]. EMBO J. 2005, 24: 2138–2149.
    [338] Kouzarides T. Chromatin modifications and their function [J]. Cell, 2007, 128: 693–705.
    [339] Cheng X, Collins RE, Zhang X. Structural and sequence motifs of protein (histone) methylation enzymes [J]. Annu Rev Biophys Biomol Struct. 2005, 34: 267–294.
    [340] Martin C, Zhang Y. The diverse functions of histone lysine methylation [J]. Nat Rev Mol Cell Biol. 2005, 6: 838–849.
    [341] Tschiersch B, Hofmann A, Krauss V, et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes [J]. EMBO J. 1994, 13: 3822–3831.
    [342] Biron VL, McManus KJ, Hu N, et al. Distinct dynamics and distribution of histone methyl-lysine derivatives in mouse development [J]. Dev Biol. 2004, 276: 337–351.
    [343] Torres-Padilla ME, Parfitt DE, Kouzarides T, et al. Histone arginine methylation regulates pluripotency in the early mouse embryo [J]. Nature, 2007, 445: 214–218.
    [344] Yu BD, Hess JL, Horning SE, et al. Altered Hox expression and segmental identity in Mll-mutant mice [J]. Nature, 1995, 378: 505–508.
    [345] O’Carroll D, Erhardt S, Pagani M, et al. The polycomb-group gene Ezh2 is required for early mouse development [J]. Mol Cell Biol. 2001, 21: 4330–4336.
    [346] Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability [J]. Cell, 2001, 107: 323–337.
    [347] Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis [J]. Genes Dev. 2002, 16: 1779–1791.
    [348] O’Carroll D, Scherthan H, Peters AH, et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression [J]. Mol Cell Biol. 2000, 20: 9423–9433.
    [349] Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase [J]. Nature, 2005, 438: 374–378.
    [350] Jin W, Riley RM, Wolfinger RD, et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster [J]. Nat Genet. 2001, 29:389–395.
    [351] Arbeitman MN, Furlong EEM, Imam F, et al. Gene expression during the life cycle of Drosophila melanogaster [J]. Science, 2002, 297: 2270–2275.
    [352] Parisi M, Nuttall R, Naiman D, et al. Paucity of genes on the Drosophila X chromosome showing male-biased expression [J]. Science, 2003, 299: 697–700.
    [353] Ranz JM, Castillo-Davis CI, Meiklejohn CD, et al. Sex-dependent gene expression and evolution of the Drosophila transcriptome [J]. Science, 2003, 300: 1742–1745.
    [354] Kanamori A. Systematic identification of genes expressed during early oogenesis in medaka [J]. Mol Reprod Dev. 2000, 55: 31–36.
    [355] Xie J, Wen JJ, Chen B, et al. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps [J]. Gene, 2001, 271:109–116.
    [356] Chaoming Wen, Zhenhai Zhang, Weiping Ma, et al. Genome-Wide Identification of Female-Enriched Genes in Zebrafish [J]. DEVELOPMENTAL DYNAMICS, 2005, 232: 171–179.
    [357] Wienholds A, Schulte-Merker S, Walderich B, et al. Target-selected inactivation of the zebrafish rag1 gene [J]. Science, 2002, 292: 99–102.
    [358] Nasevicius A, Ekker SC. Effective targeted gene“knockdown”in zebrafish [J].Nat Genet. 2000, 26: 216–220.
    [359]吴清江,陈德容,叶玉珍,等.鲤鱼人工雌核发育及其作为建立近交系统新途径的研究[J].遗传学报, 1981, 8(1): 51-55.
    [360]Yang Y Q. Use of three line Combination for production of genetic all-male Tilapia mossambica [J]. Acta Genet Sin. 1980, 73: 241-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700