蓝鳃太阳鱼性控和性决定机制以及性别相关分子标记的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝鳃太阳鱼(Lepomis macrochirus)隶属鲈形目,太阳鱼科,太阳鱼属。其耐低溶氧和肥水,肉质细嫩,无肌间刺,在美国密歇根和俄亥俄州,蓝鳃太阳鱼已经成为三大主要水产养殖种类之一。同时,由于其体色鲜艳,尤其在生殖季节,雄鱼的体色非常艳丽,其已作为一种观赏鱼类被很多人喜爱。但是蓝鳃太阳鱼具有性成熟早、繁殖快、年繁殖次数多等特性,使得在水库和池塘养殖过程中极易造成繁殖过剩、密度过大、生长速度较慢、个体过小且大小不均等不利情况,从而影响了蓝鳃太阳鱼养殖产业的进一步扩大。目前解决这一问题最为理想的措施是通过单性养殖有效的控制群体数量,消除大量繁殖、早熟以及其造成的影响。蓝鳃太阳鱼的生长表现出显著的性别差异,雄性比雌性体型大,生长速度快。因此,生产中培育全雄蓝鳃太阳鱼具有非常重要的应用和商业价值。本研究在蓝鳃太阳鱼性逆转基础上,对其性别决定机制进行初步的阐述,尝试采用分子标记方法寻找其性别特异性分子标记,对蓝鳃太阳鱼的单性育种进行研究。主要研究结果如下:
     (1)蓝鳃太阳鱼性别分化及其与个体大小和年龄的关系
     对鱼类性腺发育和性腺分化过程的了解有助于在其激素敏感时期采取外源激素的处理,从而在水产养殖实践中有效的调控其性别发育。本试验系统研究了蓝鳃太阳鱼从孵出到孵出后90天(90 dph)期间的性腺分化过程。通过设计慢速生长批次鱼(SGB)和快速生长批次鱼(FGB),研究了其性腺分化与个体年龄和生长的关系。在卵巢发育中,生殖细胞和体细胞的分化开始于鱼体体长为13.2-16.0 mm(SGB的60 dph,FGB的30 dph)之间。性腺基部和末梢组织的突起和延伸以及组织的融合发生在体长为16.0-21.0 mm(SGB的80 dph,FGB的50 dph)之间,生殖细胞在这个时期开始了减数分裂。体长大于25.5 mm的雌性卵巢已经含有了周边核仁期卵母细胞。在精巢发育方面,输出管形成于体长为25.4-28.0 mm(SGB的90 dph,FGB的70 dph)个体中,生殖细胞的减数分裂在这个阶段开始出现,体长大于33.0 mm的雄性精巢中精原细胞减数分裂活跃。这些结果表明蓝鳃太阳鱼属于雌雄异体分化型鱼类,雌性性腺的分化早于雄性,性腺分化与生长速度更相关,其性腺分化的关键时期发生在其体长为13.2-16.0mm之间。
     (2)17β-雌二醇诱导蓝鳃太阳鱼雌性化研究
     系统研究了口服不同剂量的天然雌二醇17p-estradiol(E2)对蓝鳃太阳鱼生长、性别比例、性腺发育的影响。从鱼苗孵出后30天开始投喂含不同剂量E2的饲料(50 mg/kg,100 mg/kg,150 mg/kg和200 mg/kg),设置一个空白组,每个组设置三个重复,投喂60天,结果发现E2的投喂对鱼存活率没有产生显著性影响(P>0.05)。E2投喂期间,鱼的生长速度受到了抑制,但在投喂E2完后的120天,投喂了E2的鱼生长速度出现了补偿效应。所有的E2处理组都诱导了100%的雌性,但在50mg/kg和100 mg/kg的处理组出现了兼性个体。待所有处理组鱼成熟后,比较了繁殖季节不同处理组鱼的性腺指数,没有显著差异(P>0.05)。E2处理组所得到的雌性的卵巢组织结构与对照组雌性的卵巢没有明显差别。综合比较雌性化效果、E2投喂期间和投喂后的生长速度以及个体性腺的发育,总结得出150 mg/kg的E2处理对蓝鳃太阳鱼的雌性化可以得到最佳的效果,50mg/kg和100 mg/kg的E2剂量不足,而200 mg/kg的E2过量。
     (3)芳香化酶抑制剂诱导蓝鳃太阳鱼雄性化研究
     使用芳香化酶抑制剂Letrozole对蓝鳃太阳鱼进行雄性化处理。实验1在鱼苗30-90 dph期间,投喂含不同AI剂量(50 mg/kg,150 mg/kg,250 mg/kg和500mg/kg)的饲料,结果发现500 mg/kg的AI处理影响了雌性卵巢腔的形成,在这个处理组发现了一个兼性性腺。所有处理组鱼的雌性比例都显著偏离理论值1:1,且雄性比例都显著高于对照组(P<0.05)。实验2,在鱼苗30-50 dph期间,每隔5天浸泡一次AI,设置250μg/L,50μg/L和1000μg/L AI三个处理组和一个对照组,每次浸泡8小时,结果发现500μg/L和1000μg/LAI处理组的雄性比例显著高于对照组和1000μg/L AI处理组(P<0.05)。各AI处理组和对照组鱼的体长和体重都不存在显著差异(P>0.05)。这些结果显示芳香化酶抑制剂AI可以诱导蓝鳃太阳鱼雌鱼雄性化,表明AI可以改变蓝鳃太阳鱼性腺的分化并通过抑制芳香化酶的活性促使性腺分化为雄性。
     (4)温度以及温度-基因型相互作用对蓝鳃太阳鱼性别分化的影响
     研究了不同的温度(17。C,23℃,29℃和34℃)处理对蓝鳃太阳鱼性别分化的影响,通过设计两批来自不同亲本的鱼,探讨了基因型×环境型相互作用对蓝鳃太阳鱼性别分化的影响。使用6对多态性高的微卫星标记对不同批次的鱼做了亲子鉴定,确定了其亲本来源,结果显示第一批鱼来自11个家系,第二批鱼来自8个家系。对不同温度处理组鱼的性别进行鉴定,结果显示第一批鱼的29℃和34℃处理组鱼,以及第二批鱼的34℃处理组鱼的雌雄比例显著偏离理论值1:1(P<0.05)。第一批鱼的29℃和34℃处理组的雄性比例显著高于17℃和23℃处理组(P<0.05),而第二批鱼的各温度处理组之间的雄性比例没有表现出显著差异(P>0.05)。比较两批鱼相同的温度处理组发现29℃和34℃两个处理组存在显著差异(P<0.05)。通过组织切片的观察发现17℃和34℃处理组存在兼性个体,在同一个性腺组织内同时存在精巢组织和卵巢组织。这些结果表明高温诱导了更多的雄性,低温诱导更多的雌性,但其诱导率受到亲本基因型的影响,不同家系个体对温度的敏感性不同。因此在蓝鳃太阳鱼性别决定中,存在温度-基因型的相互作用。
     (5)全雄蓝鳃太阳鱼的获得及其性别决定机制的初步探讨
     将通过E2处理的雌性化蓝鳃太阳鱼(150 mg/kg和200 mg/kg E2)与正常雄性交配,检测子代的性别比例,繁殖了20个家系,同时还繁殖了2个正常雌雄交配产生的家系,养殖过程中有5批性逆转雌鱼繁殖的家系全部死掉了,其余批次的鱼的存活率都达到了80%以上。性别鉴定结果显示2个对照组家系子代的性别比例都接近于理论值1:1,没有显著性差异(P>0.05)。而15个性逆转亲本的繁殖家系中,有1个家系的雄性所占百分比为61%;有7个家系的雄性比例在70%-80%之间;另外有2个家系的雄性比例为97%和98%,5个家系的雄性比例为100%,这7个家系的雌雄比例与预期值0:1没有显著性差异(P>0.05),相当于获得7个全雄蓝鳃太阳鱼家系。鉴于不同家系中雄性所占比例绝大部分在75%到100%之间,考虑到养殖期间温度的影响,根据三系配套法原理,可初步推测蓝鳃太阳鱼的性别决定机制为ZW/ZZ型,但常染色体上的一些基因或者是环境也会影响其性别决定。
     (6)蓝鳃太阳鱼雌激素受体和芳香化酶基因在雌雄不同组织中的差异表达
     雌激素受体ERal、ERa2和ERβ基因在蓝鳃太阳鱼雌性和雄性的性腺、鳃、胃、大脑、肾脏、肝脏、心脏、肌肉组织中都有表达,以β-actin基因做内参基因,比较表明ERal和ERa2基因在雌性卵巢的表达量高于雄性精巢,ERa2基因在雄性大脑组织中的表达高于雄性的其它组织,在雌性肝脏中的表达高于雌性其它组织,而ERβ基因在雄性精巢的表达量高于雌性卵巢,在雄性胃组织的表达量也高于雌性。通过3'-RACE得到了1498 bp的芳香化酶基因Cyp19a1a的cDNA序列,Cyp19a1a基因在蓝鳃太阳鱼雌雄鳃、胃、肾脏、心脏、肌肉组织中都没有表达,在雌性卵巢、肝脏和大脑中有表达,雄性精巢和肝脏中有表达,但在卵巢中的表达量高于精巢。这为通过基因表达情况鉴定蓝鳃太阳鱼的性别奠定了一定的基础。
     (7)蓝鳃太阳鱼性别特异AFLP标记的筛选
     采用AFLP分子标记方法,使用256对AFLP引物组合,在2个雌性DNA基因池和2个雄性DNA基因池中扩增,共扩增出了12835条清晰的条带,平均每个引物组合产生51条带,在四个基因池中共发现了531个多态位点,占总位点数的4.14%。其中9对引物组合在雌雄基因组DNA池中产生性别特异性扩增带,4个位点为雌性基因池特有,5个位点为雄性基因池特有。但将这9对引物组合在个体中评估没有发现基因池所具有的特异性扩增带在组成该基因池的所有个体中都存在,这表明在基因池中出现的差异位点都是由个体差异产生,而不是该性别所特有的标记,表明蓝鳃太阳鱼雌雄基因组信息差异不大。
     利用9个AFLP引物组合,对蓝鳃太阳鱼Hocking, Wooster和Hebron三个群体进行了遗传结构分析。结果显示三个群体的多态位点百分率分别为28.7%、14.7%和16.8%,Nei's遗传多样性分别为0.0866、0.0459和0.0617,Hocking群体蓝鳃太阳鱼遗传多样性最丰富,Hebron群体其次,Wooster群体最低。Hocking和Hebron群体间的遗传距离最小,亲缘关系最近,Hocking和Wooster群体间的遗传分化最大。该结果为开展蓝鳃太阳鱼的遗传选育奠定了一定的基础。
     本课题系统研究了蓝鳃太阳鱼性别分化、性别调控、性别相关基因表达等内容,初步鉴定蓝鳃太阳鱼的性别决定机制为ZW/ZZ型,但常染色体上的一些基因或者是环境也会影响其性别决定。本研究结果为其单性养殖提供了指导,有望通过繁殖性逆转鱼大规模得到全雄蓝鳃太阳鱼群体,用于其养殖业,这将大大提高蓝鳃太阳鱼养殖的经济效益。
The bluegill sunfish Lepomis macrochirus, a member of the sunfish family (family Centrarchidae) of order Perciformes, is currently recognized as one of the most valuable North American recreational fishes. It has long been commercially cultured to support recreational fishery stocking needs throughout the middle south, and southeastern United States. In the meantime, the bluegill sunfish has become increasingly important as a high-value species in aquaculture. In some states, like Ohio and Michigan in the United States, the bluegill sunfish has been listed as one of the top three culture species of fish. However, a common problem in small impoundments and farm ponds stocked with this species is overcrowded bluegill population due to their prolific reproductive nature and early maturation. An approach to the management of bluegill in small impoundments is to stock monosex populations. Monosex populations can eliminate the problem of prolific reproduction, precocious maturity and their consequences. A number of studies have shown that male bluegill sunfish appear to hold the greatest potential for the food market due to their more rapid growth capacity versus females. Therefore, monosex (all-male) culture will hold considerable potential as a method to increase the efficiency and profitability of bluegill sunfish aquaculture by improving growth rates. The objectives of our present study are to elucidate the sex determinination mechanism in bluegill and to use this information to develop mass production technology of genetically male populations. The main contents include:
     (1) Gonadal sex differentiation in the bluegill sunfish and its relation to fish size and age
     A detailed understanding of the time of gonadal development and differentiation is critical to control sex and optimize culture. In the present study, we systematically studied gonadal sex differentiation of the bluegill sunfish and its relation to fish size and age from post hatching to 90 days post hatching (dph) using a slow-growing batch (SGB) and a fast-growing batch (FGB) of fish. The results indicated that the gonadal differentiation in bluegill was more related to body size than to age. In presumptive ovaries, germinal and somatic differentiation began between 13.2 and 16.0 mm (60 dph in SGB and 30 dph in FGB) in total length (TL). The outgrowths from the proximal and distal portions of the gonads and the fusion of the outgrowths to form the ovarian cavity occurred between 16.0 and 21.0 mm TL (80 dph in SGB and 50 dph in FGB) with germ cells undergoing meiosis. The gonads in the females larger than 25.5 mm TL always had peri-nucleolus oocytes. In presumptive testes, the efferent duct formed in the fish ranging from 25.4 to 28.0 mm TL (90 dph in SGB and 70 dph in FGB) with the onset of meiosis and testes contained spermatocytes exhibiting active meiosis in males larger than 33.0 mm TL. These findings indicate that bluegill is a differentiated gonochorist and sex differentiation occurs earlier in females than males. Based on our results, we suggest that the critical period of sex differentiation in bluegill occurs between 13.2 and 16.0 mm TL and histological sex differentiation is distinguishable in most fish larger than 21.0 mm TL.
     (2) Feminization effects of 17β-estradiol on bluegill sunfish
     We systematically investigated the feminization of bluegill L. macrochirus by oral administration of various doses of 17β-estradiol (E2) and evaluated their effects on the growth performance, production and gonadal structure of sex-reversed female bluegill at both sex-ratio and histological levels. With positive control treatment, 30-day-old fry were fed E2 at 50 mg/kg,100 mg/kg,150 mg/kg and 200 mg/kg diet for 60 days. The survival of fish in the E2 treated and control groups were not significantly different (P> 0.05). The growth of the treated fish was significantly retarded during the period of treatment, while there was no side effect detected post-treatment and the retarded fish caught up during 120 days of culture after E2 treatment. All the treated groups produced 100% monosex female populations based on the macroscopic shape of gonads, and there were no significant differences detected between any E2 treatment and control group in the mean GSI of females during the spawning season from June to October (P> 0.05). Histologically,13.3% and 5.0% of the intersex fish were determined to come from the 50 mg/kg and 100 mg/kg E2 treatment groups, respectively, with 6.9% and 4.1% of the gonadal area containing testicular tissue. Most of genotypical male fish treated with exogenous E2 developed gonadal structures histologically indistinguishable from the gonads of females. This study suggests that 150 mg/kg E2 is the optimal dosage for feminization in bluegill, with 50 mg/kg and 100 mg/kg E2 being sub-optimal and 200 mg/kg E2 being over-optimal.
     (3) Masculinization effects of a nonsteroidal aromatase inhibitor on bluegill sunfish
     The efficacy of Letrozole, a potent nonsteroidal aromatase inhibitor (AI), on gonadal sex differentiation and sex reversal was examined on bluegill sunfish. In Experiment 1 with AI diet treatments (50 mg/kg,150 mg/kg,250 mg/kg and 500 mg/kg) from 30 dph to 90 dph, AI interrupted ovarian cavity formation and the proportions of males in all treated groups were significantly higher than that in the control group. In Experiment 2 with AI immersion treatments (250μg/L,500μg/L, 1000μg/L) during 30 dph to 50 dph, the treated groups of 500μg/L and 1000μg/L produced significantly more males than control and 250μg/L groups. Histological examination revealed no differences in ovary or testis tissues between control and AI treated fish. There were no significant differences detected in body weight and length among the AI treated and control groups (P> 0.05) for both experiments. The results from these two experiments suggest that inhibition of aromatase activity by AI could influence sex differentiation in bluegill sunfish.
     (4) Temperature effects and genotype-temperature interactions on sex differentiation of bluegill sunfish
     The effects of genotype by temperatures (17℃,23℃,29℃,34℃) on sex ratios of bluegill sunfish were tested on two batches of fry with different parents, each having two replicates. The fry were reared at each temperature from an initial mean size of 0.7 cm (4 days post hatch) to a final mean size of 6.3 cm. The sex of fish was then determined by macroscopic and histological examination of the gonads. The potential parents and fry were genotyped at 6 polymorphic microsatellite loci to perform parentage assignment and the result showed there were 11 and 8 full-sib families in the first batch and second batch, respectively. Chi-squared analysis comparing sex ratios of experimental groups for each treatment in both batches of bluegill sunfish with a theoretical 1:1 sex ratio indicated that there were significant deviations in 29℃and 34℃groups in first batch, and 34℃group in second batch bluegill (P< 0.05). The percents of males in 29℃and 34℃groups were significantly higher than that in 17℃and 23℃groups in the first batch (P< 0.05), while in the second batch, no significant differences were found between any treatments (P> 0.05). The pooled sex ratios were then compared to be each other and found that temperature had significant effects on sex ratios in the first batch fish (P< 0.001), while no significant effects on the second batch fish (P> 0.05). There were significant differences in 29℃and 34℃groups between these two batches fish (P< 0.05). Through histological examination, intersex fish were identified in 17℃and 34℃groups, where testicular and ovarian tissue occurred in the same gonad. These results indicated that high rearing temperature could alter the phenotypic sex ratios and increase the proportion of males in some families of bluegill, while not having the same effect in other families. It was concluded that genotype-temperature interactions were existed on bluegill sex determination and their existence suggests the interesting possibility of selecting thermosensitive genotypes in breeding programs for mostly male populations.
     (5) Production of all-male populations and discussion of sex determination mechanism in bluegill sunfish
     Twenty female from sex-reversed fish (150 mg/kg and 200 mg/kg E2) were mated with 20 normal males and two normal females were mated with 2 normal males as control groups. When fry reached the size of over 6 cm, the sex of the fry from each batch were identified. We successfully checked the sex ratios in 15 families from sex-reversed fish and 2 families from normal fish. The results showed the male to female ratios in the two normal batches were not significantly different from theoretical 1:1 ratio (P> 0.05), while male to female ratios in most sex-reversed batches were significantly different from theoretical 1:1 ratio (P< 0.05). Among the sex-reversed batches,61% of the males were found in one family, 70-80% in seven families,97% and 98% in two families, and 100% in five families. In the last seven families, the female to male ratios were not significantly different from theoretical 0:1 ratio (P> 0.05). Considering the principle of endocrine methods to produce all-male stocks and temperature effects on sex differentiation, we suggest the sex determination mechanism in bluegill sunfish is ZW/ZZ type and autosomal genes may be also involved in the process of sex determination.
     (6) Sex-specific tissue expression of estrogen receptor (ERal, ERa2 and ERβ) and aromatase (Cypl9a1a) genes in bluegill sunfish
     The cDNA sequence of 3'-untranslated region of Cypl9a1a about 1498 bp was obtained for bluegill sunfish. Several tissues were analyzed from both male and female adult bluegill sunfish for sex-specific tissue expression. The genes ERal, ERa2 and ERβwere expressed in gill, stomach, spleen, brain, kidney, liver, heart, muscle and gonad. The expression of ERal and ERa2 in ovary was higher than that in testis. In males, ERa2 expression was highest in brain, while in females, ERa2 expression was highest in liver. ERβexpression in testis was higher than that in the ovary and stomach. Cypl9a1a expression was not detected in gill, stomach, spleen, heart and muscle. It was expressed in ovary, liver and brain of females, and in testis and liver of males, while expression in ovary was higher than that in testis. These results would be useful for sex identification in bluegill sunfish.
     (7) An AFLP-based approach to identify sex-specific marker in bluegill sunfish
     AFLP technique was used to identify sex-specific markers in bluegill. Four DNA pools including two females and two males (10 individuals in each pool) were screened by a total of 256 primer combinations. The results showed only 9 out of 12835 loci (0.73%o) exhibited presumed sex-associated amplifications. However, when individuals of each pool were involved to confirm these markers, the polymorphism among different individuals was responsible for the sex-associated amplifications. None was detected as sex-specific markers.
     Nine AFLP primer combinations were used to screen the genome DNA of bluegill individuals from three populations (Hocking, Wooster and Hebron). The results showed the mean percentages of polymorphic bands in the three populations were 28.7%,14.7% and 16.8%, and the Nei's gene diversity was 0.0866,0.0459 and 0.0617, respectively. The Hocking population had the highest genetic diversity, while Wooster population had the lowest value. The genetic distance between Hocking and Hebron was larger than any other two populations.
     This study systematically investigated the sex differentiation, sex control, sex determination mechanism and sex-related markers in bluegill sunfish. Sex determination mechanism in bluegill sunfish was suggested to be ZZ/ZW type, while autosomal genes are also involved in the process of sex determination. The present results indicated the feasibility of increasing the efficiency and profitability of bluegill aquaculture through monosex male culture.
引文
1.常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据.遗传1997,19(3):17-19
    2.常重杰,周荣家,余其兴.两种泥鳅不同群体遗传变异的RAPD分析.动物学报,2001,47(1):89-93
    3.桂建芳.鱼类性别和生殖的遗传基础及其人工控制.北京:科学出版社,2007:166-167
    4.洪云汉,周暾.短颌鲚的核型及其ZZ-ZO性染色体.遗传,1984,6(4):12-14
    5.贾海波,周莉,桂建芳.两个不同锦鲤的红白雌核发育系的建立及其RAPD分子鉴别标记.水生生物学报,2002,6(1):1-7
    6.李家乐,李思发,韩风进.甲基睾丸酮诱导吉富品系尼罗罗非鱼性转化研究.水产学报,1997,21(增刊):107-1101
    7.李静,陈松林,温海深.鱼类性别相关基因及性别特异标记的研究进展.海洋水产研究,2006,27(4):90-95
    8.李康,李渝成,周墩.白缘鱼央性别决定的细胞学证据.遗传,1985,7(3):23-24
    9.刘静霞,周莉,赵振山,等.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97-105
    10.刘筠.我国淡水养殖鱼类育种的实践和思考.生命科学研究,1997,1(1):1-8.
    11.罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究.湖南师范大学自然科学学报,1991,14(2):154-159
    12.宋平,潘云峰,向筑,等.黄颡鱼RAPD标记及其遗传多样性的初步分析.武汉大学学报(理学版),2001,47(2):233-237
    13.邬国民,冼炽彬,陈永乐.四种胡子鲇核型的比较研究.遗传学报,1986,13(3):213-220
    14.吴萍.我国鱼类雌核发育研究的进展及前景.上海水产大学学报,2004,13(3):255-260
    15.吴清江,叶玉珍,阵德荣.鲤鱼人工雌核发育及其作为建立近交系新途径的研究.遗传学报,1981,8(1):50-55
    16.杨东,余来宁.鱼类性别性别鉴定.水生生物学报,2006,30(2):221-226
    17.杨书婷,桂建芳.两个雌核发育白鲢群体同工酶分析及遗传标记的确定.水生生物学报.1999,23(3):264-268
    18.叶玉珍,吴清江,陈荣德.鲤鱼雌核单倍体育种技术及其应用前景.水利渔业,1987,7(3):44-46
    19.余先觉,周敦,李渝成.中国淡水鱼类染色体.北京:科学出版社,1989:1-9
    20.喻子牛,孔晓瑜,谢宗墉.山东近海21种经济鱼类的核型研究.中国水产科学,1995,2(2):1-6
    21.咎瑞光.滇池两种类型鲫鱼的性染色体和C-带核型研究.遗传学报,1982,9(1):32-39
    22.郑家声,王梅林,朱丽岩,等.斑头鱼A grammus agrammus (Temminck et Schlegel)和铠平鲉Sebastes hubbsi (Matsubara)核型研究.青岛海洋大学学报,1997,27(3):333-348
    23.邹桂伟,郑蓓蓓,罗相忠,等.酯酶和乳酸脱氢酶在人工雌核发育鲢近交F1不同组织中的表达.淡水渔业,2006,36(6):12-15
    24. Adamson M L. Evolutionary biology of the Oxyurida (nematoda)-biofacies of a haplodiploid taxon. Adv Parasitol,1989,28:175-228
    25. Afonso L O B, Wassermann G J, Oloveira R T D. Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. JExp Zool,2001,290:177-181
    26. Al-Ablani S A, Phelps R P. Induction of feminization in largemouth bass(Micropterus salmoides) by oral administration of estradiol-17beta or diethylstilbestrol and associated pathological effects. Journal ofAquaculture in the Tropics,2001,16:185-195
    27. Al-Ablani S A, Phelps R P. Paradoxes in exogenous androgen treatments of bluegill. J Appl Ichthyol,2002,18:61-64
    28. Al-ablani S A, Phelps R P. Sex reversal in black crappie Pomoxis migromaculatus:effect of oral administration of 17a-methyltestosterone.Aquaculture,1997,158:155-165
    29. Al-Ablani S A. Use of synthetic steroids to produce monosex populations of selected species of sunfishes (Family:Centrarchidae). Ph.D. Dissertation, Auburn University, Auburn, AL, USA,1997
    30. Ali M, Nicieza A, Wootton R J. Compensatory growth in fishes:a response to growth depression. Fish Fish,2003,4:147-190
    31. Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture,2001,197:205-228
    32. Arezo M J, Alessandro SD, Papa N, et al. Sex differentiation pattern in the annual fish Austrolebias charrua (Cyprinodontiformes:Rivulidae). Tissue Cell,2007,39:89-98
    33. Arslan T, Phelps R P. Directing gonadal differentiation in bluegill, Lepomis marochirus (Rafinesque), and black crappie, Pomoxis nigromaculatus (Lesueur), by periodic estradiol-17β immersions. Aquacult Res,2004,35:397-402
    34. Arslan T. Sex determination in selected Centrarchilds. Ph.D. dissertation. Auburn University, Auburn, AL,2002, pp 13-161
    35. Asoh K, Shapiro D Y. Bisexual juvenile gonad and gonochorism in the fairy basslet, Gramma loreto. Copeia,1997,1:22-31
    36. Atz J W. Intersexuality in fishes. In:Armstrong, C.N., Marshall, A.J. (Eds.), Intersexuality in Vertebrates Including Man. Academic Press, London,1964, pp 145-232
    37. Azaza M S, Dhraief M N, Kraiem M M. The effect of water temperature on growth and sex ratio of juvenile Nile Tilapia Oreochromis niloticus (Linnaeus) reared in geothermal water in the south of Tunisia. J Ther Biol,2008,33:98-105
    38. Azuma T, Takeda K, Doi T, et al. The influence of temperature on sex determination in sockeye salmon Oncorhynchus nerka. Aquaculture,2004,234:461-473
    39. Baker W D. A study of the chromosome numbers of some centrarchid fishes. Master Thesis, North Carolina State College, NC, USA,1956
    40. Baras E, Jacobs B, Melard C. Effect of water temperature on survival, growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapia Oreochromis niloticus. Aquaculture,2001, 192:187-199
    41. Baroiller J F, Chourrout D, Fostier A, et al. Temperature and sex chromosomes govern sex-ratios of the mouthbrooding cichlid fish Oreochromis niloticus. J Exp Zool,1995,273: 216-223
    42. Baroiller J F, D'Cotta C H. Environment and sex determination in farmed fish. Comp Biochem Physiol Part C,2001,130:399-409
    43. Belamy A W, Queal M L. Heterosomal inheritance and sex determination in Platypoecilus maculates. Genetics,1951,36:93-107
    44. Benfey T J. Use of triploid Atlantic salmon (Salmo salar) for aquaculture. Can Dept Fish Oceans Res Doc,1999,166:11
    45. Bertollo L A C, Takahashi C S, Filho O M. Multiple sex chromosomes in the genus Hoplias (Pisces:Erythrinidae). Cytologia,1983,48:1-12
    46. Billot C, Boury S, Benet H, et al. Development of RAPD markers for parentage analysis in Laminaria digitata. Bot Mar,1999,42:307-314
    47. Blazquez M, Felip A, Zanuy S, et al. Critical period of androgen-inducible sex differentiation in a teleost fish, the European sea bass. JFish Biol,2001,58:342-358
    48. Blazquez M, Zanuy S, Carrillo M, et al. Effects of rearing temperature on sex differentiation in the European sea bass(Dicentrarchus labrax L.). JExp Zool,1998a,281:207-216
    49. Blazquez M, Zanuy S, Carrillo M, et al. Structural and functional effects of early exposure to estradiol-17 beta and 17 alpha-ethynylestradiol on the gonads of the gonochoristic teleost Dicentrarchus labrax. Fish Physiol Biochem,1998b,18:37-47
    50. Bongers A B, Ben-Ayed M Z, Zandieh-Doulabi B, et al. Origin variation in isogenic gynogenetic and androgenetic strains of common carp Cyprinus carpio. J Exp Zool,1997, 277:72-79
    51. Bright W M. Spermatogenesis in sunfish. J Ky Acad Sci,1940,8:37-38
    52. Brunelli J, Thorgaard G H. A new Y-chromosome-specific marker for Pacific salmon. T Am Fish Soc,2004,33:1247-1253
    53.'Brunson M W, Robinette H R. Reproductive isolation between a hybrid sunfish and its parental species. Prog Fish-Cult,1987,49:296-298
    54. Brusle-Sicard S, Fourcault B. Recognition of sex-inverting protandric Sparus aurata: ultrastructural aspects. J Fish Biol,1997,50:1094-1103
    55. Bull J J. Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA. 1983,p 316
    56. Bull J J. Sex determining mechanisms:an evolutionary perspective. Experientia,1985,41: 1285-1296
    57. Bullough W S. A study of sex reversal in the minnow (Phoxinus laevis, L.). JExp Zool,1940, 85:475-501
    58. Bye V J, Lincoln R F. Commercial methods for the control of sexual maturation in rainbow trout(Salmo gairdneri). Aquaculture,1986,57:299-309
    59. Cavaco J E B, Vilrokx C, Trudeau V L, et al. Sex steroids and the initiation of puberty in male African catfish (Clarias gariepinus). Am J Physiol 1998,275:R1793-R1802
    60. Chan S T H, Yeung W S B. Sex Control and Sex Reversal in Fish Under Natural Conditions. Academic Press, New York,1983, pp.171-222
    61. Chen F Y. Preliminary studies on the sex-determining mechanism of Tilapia mossambica Peters and T. hornorum Trewavas. Verhandlungen des Internationalen Verein Limnologie, 1969,17:719-724
    62. Chen J J, Wang Y L, Yue Y Y, et al. A novel male-specific DNA sequence in the common carp, Cyprinus carpio. Mol Cell Probes,2009,23:235-239
    63. Chen S L, Deng S P, Ma H Y, et al. Molecular marker-assisted sex control in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture,2008,283:7-12
    64. Chevassus B, Devaux A, Chourrout D, et al. Production of YY rainbow trout males by self-fertilization of induced hermaphrodites. J Hered,1988,79:89-92
    65. Chew L E, Stanley J G.The effect of methyltestosterone on sex reversal in bluegill. Prog Fish-Cult.,1973,35:44-47
    66. Childers W F. Hybridization of fishes in North America (family Centrarchidae). Report of the seminar/study tour in the U.S.S.R. on genetic selection and hybridization of cultivated fishes, Moscow,1968
    67. Choi C Y, Habibi H R. Molecular cloning of estrogen receptor α and expression pattern of estrogen receptor subtypes in male and female goldfish. Mol Cell Endocrinol,2003,204: 169-177
    68. Chourrout D, Nakayama I. Chromosome studies of progenies of tetraploid female rainbow trout. Theoret Appl Genet,1997,74:687-692
    69. Chourrout D. Intuction of gynogenesis, triploidy, and tetraploidy in fish. Anim Plant Sci, 1988,1:65-70
    70. Clark Jr R D, Lockwood R N. Population dynamics of bluegills subjected to harvest within the 5.0-to 6.9-inch size range. Michigan Department of Natural Resources, Fisheries Research Report 1961, Ann Arbor,1990
    71. Clemens H P, Inslee T. The production of unisexual broods by Tilapia mossambica sex-reversed with methyltestosterone. Trans Am Fish,1968,97:18-21
    72. Coetzee P S. Seasonal histological and macroscopic changes in the gonads of Cheimerius nufar (Ehrenberg,1820) (Sparidae:Pisces). S Afr J Zool,1983,18:76-88
    73. Colbourne J K, Neff B D, Wright J M, et al. DNA fingerprinting of bluegill sunfish (Lepomis macrochirus) using (GT)n microsatellites and its potential for assessment of mating success. Can J Fish Aquat Sci,1996,53:342-349
    74. Cole K S, Noakes D L G. Gonadal development and sexual allocation in mangrove killifish, Rivulus marmoratus (Pisces:Atherinomorpha). Copeia,1997,1997:596-600
    75. Cole K S. Patterns of gonad structure in hermaphroditic gobies Teleostei Gobiidae. Environ. Biol. Fishes,1990,28:125-142
    76. Colombo G, Grandi G, Rossi R. Gonad differentiation and body growth in Anguilla anguilla L. JFish Biol,1984,24:215-228
    77. Conover D 0, Heins S W. Adaptive variation in environmental and genetic sex determination in a fish. Nature,1987b,326:496-498
    78. Conover D 0, Heins S W. The environmental and genetic components of sex ratio in Menidia menidia (Pisces:Atherinidae). Copeia,1987a,3:732-743
    79. Conover D O, Kynard B E. Environmental sex determination-Interaction of temperature and genotype in a fish. Science,1981,213:577-579
    80. Couse J F, Lindzey J, Grandien K, et al. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology,1997,138: 4613-4621
    81. Craig J K, Foote C J, Wood C C. Evidence for temperature-dependent sex determination in sockeye salmon(Oncorhynchus nerka). Can J Fish Aquat Sci,1996,53:141-147
    82. Crandall P S, Durocher P P. Comparison of growth rates, sex ratios, reproductive success and catchability of three sunfish hybrids. Proceedings of the annual meeting Texas Chapter of the American Fisheries Society, volume 2. Texas A&M University, College Station, TX, USA, 1980. pp 88-104
    83. Dalla Valle L, Ramina A, Vianello S, et al. Cloning of two mRNA variants of brain aromatase cytochrome P450 in rainbow trout(Oncorhynchus mykiss Walbaum). J Steroid Biochem & Mol Biol,2002,82:19-32
    84. Davis K B, Simco B A, Goudie C A, Parker N C, Cauldwell W, Snellgrove R. Hormonal sex manipulation and evidence for female homogamety in channel catfish. Gen Comp Endocrinol, 1990,78:218-223
    85. Dawson C E, Heal E. A bibliography of anomalies of fishes. Gulf Res Rep,1977,5:35-41
    86. Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish:an overview of genetic, physiological, and environmental influences. Aquaculture,2002,208:191-364
    87. Dorizzi M, Richard-Mercier N, Desvages G, et al. Masculinization of gonads by aromatase inhibitors in a turtle with temperature-dependent sex determination. Differentiation,1994,58: 1-8
    88. Dunham R A. Production and use of monosex and sterile fishes in aquaculture. Rev Aquat Sci, 1990,2:1-17
    89. Estoup A, Gharbi K, SanCristobal M, et al. Parentage assignment using microsatellites in turbot (Scophtalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatchery populations. Can JFish Aquat Sci,1998,55:715-725
    90. Ezaz M T, Harvey S C, Boonphakdee C, et al. Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar Biotechnol,2004,6:435-445
    91. Fagerlund U H M, McBride J R. Growth increments and some flesh and gonad characteristics of juvenile coho salmon receiving diets supplemented with 17a-methyltestosterone. J Fish Biol,1975,7:305-314
    92. Felip A, Young W P, Wheeler P A, et al. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture,2005,247:35-43
    93. Fenske M, Segner H. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat Toxicol,2004,67:105-126
    94. Fevzi B. The use of random amplified polymorphic DNA (RAPD) markers in sex discrimination in NileTilapia, Oreochromis niloticus (Pisces:Cichlidae). Turkish J Biol, 2000,24:169-175
    95. Fields J, Pierskalla C, Schuett M, et al. Determining Demand and Describing a New Market Segment:Hybrid Bluegill and Recreational Pay Fishing. West Virginia University.2004, http://www.wvu.edu/-agexten/aquaculture/2004forum/Fields.pdf.
    96. Filho O M, Bertollo L A C, Junior P M G. Evidences for a multiple sex chromosome system with female heterogamety in Apareiodon affinis (Pisces:Parodontidae). Caryologia,1980, 33):83-91
    97. Fishback A G, Danzmann R G, Ferguson M M, et al.Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture,2002,206:137-150
    98. Ford C E, Miller Q J, Polani P E, et al. A sex-chromosome anomaly in a case of severe gonadal dygenesis (Turner's syndrome). Lancet,1959,1:711
    99. Foyle T P. A histological description of gonadal development and sex differentiation in the coho salmon(Oncorhynchus kisutch) for both untreated and oestradiol immersed fry. J Fish Biol,1993,42:699-712
    100. Francis C R. Sexual lability in teleost:developmental factors. Quart Rev Biol,1992,67: 1-17
    101. Francis R C, Barlow G W. Social control of primary sex differentiation in the Midas cichlid. Proceedings of the National Academy of Sciences USA,1993,90:10673-10675.
    102. Francis R C. The effects of bidirectional selection for social dominance on agonistic behavior and sex ratios in the paradise fish (Macropodus opercularis). Behaviour,1984,90: 25-45
    103. Fraser D. A hermaphroditic Arctic charr from Loch Rannoch, Scotland. J Fish Biol,1997, 50:1358-1359
    104. Fricke H W, Fricke S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature,1977,266:830-832
    105. Funk J D, Donaldson E M, Dye H M. Induction of precocious sexual development in female pink salmon(Oncorhynchus gorbuscha). Can J Zool/Rev Can Zool,1973,51:493-500
    106. Galetti P M, Foresti F, Bertollo A C, et al. Heteromorphic sex chromosomes in three species of the genus Leporinus (Pisces, Anostomidae). Cytogenet Cell Genet,1981,29:138-142
    107. Galletti P M, Foresti F. Evolution of ZZ/ZW system in Leporinus (Pisces, Anostomidae): role of constitutive heterochromatin. Cytogenet Cell Genet,1986,43:43-46
    108. George T, Pandian T J. Dietary administration of androgens induces sterility in the female-heterogametic black molly, Poecilia sphenops (Cuvier & Valenciennes,1846). Aquacult Res,1998,29:167-175
    109. George T, Pandian T J. Hormonal induction of sex reversal and progeny testing in the zebra cichlid Cichlasoma nigrofasciatum. JExp Zool,1996,275:374-382
    110. George T, Pandian T J. Production of ZZ females in the female-heterogametic black molly, Poecilia sphenops, by endocrine sex reversal and progeny testing. Aquaculture,1995,136: 81-90
    111. Godwin J, Crews D, Warner R R. Behavioural sex change in the absence of gonads in a coral reef fish. Proc R Soc London Ser B,1996,263:1683-1688
    112. Goetz F W, Donaldson E M, Hunter G A. Effects of estradiol-17p and 17a-methyltestosterone on gonadal differentiation in the coho salmon, Oncorhynchus kisutch. Aquaculture,1979,17:267-278
    113. Gordon M. Genetics of Platypoecilius maculatus V. heterogametic sex-determining mechanism in females of a domesticated stock originally from British Honduras. Zoologica,1952,36:91-100
    114. Gordon M. Genetics of Platypoecilus maculates. IV. The sex determining mechanism in two wild populations of the Mexican platyfish. Genetics,1947,32:8-17
    115. Gordon M. Interchanging genetic mechanisms for sex determination for sex determination in fishes under domestication. JHered,1946,37:307-320
    116. Goto R, Kayaba T, Adachi S, Yamauchi K. Effects of temperature on sex determination in marbled sole Limanda yokohamae. Fish Sci,2000,66:400-402
    117. Goto R, Mori T, Kawamata K, Matsubara T, et al. Effects of temperature on gonadal sex determination in barfin flounder Verasper moseri. Fish Sci,1999,65:884-887
    118. Goto-Kazeto R, Abe Y, Masai K, et al. Temperature-dependent sex differentiation in goldfish:establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture,2006,254:617-624
    120. Grandi G, Colombo G. Development and early differentiation of gonad in the European eel (Anguilla anguilla L., Anguilliformes, Teleostei):a cytological and ultrastructural study. J Morphol,1997,231:195-216
    121. Graves J A M. Evolution of the mammalian Y chromosome and sex-determining genes. J Exp Zool,1998,281:472-481
    122. Graves J A M. The rise and fall of SRY. Trends Genet,2002,18:259-264
    123. Griffiths R, Orr K J, Barber I. DNA sex identification in the three-spined stickleback. J Fish Biol,2000,57:1331-1334
    124. Guan G, Kobayashi T, Nagahama Y. Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a Teleost fish, the tilapia (Oreochromis niloticus). Biochem Biophys Res Commun,2000,272:662-666
    125. Guerrero R D, Shelton W L. An aceto-carmine squash method of sexing juvenile fishes. Prog Fish-Cult,1974,36:56
    126. Guerrero R D. Use of androgens for the production of all-male Tilapia aurea (Steindachner). T Am Fish Soc,1975,194:342-348
    127. Hacker A, Capel B, Goodfellow P, et al. Expression of Sry, the mouse sex determining gene. Development,1995,121:1603-1614
    128. Hackmann E, Reinboth R. Delimitation of the critical stage of hormone-influenced sex differentiation in Hemihaplochromis multicolor (Hilgendorf) (Cichlidae). Gen Comp Endocrinol,1974,22:42-53
    129. Haldane J B S. Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics,1922, 12:101-108
    130. Halm S, Martinez-Rodriguez G, Rodriguez L, et al. Cloning, chraracterisation and expression of three oestrogen receptors (ERa, ERβ1 and ERβ2) in the European sea bass, Dicentrarchus labrax. Mol Cell Endocrinol,2004,223:63-75
    131. Hammerman I S, Avtalion R R. Sex determination in Sarotherodon (tilapia).2. Sex-ratio as a tool for the determination of genotype—model of autosomal and gonosomal Influence. TheorAppl Genet,1979,55:177-187
    132. Hara M, Sekino M. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture,2003,217:107-114
    133. Hartley S. The chromosomes of salmonid fishes. Biological Reviews,1987,62:197-214
    134. Hattori A, Yanagisawa Y. Life-history pathways in relation to gonadal sex differentiation in the anemonefish, Amphiprion clarkii, in temperate waters of Japan. Environ Biol Fishes, 1991; 31:139-155
    135. Hattori R S, Gould R J, Fujioka T, et al. Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes:gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sexual Dev,2007,1 (2):138-145
    136. Hayes T B. Sex Determination and primary sex differentiation in amphibians:genetic and developmental mechanisms. JExp Zool,1998,281(5):373-399
    137. Hayward R S, Wang H P. Inherent growth capacity and social cost in bluegill and hybrids of bluegill and green sunfish:which fish really grows faster. North American Journal of Aquaculture,2002,64:34-46
    138. Hayward R S, Wang H P. Rearing male bluegills indoors may be advantageous for producing food-size sunfish. Journal of the World Aquaculture Society,2006,37:496-508
    139. Hendry C I, Martin-Robichaud D J, Benfey T J. Gonadal sex differentiation in Atlantic halibut. J Fish Biol,2002,60:1431-1442
    140. Herbinger C M, Doyle R W, Pitman E R, et al. DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture,1995,137:245-256
    141. Hickling C F. The Malaca Tilapia hybrids. Journal of Genetics,1960,57:1-10
    142. Hodgkin J. Primary sex determination in the nematode C. elegans. Development,1987,101: 5-16
    143. Honma Y. A synchronous (balanced) hermaphroditism in a chum salmon, Oncorhynchus keta, from the Sea of Japan. Annu Rep Sado Mar Biol Stn,1980,10:17-22
    144. Hostache G, Pascal M, Tessier C. Influence de la temperature d'incubation sur le rapport male, femelle chez l'atipa, Hoplosternum littorale Hancock (1828). Can J Zool,1995,73: 1239-1246
    145. Hulata G. Genetics manipulations in aquaculture:a review of stock improvement by classical and modern technologies. Genetica,2001,111:155-173
    146. Hunter G A, Donaldson E M, Stoss J, et al. Production of monosex female groups of chinook salmon(Oncorhynchus tshawytscha) by the fertilization of normal ova with sperm from sex-reversed females. Aquaculture,1983,33:355-364
    147. Hunter G A, Donaldson E M. Hormonal sex control and its application to fish culture. In: Hoar WS, Randall DJ, Donaldson, EM, editors. Fish physiology, vol.9B. New York: Academic Press,1983, pp 223-303
    148. Hunter G A, Solar I I, Baker I J, et al. Feminization of coho salmon (Oncorhynchus kisutch)and chinook salmon (Oncorhynchus tshawytscha) by immersion of alevins in a solution of estradiol-17β.Aquaculture,1986,53:295-302
    149. Iturra P, Bagley M, Vergara N, et al. Development and characterization of DNA sequence OmyP9 associated with the sex chromosomes in rainbow trout. Heredity,2001,86:412-419
    150. Iturra P, Medrano J F, Bagley M, et al. Identification of sex chromosome molecular markers using RAPDs and.fluorescent in situ hybridization in rainbow trout. Genetica,1997,101(3): 209-213
    151. Jacobs P A, Strong J A. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature,1959,183:302-303
    152. Jalabert B, Billard R, Chevassus B. Preliminary experiments on sex control in trout: production of sterile fishes and self fertilization of hermaphrodites. Ann Biol Anim Biochim Biophys,1975,15:19-28
    153. Jalabert B, Moreau J, Planquette P, et al. Sex determination in Tilapia macrochir and Tilapia nilotica:effect of methyltestosterone administered in fry feed on sex differentiation; sex ratio of the offspring produced by sex-reversed males. Annals of Biology Animal Biochemical and Biophysics,1974,14:729-939
    154. Jellyman D J. Hermaphrodite European perch Perca fluviatilis L. N. Z. J Mar Freshwater Res,1976,10:721-723
    155. Jerry D R, Preston N P, Crocos P J, et al.Application of DNA parentage analyses for determining relative growth rates of Penaeus japonicus families reared in commercial ponds. Aquaculture,2006,254:171-181
    156. Johnstone R, Simpson T H, Youngson A F. Sex reversal in salmonid culture. Aquaculture, 1978,13:115-134
    157. Johnstone R, Simpson T H, Youngson A F. Sex reversal in salmonid culture. Part II. The progeny of sex-reversed rainbow trout. Aquaculture,1979,18:13-19
    158. Kallman K D.A new look at sex determination on Poeciliids. PAGES 19-28 IN Schroder J H, editor. Gnetics and mutagenesis of fish. Plenum Press, New York, USA,1984.
    159. Kallman K D. Sex ratio and the genetics of sex determination in swordtails, Xiphophorus. Genetics,1984,107:s54
    160. Kavumpurath S, Pandian T J. Determination of labile period and critical dose for sex reversal by oral administration of estrogens in Betta splendes (Regan). Indian J Exp Biol, 1993,31:16-20
    161. Kavumpurath S, Pandian T J. Production of YY male in the guppy, Poecilia reticulata, by endocrine sex reversal and progeny testing. Asian Fish Soc,1992a,5:265-276
    162. Kavumpurath S, Pandian T J. The development of all-male sterile triploid fighting fish (Betta splendens, Regan) by integrating hormonal sex reversal of broodstock and chromosome-set manipulation. Isr JAquacult-Bamid,1992b,44:111-119
    163. Kawahara T, Yamashita I. Estrogen-independent ovary formation in the medaka fish, Oryzias latipes. Zool Sci,2000,17:65-68
    164. Keyvanshokooh S, Pourkazemi M, Kalbassi M R. The RAPD technique failed to identify sex-specific sequences in beluga (Huso huso). JAppl Ichthyol,2007,23:1-2
    165. Khamnamtong B, Thumrungtanakit S, Klinbunga S, et al. Identification of sex-specific expression markers in the Giant tiger shrimp (Penaeus monodon). J Biochem Mol Biol, 2006,39:37-45
    166. Kim D S, Nam Y K, Jo J Y. Effect of oestradiol-17p immersion treatments on sex reversal of mud loach, Misgunus mizolepis. Aquacult Res,1997,28:941-946
    167. Kishida M, Callard G. Distinct cytochrome P450 aromatase isoforms in zebrafish (Denio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocri,2001,142:740-749
    168. Kitano T, Taka Mune K, Kobayashi T, et al. Suppression of p450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J Mol Endocrinol,1999,23(2):167-176
    169. Kitano T, Takamune K, Nagahama Y, et al. Aromatase inhibitor and 17a-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev, 2000,56:1-5
    170. Kobayashi Y, Kobayashi T, Nakamura M, et al. Characterization of two types of cytochrome P450 aromatase in the serial-sex changing gobiid fish, Trimma okinawae. Zool Sci,2004,21: 417-425
    171. Kohler C C, Kelly A M. Assessing predator-prey balance in impoundments. Proceedings of the Warmwater Fisheries Symposium I, June 4-8,1991, Scottsdale, Arizona. USDA Forest Service, General Technical Report RM-207,1991, pp.257-260
    172. Komatsu T, Nakamura S, Nakamura M. Masculinization of female golden rabbitfish Siganus guttatus using an aromatase inhibitor treatment during sex differentiation. Comp Biochem Physiol Part C,2006,,143:402-409
    173. Komen J, De Boer P, Richter J J. Male sex reversal in gynogentic XX females of common carp (Cyprinus carpio L.) by a recessive mutation in a sex-determining gene. JHered,1992, 83:431-434
    174. Kondo M, Nanda I, Hornung U, et al. Absence of the Candidate Male Sex-Determining Gene dmrtlb (Y) of Medaka from Other Fish Species. Curr Biol,2003,13:416-420
    175. Kovacs B, Egedi S, Bartfai R, et al. Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica,2001,110:267-276
    176. Krumholz A. Further observations on the use of hybrid sunfish in stocking small ponds. T Am Fish Soc,1950,79:112-24
    177. Kuhl A J, Brouwer M. Antiestrogens inhibit xenoestrogen-induced brain aromatase activity but do not prevent xenoestrogen-induced feminization in Japanese medaka (Oryzias latipes). Environ Health Perspect,2006,114(4):500-506
    178. Kwon J Y, Haghpanah V, Kogson-Hurtado L M, et al. Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation. JExp Zool,2000,287:46-53
    179. Lebrun C R, Billard R, Jalabert B. Changes in the number of germ cells in the gonads of rainbow trout(Salmo gairdnerii) during the first 10 post-hatching weeks. Reprod Nutr Dev, 1982,22:405-412
    180. Lee B Y, Hulata G, Kocher T D. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity,2004,92(6):543-549
    181. Lee B Y, Penman D J, Kocher T D. Identification of a sex-determining region in Nile tj 1 apia (Oreochromis niloticus) using bulked segregant analysis. Anim Genet,2003,34(5):379-383
    182. Li G L, Liu X C, Lin H R. Aromatase inhibitor letrozole induces sex inversion in the protogynous red spotted grouper (Epinephelus akaara). Acta Physiologica Sinica,2005, 57(4):473-479
    183. Li Y, Hill J A, Yue G H, et al. Extensive search does not identify genomic sex markers in Tetraodon nigroviridis. J Fish Biol,2002,61:1314-1317
    184. Liu S, Yao Z, Wang Y. Sex hormone induction of sex reversal in the teleost Clarias lazera and evidence for female homogamety and male heterogamety. J Exp Zool,1996,276: 432-438
    185. Luckenbach J A, Early L W, Rowe A H, et al. Aromatase cytochrome P450:cloning, intron variation, and ontogeny of gene expression in southern flounder (Paralichthys lethostigma). J Exp Zool,2005,303A:643-656
    186. Luckenbach J A, Godwin J, Daniels H V, et al. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture,2003,216:315-327
    187. Lutz G, Sambidi P, Harrison R. Tilapia Industry Profile. Agriculture Marketing Resource Center. Iowa State University.n 2003, nhttp://test.agmrc.org/aquaculture/profiles /tilapiaprofile.pdf.
    188. Maack G., Segner H. Morphological development of the gonads in zebrafish. J Fish Biol, 2003,62:895-906
    189. Macchi G J, Christiansen H. A case of hermaphroditism in white croaker, Micropogonias furnieri. Atlantica (Rio Grande),1994,16:209-212
    190. Mair G C, Scott A G, Penman D J, et al. Sex determination in genus Oreochromis.1. Sex reversal, gynogenesis and triploidy in O. niloticus (L). Theor Appl Genet,1991,82:144-152
    191. Malison I A, Kayes T B, Wentworth B C, et al. Growth and feeding responses of male versus female yellow perch (Perca flavescens) treated with estradiol-17β. Can J Fish Aquat Sci,1988,45:1942-1948
    192. Malison, J A, Kayes T B, Best C D, et al. Sexual differentiation and use of hormones to control sex in yellow perch (Perca flavescens). Can J Fish Aquat Sci,1986,43:26-35
    193. Marchand O, Govoroum M, D'Cotta H, et al. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Onrhynchus mykiss. Biochim Biophys Acta,2000,1493:180-187
    194. Marshall T C, Slate J, Kruuk L, et al. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol,1998,7:639-655
    195. Martin-Robichaud D J. Sexual differentiation and hormonal feminization of lumpfish (Cyclopterus lumpus Linnaeus). MSc Thesis, University of New Brunswick (Fredericton), 1993
    196. Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a specific DM-domain gene required for male development in the medaka fish. Nature,2002,417:559-563
    197. Matsuoka M P, van Nes S, Andersen 0, et al. Realtime PCR analysis of ovary-and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comp Biochem Physiol Part B Biochem Mol Biol,2006,144:128-135
    198. McBride J R, Fagerlund U H M. The use of 17a-methyltestosterone for promoting weight increases in juvenile Pacific salmon. J Fish Res Board Can,1973,30:1099-1104
    199. Mcgowan C, Davidson W S. The RAPD technique fails to detect a male-specific genetic marker in Atlantic Salmon. Fish Biol,1998,53(5):1134-1136
    200. Mitzner L. Crappie management:problems and solutions. N Am J Fish Manage,1984,4: 339-340
    201. Miura S, Nakamura S, Kobayashi Y, et al. Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkia. Comp Biochem Physiol Part B,2008,1491:29-37
    202. Nagy A, Beresenyi M, Canyi V. Sex reversal in carp (Cyprinus carpio) by oral administration of methyltestosterone. Can J Fish Aquat Sci,1981,38:725-728
    203. Nakamura M, Takahashi H. Gonadal sex differentiation in Tilapia mossambica with special regard to the time of estrogen treatment of effective inducing complete feminization of genetic males. Bull Fac Fish Hokkaido Univ,1973,24:1-13
    204. Neff B D, Fu P, Gross M R. Microsatellite evolution in sunfish (Centrarchidae). Can J Fish Aquat Sci,1999,56:1198-1205
    205. Nelson J S. Fishes of the World. Wiley, New York, NY,1994, pp 600
    206. Nichols K M, Young W P, Danzmann R Q et al. A consolidated linkage map for rainbow trout, Oncorhynchus mykiss. Anim Genet,2003,34:102-115
    207. Oliver A S. Hermaphrodite sex hormones:in vitro secretion of steroid hormones from the ovotestis of the teleost Serranus subligarius. Am Zool,1991,31:67A
    208. Oliver A S. Size and density dependent mating tactics in the simultaneously hermaphroditic seabass Serranus subligarius (Cope,1870). Behaviour,1997,134:563-594
    209. Onozato H. Direct production of the super male (YY) by androgenesis in the amago salmon. Biology International, Special Issue,1993,28:69-71
    210. Ospina-Alvarez N, Piferrer F. Temperature-Dependent Sex Determination in Fish Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects of Climate Change. Plos One,2008,3(7):1-11
    211. Palti Y, Gahr S, Hansen J D, et al. Characterization of a new BAC library for rainbow trout: evidence for multi-locus duplication. Anim Genet,2004,35:130-133
    212. Pandian T J, Sheela S G. Hormonal induction of sex reversal in fish. Aquaculture,1995,138: 1-22
    213. Parkhurst S M, Meneely P M. Sex determination and dosage compensation:lessons from fish and worms. Science,1994,264:924-932
    214. Patino R, Davis K B, Schoore J E, et al. Sex differentiation of channel catfish gonads: Normal development and effects of temperature. JExp Zool,1996,276:209-218
    215. Penman D J, Piferrer F. Fish gonadogenesis. Part Ⅰ:genetic andenvironmental mechanisms of sex determination. Res Fish Sci,2008,16:16-34
    216. Petersen C W. Variation in reproductive success and gonadal allocation in the simultaneous hermaphrodite Serranus fasciatus. Oecologia,1990,83:62-67
    217. Pezold F. Evidence for multiple sex chromosomes in the freshwater goby, Gobionellus shufeldti (Pisces:Gobidae). Copeia,1984,1:225-238
    218. Pieau C, Girondot M, Desvages G, et al. Environmental control of gonadal differentiation. In "The Differences Between The Sexes". Short, R.V. and Balaban, E. Eds.1994, pp. 433-448. Cambridge Univ. Press, Cambridge.
    219. Piferrer F, Blazquez M, Navarro L, et al. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol,2005,142:102-110
    220. Piferrer F, Donaldson E M. Gonadal differentiation in coho salmon, Oncorhynchus kisutch, after a single treatment with androgen or estrogen at different stages during ontogenesis. Aquaculture,1989,77:2-3
    221. Piferrer F, Zanuy S, Carrillo M, et al. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. JExp Zool,1994,270:255-262
    222. Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 2001,197:229-281
    223. Pinto P I S, Passos A L, Martins R S, et al. Characterization of estrogen receptor βb in sea bream (Sparus auratus):phylogeny, ligand-binding, and comparative analysis of expression. Gen Comp Endocrinol,2006,145:197-207
    224. Pressley P H. Pair formation and joint territoriality in a simultaneous hermaphrodite:the coral reef fish Serranus tigrinus. Z Tierpsychol,1981,56:33-46
    225. Price D J. Genetics of sex determination in fishes—A brief review. In Fish Reproduction: Strategies and Tactics (Potts, G. G.& Wooton, R. J., eds),1984, pp.77-89. London: Academic Press.
    226. Purdom C E. Genetics and Fish Breeding, Fish and Fisheries Series 8. Chapman and Hall, London,1993.
    227. Rachael A, Woram K G, Takashi S, et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res,2003,13:272-280
    228. Raymond C S, Shamu C E, Shen M M, et al. Evidence for evolutionary conservation of sex-determining genes. Nature,1998,391:691-695
    229. Reinboth R, Brusle-Sicard S. Histological and ultrastructural studies on the effects of hCG on sex inversion in the protogynous teleost Coris julis. J Fish Biol,1997,51:738-749
    230. Reinboth R. Spontaneous and hormone-induced sex-inversion in wrasses (Labridae). Pubbl Stn Zool Napoli,1975,39:550-573
    231. Riehl R. Masculinization in a hermaphroditic female of the mosquitofish Heterandria formosa. Jpn J Ichthyol,1991,37:374-380
    232. Rishi K K. Karyotypic studies on four species of fishes. The Nucleus,1976,19:95-98
    233. Roberts F L. A chromosome study of twenty species of Centrarchidae. J Morphol,1964, 115:401-418
    234. Romer U, Beisenherz W. Environmental determination of sex in Apistogramma (Cichlidae) and two other freshwater fishes (Teleosts). JFish Biol,1996,48:714-725
    235. Rothbard S, Shelton W L, Kulikovsky Z, et al. Chromosome set manipulations in the black carp. Aquac Int,1997,5:51-64
    236. Rubin D A. Effect of pH on sex ratio in cichlids and a poecilliid (teleostei). Copeia,1985,1: 233-235
    237. Sabo-Attwood T, Kroll K J, Denslow N D. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol. Mol Cell Endocrinol,2004,218:107-118
    238. Sadovy Y, Colin P L. Sexual development and sexuality in the Nassau grouper. J Fish Biol 1995,46:961-976
    239. Sadovy Y, Shapiro D Y. Criteria for the diagnosis of hermaphroditism in fishes. Copeia, 1987,1:136-156
    240. Saillant E, Fostier A, Haffray P, et al. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). JExp Zool,2002,292:494-505
    241. Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics,2000,155:1331-1345
    242. Satoh H, Nimura Y. Growth promotion in Japanese eel by the oral administration of an estrogen (diethylstilbestrol). Nippon Suisan Gakk,1991,57:21-27
    243. Schmittou H R. Sex ratios of bluegill in four populations. TAm Fish Soc,1967,96:420-421
    244. Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol,2000,18:233-234
    245. Schultz H. Drastic decline of the proportion of males in the roach(Rutilus rutilus L.) population of Bautzen Reservoir (Saxony, Germany):results of direct and indirect effects of biomanipulation. Limnologica,1996,26:153-164
    246. Schultz R J. Genetic regulation of temperature-mediated sex ratios in the livebearing fish, Poeciliopsis lucida. Copeia,1993:1148-1151
    247. Scott A G., Penman D J, Beardmore J A, et al. The 'YY' supermale in Oreochromis niloticus (L.) and its potential in aquaculture. Aquaculture,1989.78:237-251
    248. Shapiro D Y, Rasotto M B. Sex differentiation and gonadal development in the diandric, protogynous wrasse, Thalassoma bifasciatum (Pisces, Labridae). J Zool,1993,230:231-245
    249. Shapiro D Y, Sadovy Y, McGehee M A. Periodicity of sex change and reproduction in the red hind, Epinephelus guttatus, a protogynous grouper. Bull Mar Sci,1993a,53:1151-1162
    250. Shapiro D Y. Serial female sex changes after simultaneous removal of males from social groups of a coral reef fish. Science,1980,209:1136-1137
    251. Shimizu M, Takahashi H. Process of sex differentiation of the gonad and gonoduct of the three-spined stickleback Gasterosteus aculeatus L. Bull Fac Fish Hokkaido Univ,1980,31: 137-148
    252. Simpson E R, Mahendroo M S, Means G D, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev,1994,15:342-355
    253. Smith I E. Aromatase inhibitors:a dose-response effect? Endocr Relat Cancer,1999,6: 245-249
    254. Soto C G, Leatherland J F, Noakes D L G.Gonadal histology in the self-fertilizing hermaphroditic fish Rivulus marmoratus Pisces Cyprinodontidae. Can J Zool,1992,70: 2338-2347
    255. Sriphairoj K, Nanakorn U, Brunelli J P, et al. No AFLP sex-specific markers detected in Pangasianodon gigas and P. hypophthalmus. Aquaculture,2007,273:739-743
    256. St. Mary C M. Characteristic gonad structure in the gobiid genus Lythrypnus with comparisons to other hermaphroditic gobies. Copeia,1998:720-724
    257. Steele R E, Mellor L B, Sawyer W K, et al. In vitro and in vivo studies demonstrating potent and selective estrogen inhibition by the nonsteroidal aromatase inhibitor CGS16949A. Steroids,1987,50:147-161
    258. Strussman C A, Nakamura M. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol Biochem,2002,26:13-29
    259. Strussmann C A, Calisna Cota J C, Phonlor G, et al. Temperature effects on sex differentiation of two South American Atherinids Odontesthes argentinensis and Patagonina hatchery. Environ Biol Fishes,1996a,47:143-154
    260. Strussmann C A, Moriyama S, Hanke E F, et al. Evidence of thermolabile sex differentiation in pejerry. JFish Biol,1996b,48:1285-1296
    261. Strussmann C A, Takashima F, Toda K. Sex differentiation and hormonal feminization in pejerrey Odontesthes bonariensis. Aquaculture,1996c,139:31-45
    262. Strussmann C A, Saito T, Usui M, et al. Thermal thresholds and critical period of thermolabile sex determination in two Atherinid fishes, Odontesthes argentinensis and Patagonina hatchery. JExp Zool,1997,278:167-177
    263. Sullivan J A, Schultz R J. Genetic and environmental basis of variable sex ratios in laboratory strain of Poeciliopsis lucida. Evolution,1986,40:152-158
    264. Sumida K, Saito K. Molecular cloning of estrogen receptors from fathead minnow (pimephales promelas) and bluegill (lepomis macrochirus) fish:limited piscine variation in estrogen receptor-mediated reporter gene transactivation by xenoestrogens. Environ Toxicol Chem,2008,27(2):489-498
    265. Sun L W, Zha J M, Spear P A, et al. Toxicity of the aromatase inhibitor letrozole to Japanese medaka (Oryzias latipes) eggs, larvae and breeding adults. Comp Biochem Physiol Part C, 2007,145:533-541
    266. Takahashi H. Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bull Fac Fish Hokkaido Univ,1977,28:57-65
    267. Talikina M G. Sex differentiation and gonad development during the first years of life in the bream Abramis brama from the Rybinsk water reservoir. Vopr Ikhtiol,1995,35:114-119
    268. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599
    269. Tave D. Genetics for Fish Hatchery Managers (2nd edition), Van Nostrand Reinhold, New York,1993.
    270. Tchoudakova A, Callard G. Identifcation of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocri,1998,139:2179-2189
    271. Tessema M, Muller-Belecke A, Horstgen-Schwark G. Effects of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture,2006,258:270-277
    272. Thompson K W, Hubbs C, Edwards R J. Comparative chromosome morphology of the black basses. Copeia,1978,1:172-175
    273. Thorgaard G H, Scheerer P D, Hershberger W K, et al. Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture,1990, 85:215-221
    274. Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol Part A,2004,137:11-20
    275. Uguz C. Histological evaluation of gonadal differentiation in fathead minnows (Pimephales promelas). Tissue Cell,2008,40:299-306
    276. van Nes S, Moe M, Andersen 0. Molecular characterization and expression of two cyp19 (P450 aromatase) genes in embryos, larvae, and adults of Atlantic halibut (Hippoglossus hippoglossus). Mol Reprod Dev,2005,72:437-449
    277. Vandeputte M, Kocour M, Maugera S, et al. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture,2004,335:223-236
    278. Varadaraj K, Pandian T J. First report on production of supermale tilapia by integrating endocrine sex reversal with gynogenetic technique. Curr Sci,1989,58:434-441
    279. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acid Res,1995,231:4407-4414
    280. Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics,2001,158(2):727-734
    281. Wang H P, Gao Z X, Beres B, et al. Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish Lepomis macrochirus. Aquaculture,2008,285:216-223
    282. Wang H P, Li L, Wallat G, et al. Evaluation of relative growth performance and genotype by environment effects for cross-bred yellow perch families reared in communal ponds using DNA parentage analyses. Aquacult Res,2009,40(12):1-11
    283. Wang H P, Wallat G K, Hayward R, et al. Establishment of mostly-male groups of bluegill by size-selection and evaluation of their growth performance. N Am J Aquacult,2009, 71:216-223
    284. Welshons W J, Russell L B. The Y chromosome as the bearer of male factors in the mouse. Proc Natl Acad Sci USA,1959,45:560-566
    285. Wessels S, Horstgen-Schwark G. Selection experiments to increase the proportion of males in Nile tilapia(Oreochromis niloticus) by means of temperature treatment. Aquaculture, 2007,272:S80-S87
    286. Woo N Y S, Chung A S B, Ng T B. Influence of oral administration of estradiol-17β and testosterone on growth, digestion, food conversion and metabolism in the underyearling red sea bream, Chysophrys major. Fish Physiol Biochem,1993,10:377--387
    287. Woram R A, Gharbi K, Sakamoto T, et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res,2003,13:272-280
    288. Wuertz S, Gaillard S, Barbisan F, Carle S, Congiu L, Forlani A, Aubert J, Kirschbaum F, Tosi E, Zane L, Grillasca J P. Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture,2006,258:685-688
    289. Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus(Temminck et Schlegel). Aquaculture,1999,173:235-246
    290. Yamamoto T, Kajishima T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamety. J Exp Zool,1968,168:215-222
    291. Yamamoto T, Kajishima T. Sex-hormone induction of reversal of sex differentiation in the goldfish and evidence for its male heterogamety. JExp Zool,1969,168:215-222
    292. Yamamoto T. A YY male goldfish from mating estrone-induced XY female and normal male. JHered,1975,66:2-4
    293. Yamamoto T. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes). JExp Zool,1958,137:227-260
    294. Yamamoto T. Artificially induced sex reversal in genotypic males of the medaka(Oryzias latipes). JExp Zool,1953,123:571-594
    295. Yamamoto T. Sex differentiation. In:Hoar W.S.& Randall D.J., editors. Fish Physiology, Vol. III. New York:Academic Press,1969, pp.117-175
    296. Yamamoto T. The problem of viability of YY zygotes in the medaka, Oryzias latipes. Genetics,1964,50:45-58
    297. Yan H Y. Occurrence of spermatozoa and eggs in the gonad of a tidewater silverside, Menidia beryllina. Copeia,1984:544-545
    298. Yeh F C, Yang R C, Boyle T. POPGENE version 1.3.1. Microsoft Window-based Freeware for Population Genetic Analysis. Available from http://www.ualberta.ca/-fyeh/. University of Alberta, Edmonton.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700