孔雀鱼遗传连锁图谱的构建及性别特异标记的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孔雀鱼(Guppy, Poecilia reticulata)又名百万鱼、彩虹鱼、库比鱼等,隶属于脊索动物门(SubphylumVertebrata)、辐鳍鱼纲(Class Actinopterygii)、鳉形目(Order Cyprinodontiformes)、花鳉科(Family Poeciliidae)、花鳉属(Genus Poecilia),原产于南美洲的委内瑞拉、圭亚那、巴西、巴巴多斯及特里尼达等国家和地区,是一种极具观赏价值的小型淡水鱼。孔雀鱼繁殖周期短、易饲养,且体表颜色和体型变化丰富,因此可作为遗传学研究的实验动物。孔雀鱼有23对染色体,是XY性别决定系统,细胞学和遗传学上X和Y染色体都有差别,因而为研究性别决定基因及性别相关标记提供了条件。本研究以孔雀鱼为主要研究对象,构建了SSR和AFLP标记的孔雀鱼雌、雄遗传连锁图谱,并筛选得到了一个性别特异的分子标记,为研究鱼类性别决定奠定了基础。
     1.孔雀鱼遗传连锁图谱的构建
     利用AFLP和微卫星标记,以孔雀鱼F1全同胞家系为作图群体,构建了孔雀鱼的雌性和雄性遗传连锁图谱。用120对AFLP引物组合对亲本和56个子代个体进行了分离分析。共得到667个在亲本间有多态性并在子代中1:1分离的AFLP标记,其中含385个父本分离标记和282个母本分离标记。卡方检验显示,父、母本分离标记中共有18个偏分离标记,其他649个标记可用于连锁分析。从304对微卫星引物中筛选出65对多态性引物(21.3%),得到43个父本标记和29个母本标记。另外,将性别作为表型标记一同进行连锁图谱构建。
     分别用父本和母本标记构建了孔雀鱼雄性和雌性遗传连锁图谱。雄性连锁图谱含25个连锁群(包括1个三联体及1个连锁对),共332个标记(31个微卫星DNA标记,301个AFLP标记),图谱总长1120.5cM,覆盖率为84.1%。标记间最大间隔21.2cM,平均间隔3.6cM,平均每个连锁群上13.3个标记。雌性连锁图谱含25个连锁群(包括1个三联体及2个连锁对),共233个标记(20个微卫星DNA标记,213个AFLP标记),图谱总长901.2cM,覆盖率为77.3%。标记间最大间隔22.9cM,平均间隔4.3cM,平均每个连锁群上9.3个标记。性别标记定位于雄性图谱第六连锁群上。
     2.性别特异标记的筛选
     利用AFLP技术对比分析孔雀鱼雌雄基因组间的差异,筛选到1个雄性特异的AFLP标记(PreF262)。对这个标记进行回收、克隆、测序,根据所得核苷酸序列设计了一对引物,仅能在雄性个体基因组DNA中扩增到到特异条带,成功的把AFLP标记转化为SCAR标记。建立了快速鉴定孔雀鱼遗传性别的PCR技术。
Guppy fish (Poecilia reticulata) belongs to class Actinopterygii (ray-finned fish), order Cyprinodontiformes, family Poeciliidae and genus Poecilia. It mainly inhabits the coastal streams and rivers of Venezuela, Guyana, Surinam and several of the Lesser Antilles including Trinidad and Tobago. Guppy has become popular among aquarists and hobbyists and played an important role in the freshwater ornamental fish industry worldwide. Guppy is also a model fish for studying the genetic bases of heterosis, aging and inbreed depletion crucial for aquaculture because of its relatively short life cycle, easiness of breeding and reproduction, availability of commercial strains homologous for the traits such as body color and tail shape. In the present study, we constructed linkage maps for guppy using microsatellite DNA and AFLP markers, and isolated a sex-specific AFLP marker by screening the genomes of guppy using AFLP technique. This study provides strong support for the study of sex determination and sex differentiation in fish.
     1. Construction of linkage maps for guppy
     Genetic linkage maps were constructed for using AFLP and microsatellite markers in an F1 family. A total of 667 polymorphic loci were produced with the 120 AFLP primer pairs. Among all the polymorphic markers,282 dominantly inherited bands were from the female parent,385 were from the male, and 62 markers showed a significant distortion from the expected 1:1 ratio(P<0.05),then 649 markers were used for linkage analysis. Among the 65 informative microsatellites ,29 and 43 markers valued for the female and the male map, respectively.
     Separate linkage maps were constructed for male and female parents. The male map contained 25 linkage groups (including 1 triplets and 1 doublets), to which 332 markers (31microsatellites and 301AFLPs) were assigned. The map spanned a length of 1120.5cM, covering 84.1% of the estimated genome size (1333.1cM). The size of linkage groups ranged from 9.2cM to 108.7cM with an average of 44.8cM. The number of markers per group varied from 2 to 35 with an average of 13.3. The female parent map contained 25 linkage groups (including 1 triplets and 2 doublets), to which 233 markers (20microsatellites and 213AFLPs) were assigned. The map spanned a length of 901.2cM, covering 77.3% of the estimated genome size (1059.8cM). The maximum and average spaces between 420 loci were 22.9cM and 4.3cM respectively. The size of linkage groups ranged from 14.1cM to 97.8cM with an average of 36.0cM. The number of markers per group varied from 2 to 26 with an average of 9.3.
     2. Isolation of sex-specific AFLP markers
     The differences of genomic DNA between females and males of guppy were studied by using AFLP technique. As a result ,a male-specific maker were found to be only present in all males but absent in all females. The marker was excised, cloned and sequenced. A pair of PCR primers was designed, which could amplify sex-specific bands in male genome DNA. So we converted the AFLP marker into a PCR marker, SCAR. Selection in identifying the sex of guppy with this SCAR marker will be more efficient and less expensive than with AFLP markers.
引文
[1] Haskins,C.P.,Haskins,E.F.. The inheritance of certain color patternsin wild populations of Lebistes reticulatus in Trinidad. Evolution,1951,5: 216–225.
    [2] Yamamoto, T.O..The medaka, Oryzias latipes, and the guppy, Lebistes reticularis.Handbook of Genetics, 1975,4:133-149.
    [3] Bostein D.,White R.L., Skolnick M., Davis, R.W.. Construction of a genetic linkagemap in man using restriction fragment length polymorphisms. American Journal Human Genetics, 1980,32: 314-331.
    [4] Welsh J., Mclelland M. Fingerprinting genomes using PCR with arbitary primers. Nucleotide Acids Research, 1990, 18: 7213 - 7218.
    [5] Williams K. . DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleotide Acids Research, 1990, 18(22): 6531 - 6535.
    [6] Vos P, Hogers R, Bleeker M.. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414.
    [7] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprints. European Patent Application, 1993, 92:26-29.
    [8]岳志芹.中国对虾抗病选育群体的遗传分析及遗传连锁图谱的构建,中国海洋大学博士学位论文. 2003
    [9] Paran I,WMichelmore R. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993, 85:985 - 993.
    [10] Hamada H,Pitrino M., Kakunaga T. A novel repeated element with Z - DNA - forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences, 1982, 79: 6466 - 6469.
    [11] Schlotterer C.,Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992, 20: 211 - 215.
    [12] Alain V. et al., 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol, 34: 275-305.
    [13] Jaccoud, D., Peng, K., Feinstein, D., and Kilian,A. 2001. Diversity arrays:A solid state techn- ology for sequence information independent genotyping.nucleic acids research vol.29: 3-7
    [14] Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA.2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers.Genome Res.17:240-248.
    [15] Zhao N, Ai W, Shao Z, Zhu B, Brosse S, Chang J. Microsatellites assessment of Chinese sturgeon (Acipenser sinensis Gray)genetic variability. Appl Ichthyol,2005,21:7~13
    [16] Postlethwait, J.H.,Johnson, S.L., Midson, C.N.,Talbot, W. S., Gates, M.. A Genetic linkage map for the zebrafish. Science, 1994,264:699-703.
    [17] Shimoda, N., Kmapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., Jacob, H., Fishman, M.C.. Zebrafish genetic map with 2000 microsatellite markers. Genomics, 1999,58, 219-232.
    [18] Sakamoto, T., Danzmann, R.G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S.K., Woram, R.A., Okamoto, N., Ferguson, M.M., Holm, L.E., Guyomard, R., Hoyheim, B., 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155, 1331-1345.
    [19] Nichols, K., Young, W., Danzmann, R., Robison, B., Rexroad, C., Noakes, M.,Phillips, R., Bentzen, P., Spies, I., Knudsen, K., Allendorf, F., Cunningham, B., Brunelli, J., Zhang, H., Ristow, S., Drew, R., Brown, K., Wheeler, P., Thorgaard, G., 2003. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Animal Genetics 34,102-115.
    [20] Morizot, D., Nairn, C., Simhambhatla, R.S., Coletta, P., Trono, L.D., Choranec, D., Walter, L., 2001. Xiphophorus genetic linkage map: Beginnings of comparative gene mapping in Fishes. Marine Biotechnology 3,153-161.
    [21] Walter, R. B., Rains, J. D., Russell, J. E., Guerra, T. M., Daniels, C., Johnston, D.A., Kumar, J., Wheeler,A. Kelnar,K.,Khanolkar,V.A., Williams, E. L.,Hornecker, J. L., Hollek, L., Mamerow, M.M.,Pedroza, A., Kazianis, S.2004. A microsatellite genetic linkage map for Xiphophorus. Genetics 168, 363-372.
    [22] Agresti, J.J., Seki, S., Cnaani, A.,Poompuang, S., Hallerman, E.M., Umiel, N., Hulata, G., Gall, G.A.E., May, B., 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185, 43–56.
    [23] Lee, B.Y., Lee, W.J., Streelman, J.T., Carleton, K.L., Howe, A.E., Hulata, G., 2005. A Second-Generation Genetic Linkage Map of Tilapia (Oreochromis spp.). Genetics 170, 237-44.
    [24] Peichel, C.L., Nereng, K.S., Ohgi, K.A., Cole, B.L., Colosimo, P.F., Buerkle, C.A., Schluter, D., Kingsley, D.M., 2001.The genetic architecture of divergence between threespine stickleback species. Nature 414, 901-9055.
    [25] Xueyan Shen , Guanpin Yang , Yongjian Liu, Meijie Liao, Xiaochen Wang,Mingzhuang Zhu , Weibo Song , Guiwei Zou , Qiwei Wei ,Dengqiang Wang,Daqing Chen .Construction of genetic linkage maps of guppy (Poecilia reticulata) based on AFLP and microsatellite DNA markers. Aquaculture ,2007,271:178–187
    [26] Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Shima, A., 2000. A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution. Genetics 154, 1773-1784.
    [27] Sun, X., Liang, L., 2004. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238, 165-172.
    [28] Cheng L., Liu L., Yu X. & Tong J. 2009 Sixteen polymorphic microsatellites in bighead carp (Aristichthys nobilis) and cross-amplification in silver carp (Hypophthalmichthys molitrix). Molecular Ecology Notes 8, 656-8.
    [29] Moen T, Agresti JJ, Cnaani A, Moses H, Famula TR, Hulata G, Gall GAE, May B. 2004. A gemome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquac Res, 35: 893-904
    [30] Gilbey, J., Verspoor, E., McLay, A., Houlihan, D., 2004. A microsatellite linkage map for Atlantic salmon (Salmo salar). Animimal Genetics 35, 98-105.
    [31] Chistiakov, B.H., Dimitry, A., Chris, S., 2005. A Microsatellite Linkage Map of the European Seabass Dicentrarchus labrax L. Genetics 170, 1821-1826.
    [32] Volckaert F.A.M.J., Chistiakov D., Hellemans B., Tsigenopoulos C., Kotoulas G., McAndrew B.J., Whitaker H.A., Haley C.S., Law A., Batargias C., Georgoudis A.,Chatziplis D., Libertini A., 2005. First genetation linkage map of European sea bass. Plant & Animal Genomes XIII Conference.
    [33] Chistiakov D.A., Tsigenopoulos C.S., Lagnel J., Guo Y.M., Hellemans B., Haley C.S., Volckaert F.A. & Kotoulas G. 2008. A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Animal Genetics 39, 623-34
    [34] O’Malley T, Salmaoto RG, Danzmann, Ferguson M. Quantitative Trait Loci for Spawning Date and Body Weight in Rainbow Trout:Testing for Conserved Effeets Across Ancestrally Duplieated Chromosomes, 2002.
    [35] Ohtsuka, M., Makino, S., Yoda, K., 1999. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Research 9, 1277-1287.
    [36] Chistiakov D.A., Tsigenopoulos C.S., Lagnel J., Guo Y.M., Hellemans B., Haley C.S., Volckaert F.A. & Kotoulas G. .2008. A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Animal Genetics 39, 623-34.
    [37] Foster,J.W.and Graves,J.A.An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene.Proc Natl Acad Sci USA,1994,91:1927-1931
    [38] Liu L,Guo Y Q,Zhou R J.The cloning and verification of the SOx9 gene of the rice fieldeel. Yi Chuan Xue Bao,2001,28(6):535一539.
    [39] Hett,A.K.,Pitra,C.,Jenneckens,I.and Ludwig,A.Characterization of Sox9 in European Atlanticsturgeon(Acipenser sturio).J.Hered,2005,96(2):150-154
    [40] Yokoi,H.,Kobayashi,T.,Tanaka,M.,Nagahama,Y.,Wakamatsu,Y.,Takeda,H.,Araki,K., Morohashi,K.and Ozato,K. 2002.Sox9 in a teleost fish,medaka(Oryzias latipes):evidence for diversified function of Sox9 in gonad differentiation.Mol Reprod Dev.63(1):5-16
    [41] Matsuda,M.,Nagahama,Y.,Shinomiya,A.,et al.DMY is a Y-specific DM-domain gene required for male development in the medaka fish.Nature,2002,417(6888):559-563
    [42] Iturra P,Medrano J F,Baglcy M,Lam N,Vergara N,Marin J C. 1998.Ideniifieation of sex chromosome moleeular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica, 101:209一13.
    [43] Rachael A.Woram,Karim Gharbi,Takashi Sakamoto,et al.Comparative Genome Analysis of the Primary Sex-Determining Locus in Salmonid Fishes.Genome Res.,2003,13:272-280
    [44] Felip Alicia,William,P.Young,Paul,A.Wheeler,et al.An AFLP-based approach for the identification of sex-linked markers in rainbow trout(Oncorhynchus mykiss).Aquaculture, 2005,247(1-4):35-43
    [45] Watanabe, T.,Yoshida, M., Nakajima, M., Taniguchi, N., 2003. Isolation and characterization of 43 microsatellite DNA markers for guppy (Poecilia reticulata). Molecular Ecological Notes 3, 487–490.
    [46] Schmidt, J., 1919. Racialstudies in fishes: II. experimental investigations with Lebistes reticulates (Peters) Regan. J. Genet. 8, 147–153.
    [47] Winge, ?., 1922. A peculiar mode of inheritance and its cytological explanation. Journal of Genetics 12, 137–144.
    [48] Foo, C.L., Dinesh, K.R., Lim, T.M., Chan, W.K., Phang, V.P.E, 1995. Inheritance of RAPD markers in the guppy fish, Poecilia reticulate, Zoological Science 12, 535–541.
    [49] Khoo, G., Lim, M.H., Suresh, H., Gan, D.K.Y., Lim, K.F., 2003. Genetic linkage maps of the guppy: Assignment of RAPD markers to multipoint linkage groups. Marine Biotechnological 5, 279-293.
    [50] Watanabe, T., Yoshida, M., Nakajima, M., Taniguchi, N., 2005. Linkage mapping of AFLP and microsatellite DNA markers with the body color and sex-determining loci in the guppy (Poecilia reticulata). Zoological Science 8, 883-892.
    [51]申雪艳.孔雀鱼微卫星DNA标记的研制及其遗传连锁图谱的构建,中国海洋大学博士学位论文.2007
    [52] Taggart J.B., Hynes R.A., Prodouhl P.A. & Ferguson A. (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. Journal of Fish Biology 40, 963-5.
    [53] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414.
    [54] Shen, X.Y., Yang, G. P., Liao, M. J., 2007.Development of 51 genomic microsatellite DNA markers of guppy (Poecilia reticulata) and their application in closely related species.Molecular Ecological Notes. 7, 302-306.
    [55] Paterson, I.G., Crispo, E., 2005. Characterization of tetranucleotide microsatellite markers in guppy (Poecilia reticulata). Molecular Ecological Notes 5, 269–271.
    [56] Watanabe, T.,Yoshida, M., Nakajima, M., Taniguchi, N., 2003. Isolation and characterization of 43 microsatellite DNA markers for guppy (Poecilia reticulata). Molecular Ecological Notes 3, 487–490.
    [57] Becher, S.A., Russell,S.T.,Magurran,A.E.,2002.Isolation and characterization of polymorphic microsatellites in the Trinidadian guppy (Poecilia reticulata). Molecular Ecological Notes 2, 456–458.
    [58] Gen Hua Yue, Laszlo Orban. 2004.Novel microsatellites from the green swordtail (Xiphop- horus hellerii) also display polymorphism in guppy (Poecilia reticulata) Molecular Ecology Notes .4, 474–476
    [59] Walter, R. B., Rains,J.D., Russell,J.E.,Guerra, T.M., Daniels,C.,Johnston,D.A.,Kumar,J., Wheeler,A.,Kelnar,K.,Khanolkar,V.A.,Williams, E.L.,Hornecker, J. L., Hollek, L., Mamerow, M.M.,Pedroza, A., Kazianis, S., 2004. A microsatellite genetic linkage map for Xiphophorus. Genetics 168, 363-372.
    [60] Fishman L, Kelly A J, Morgan E, et al. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics, 2001, 159: 1701-1716.
    [61] Chakravarti A, Lasher L K, Reefer J E. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 1991, 128: 175-182.
    [62] Zhang L, Yang C, Zhang Y, et al. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica, 2007, 131:37-49.
    [63] Majumdar KC, Mcandrew BJ. Relative DNA content of somatic nuclei and chromosomal studies in three genera: Tilapia, Sarotherodon and Oreochromis of the tribe Tilapiini. Genetica, 1986, 68(3): 175?188.
    [64] Desprez D, Melard C. Effect of ambient water temperature on sex determinism in the blue tilapia Oreochromis aureus. Aquaculture, 1998, 162(1?2): 79?84.
    [65] Abucay JS, Mair GC, Skibinski DOF, Beardmore JA. Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture, 1999, 173(1?4): 219?234.
    [66] Goto R, Tatsunari M, Kawamata K, Matsubara T, Mizuno S, Adachi S, Yamauchi K. Effects of temperature on gonadal sex determination in barfin flounder (Verasper moseri). Fisheries Sci, 1999, 65(6): 884?887.
    [67] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview ofgenetic, physiological, and environmental influences. Aquaculture, 2002, 208 (3?4): 191?364.
    [68] Winge,O¨.1922 One-side masculine and sex-linked inheritance in Lebistes reticulata. J. Genet. 12, 145–162.
    [69] Winge, O¨. 1927 The location of eighteen genes in Lebistes reticulatus. J. Genet. 18, 1–43.
    [70] Winge, O¨. & Ditlevsen, E. 1947 Colour inheritance and sex determination in Lebistes. Heredity 1, 65–83.
    [71] Haskins, C. P., Young, P., Hewitt, R. E. & Haskins, E. F.1970 Stabilized heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25, 575–589.
    [72] Cao JL, Cao ZM, Wu TT. Generation of antibodies against DMRT1 and DMRT4 of Oreochromis aurea and analysis of their expression profile in Oreochromis aurea tissues. Genet Genomics, 2007, 34(6): 497?509.
    [73] Matsuda M, Kusama T, Oshiro T, Kurihara Y, Hamaguchi S, Sakaizumi M. Isolation of a sex chromosome-specific DNA sequence in the medaka, Oryzias latipes. Genes Genet Syst, 1997, 72(5): 263?268.
    [74] Kovacs B, Egedi S, Bartfai R, Orban L. Male-specific DNA markers from African catfish (Clarias gariepinus).Genetica, 2001, 110(3): 267?276.
    [75] Felip A, Young WP, Wheeler PA, Thorgaard, GH. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2005, 247(1?4): 35?43.
    [76] Li Y, Hill J A , Yue G H , et al. Extensive search does not identify genomic sex markers in Tet raodon nigroviridis [J ] . Journal of Fish Biology , 2002 (61) :1314-1317.
    [77] Wuertz S , Gaillard S , Barbisan F , et al. Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker [J ] . Aquaculture ,2006 (258) :685-688.
    [78] Sriphairoj K, Nanakorn U , Brunelli J P , et al. No AFLP sex-specific markers detected in Pangasianodon gigas and P. hypophthalmus [J ] . Aquaculture , 2007(273) :739-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700