乌苏里拟鲿(Pseudobagrus ussuriensis)不同群体间的遗传多样性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乌苏里拟鲿(Pseudobagrus ussuriensis)隶属于硬骨鱼纲(Dsteichthyes)、辅鳍亚纲(Actinopteri)、鲇形目(Silurformes)、鲿科(Bagridae)、拟鲿属(Pseudobagrus),因其肉质细嫩、味道鲜美、营养价值高而备受青睐。然而随着滥捕现象和环境污染日趋严重,其野生资源数量锐减;另一方面,由于野生亲本数量有限,普遍存在近亲繁殖现象,从而可能导致种质退化。
     本文从基因组DNA、mtDNA基因片段等多个层次研究了乌苏里拟鲿不同群体间的遗传多样性,初步筛选了乌苏里拟鲿的性别相关分子标记并对其线粒体控制区做了初步的研究。具体研究结果包括如下3个方面:
     (1)采用SRAP分子标记技术对乌苏里拟鲿东北黑龙江水系野生群体(DB)、洪泽湖野生群体(HL)、淮安养殖群体(HA)、苏州养殖群体(SZ)进行了遗传多样性分析。从不同的引物组合中筛选出12对条带清晰、重复性强、多态性好的引物组合,每组引物对乌苏里拟鲿4群体扩增均产生11~21个扩增位点,片段大小在572~111bp,从4个群体中共扩增出212个位点,其中多态位点有130个,多态位点比例为64.36%,显示了较高的多态性。野生DB群体、HL群体、与养殖HA群体、SZ群体的多态位点比例分别为:65.67%,63.13%,56.54%,54.88%;Nei’s基因多样性指数(H)为0.2597、0.2641、0.2546、0.2469;Shannon’s信息指数(I)为0.4097、0.4118、0.4050、0.3861。两个野生群体间的遗传距离最大(0.1924),遗传相似度最小(0.6718),两个养殖群体间的遗传距离最小(0.1087),遗传相似度最大(0.8970)。UPGMA聚类图显示:HA群体和SZ群体首先聚类为一个分支,再与HL群体聚为一支,最后与DB群体聚类在一起。结果表明:2个野生群体的遗传距离最大,亲缘关系最远,存在明显的遗传分化;养殖群体遗传多样性水平较低,且存在较为明显的遗传分化趋势;但从遗传距离及遗传分化的角度分析,人工养殖群体还没有形成独立的遗传结构。
     (2)利用SRAP分子标记技术对乌苏里拟鲿雌雄基因组DNA的多态性进行了检测,并筛选与其性别相关的分子标记。8对引物组合在乌苏里拟鲿雌雄群体中共检测到164个位点,其中雌性个体142个位点,多态位点(AP)85个,多态位点比例(P)为55.19%,平均等位基因数(Na)为1.5519、平均有效等位基因数(Ne)为1.3001、Nei’s基因多样性指数(H)为0.1797、Shannon’s信息指数(I)为0.2732;8对引物组合检测到雄性个体154个位点,多态位点102个,多态位点比例(P)达到66.23%,平均等位基因数(Na)为0.6623、平均有效等位基因数(Ne)为1.3113、Nei’s基因多样性指数(H)为0.1887、Shannon’s信息指数(I)为0.2917,表明雄性乌苏里拟鲿群体的遗传多样性要比雌性群体丰富,遗传变异比雌性群体大。通过分析8对引物组合的SRAP扩增图谱,得到一条与雄性相关的SRAP分子标记F10R6—215bp以及雌性个体特异性SRAP分子标记F8R7—450bp。
     (3)对乌苏里拟鲿线粒体控制区进行扩增并与圆尾拟鲿、长吻鮠、光泽黄颡鱼和大鳍鳠mtDNA控制区序列进行比较。结果表明:乌苏里拟鲿的ETAS序列为TACATTAATTTACTATGGTATAGT ;中央保守序列区CSB-F的序列为ATGTAGTAAGAAACCATCAACCCTGTAT,它是终止序列区和中央保守序列区的分界点,CSB-E的序列为:AGGGGCAAAACTTGTGGGGG,在这个序列中存在一个GTGGGG-box的稳定结构,CSB-D的序列为:TATTACTGGCATCTGGTTCC TA;保守序列区CSB-1的序列为:ATAATATATGTATGTCTTAATGACATA,其识别的关键序列为ACATA,CSB-2序列为AAACCCCCCTACCCCC,CSB-3序列为TGTTAAACCCCTAAACCAG,其中,CSB-3比CSB-2的变异稍大些。乌苏里拟鲿线粒体控制区的A、T含量高,G含量低,这与其他四种鲿科鱼类碱基的组成具有相同的趋势。
Pseudobagrus ussuriensis which belongs to Dsteichthyes,Actinopteri,Silurfor- mes,Bagridae. Pseudobagrus ussuriensis is a kind of important economic fish,which taste delicious and has high nutritional value. The success of its artificial propagation improved the status of its fry in short supply and accelerated the foundation of many small breeding populations. In limited of conditions and scales, many seed farm kept few parents and apart of them were offspring of their inbreeding. Its germ plasm, however, such as prematurity, the decline of hatching ratio,and the ability of disease resisitance and spawning has been seriously degenerating every year in recent years.
     In this study, the genetic structure and genetic diversity of Pseudobagrus ussuriensis were analyzed by mtDNA and SRAP.The main results were shown as follows:
     (1) The sequence-related amplified polymorphism(SRAP)molecular marker technique was used to compare genetic structures among three populations of Pseudobagrus ussuriensis-one wild and two cultured populations.Samples of two wild population were collected from HeiLongjiang and Jiangsu Hongze Lake,the two cultured populations from Fisheries Research Institute of Huaian (F2 generation) and Suzhou Dongshan Aquatic Breeding Plants (F3 generation). 12 pairs of SRAP primer, which produced good amplified patterns were selected from 100 primer combinations. 212 amplified loci were obtained from the three populations, among which 130 were polymorphic. The percentage of polyrnorphic loci in the HeiLongjiang (DB) population,Hongze Lake(HL) population, Huaian populations(HA), Suzhou Dongshan populations(SZ)were65.67%,63.13%,56.54%,54.88%,respectively. The results indicated that genetic polyrnorphism decreased in two cultured populations. The Nei's gene diversity of four populations were0.2597, 0.2641, 0.2546 and 0.2469, and the Shannon's Information index of four populations were0.4097,0.4118, 0.4050 and 0.3861, respectively. The genetic distance between two wild population was 0.1924, while the genetic simility was 0.6718; The genetic distance between two cultured population was 0.1087, while the genetic simility was 0.8970. The noticeable decrease in the number of rare loci and the increase in the number of homozygous recessive loci in the cultured population suggested a considerable loss of low frequency alleles in the cultured populations, which may have resulted from small effective population sizes during artificial seed production. With the method of UPGMA on the basis of genetic distanee,the results showed the populations of HA and SZ assemble done branch first, then with HL assemble done branch second, the last did DB populations because of these populations’s the different sites. The results showed that: two wild populations has the largest genetic distance and the farthest genetic relationship, there is significant genetic differentiation; low level of genetic diversity of culture, and there was obvious genetic differentiation trend; but the genetic distance and genetic differentiation perspective Analysis, artificial breeding groups have not formed an independent genetic structure.
     (2) SRAP analysis was applied to study sex and genetic diversity in Pseudobagrus ussuriensis.A total of 60 samples,which are 30 males and 30 females,were used in the test.Of 100 random oligonueleotide primers for the amplification of Pseudobagrus ussuriensis genomic DNA,8 could produce reproducible, distinctive and characteristic bands from 572~111bp.164sites were deteeted,112 of which(68.29%) were polymorphic. Genetic diversity quantifled by Shannon index was 0.2917(male) and 0.2732(female) respectively. Only F10R6 primer was successful to amplify a specific band of 215 bp from male populations, named F10R6—215bp. This marker was not associated with male populations and can be used as SRAP marker for sex identification of Pseudobagrus ussuriensis.
     (3) Complete sequence of Pseudobagrus ussuriensis mtDNA control region is amplified and compared with sequence of Mystus macropterus,Leiocassis longrostris, Pseudobagrus tenuis and Pseudobagrus nitidus downloaded from GenBank.In analogy,the conserved region of these four species are identified as extended terminal associated sequenee,Certrol conserved sequence bloke,Conserved sequence block; These sequences of ETAS is TACATTAATTTACTATGGTATAGT; These sequences of CSB-F is ATGTAGTAAGAAACCATCAACCCTGTAT;These sequences of CSB-E is AGGGGCAAAACTTGTGGGGG;These sequences of CSB-D is TATTACTGGCATCT GGTTCCTA;These sequences of CSB-1 is ATAATATATGTATGTCTTAATGACATA; These sequences of CSB-2 is AAACCCCCCTACCCCC; These sequences of CSB-3 is TGTTAAACCCCTAAACCAG.The sequences of CSB-D and GTGGG-box are stringently conserved while a few site variations are found in other regions among species.
引文
[1]王献薄.生物多样性保护与利用的主要研究方向[J].资源科学, 1994 (4) : 1-6.
    [2]陈灵芝主编.中国的生物多样性[M].北京:科学出版社, 1993, 199-113.
    [3] Mclean J E,Taylor E B.Resolution of population structure in a species with high gene flow: microsatellite variation in the eulachon(Osmeridae:Thaleichthys pacificus) [J].Marine Biology,2001,139:411-420.
    [4]夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59-65.
    [5]尹绍武,黄海,张本,等.石斑鱼遗传多样性的研究进展[J].水产科学,2005,24(8):46-49.
    [6]孙莉.长鳍鲤、锦鲤和龙凤鲤的遗传多样性研究[D].扬州大学硕士论文.2009.
    [7]雷光高.半滑舌鳎野生群体和养殖群体遗传多样性的研究[D].集美大学硕士论文.2008.
    [8]刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析[J].水生生物学报, 2005,(4):413-416.
    [9]李思发,周碧云,倪重匡,等.长江、珠江、黑龙江鲢、鳙鱼和草鱼原种种群形态差异[J].动物学报, 1989,35(4):390-398.
    [10]赵建,朱新平,陈永乐,等.珠江口卷口鱼不同地理种群的形态变异[J].动物学报, 2007,53(5):921-927.
    [11]程起群,李思发.刀鲚和湖鲚种群的形态判别[J].海洋科学, 28(11):39-43.
    [12]姚景龙,陈毅峰,严志云,等.中华鮡与前臀鮡的形态差异和物种有效性[J].动物分类学报, 2006,31(1):11-17.
    [13]庄志猛.半滑舌鳎早期发育生物学与种质资源研究[D].中国海洋大学博士论文.2006.
    [14]刘春华.达赉湖红鳍鲌种质指标的研究[D].内蒙古农业大学硕士论文.2006.
    [15]李国庆,伍育源,秦志峰,等. .鱼类遗传多样性研究[J].水产科学, 2004, 23(8):42-44.
    [16]邱芳,伏建民,金德敏,等.遗传多样性的分子检测[J].生物多样性, 1998, 6(2): 143-150.
    [17]李鹏飞.漠斑牙鲆的种质资源研究[D].中国海洋大学硕士论文.2006.
    [18]杨锐,庄志猛,喻子牛,等.梭鱼养殖群体与自然群体等位基因酶的遗传变异[J].海洋水产研究, 2002,23 (3): 15-19.
    [19]柯才焕,田越,周时强,等.杂色鲍与皱纹盘鲍、盘鲍杂交的初步研究[J] .海洋科学,2000,(11):39-41.
    [20]沈琪.欧洲牡蛎两个种群的遗传变异[J].热带海洋,1999,18(3):45-50.
    [21] StaubJE, SerquenFC, GuPtaM. Genetic markers,map construction and their application in plant breeding[J].Hort Seience,1996,31(5):729-741.
    [22]沈法富,刘风珍,于元杰.分子标记在植物育种中的应用[J].山东农业大学学报, 28(1):83-91.
    [23] Williams J G, Kubelik A R, Livak K J, et.al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Research,1990,l8:6531-6535.
    [24] Welsh J, Petersen C, McClelland M.Polymorphisms generated by arbitrarily primed PCR in the mouse:application to strain identification and genetic[J].Nucleic Acids Research,1991,19,303-306.
    [25]常重杰,周荣家,余其兴,等.两种泥鳅不同群体遗传变异的RAPD分析[J].动物学报, 2001, (1):89-93.
    [26]孟宪红,孔杰,庄志猛,等.真酮自然群体和人工繁殖群体的遗传多样性[J].生物多样性,2000,8 (3):248-252.
    [27]阎冰,邓岳文,杜晓东,等.广西地区文蛤的遗传多样性研究[J].海洋科学, 2002,26(5):5-8.
    [28]沈怀舜,朱建一,丁亚平,等.我国沿海三个文蛤地理群的RAPD分析[J].海洋学报, 2003,25(5):97-102.
    [29]杜晓东,邓岳文,叶富良,等.广东和广西地区野生文蛤的遗传多样性[J].中国水产科学,2004,11(1):41-47.
    [30] Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting[R]. European Patent Application No.9240269.7, 1993, Publication No. EP 0534858 A1.
    [31] Vos P,Hogers M,Reijians M.AFLP:A new technique for DNA fingerprinting [J].Nucleic AcidsResearch,1995,23:4407-4414.
    [32]潘洁,包振民,赵洋,等.栉孔扇贝不同地理群体的遗传多样性分析[J].高技术通讯,2002,12:78-82
    [33]王志勇,邱淑贞.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异[J].水产科学,2001,25(4):289-293.
    [34]韩志强,高天翔,王志勇,等.黄姑鱼群体遗传多样性的AFLP分析[J].水产学报,2006,30(5):640-646.
    [35] Tautz D, Renz M. Simple sequenees are uniquitous repetitive components of eukaryotic genome[J].Nucleic Acids Research,1984,12:4127-4138.
    [36]陈松林,刘云国,季相山.精子冷冻保存对大菱鲆后代遗传结构影响的微卫星分析[J].高技术通讯,2005,15(6):87-91.
    [37]刘云国,陈松林,李八方,等.牙鲆选择性养殖群体遗传结构的微卫星分析[J].高技术通讯, 2006,16(1):94-99.
    [38]董秋芬,刘楚吾,郭昱嵩,等.9种石斑鱼遗传多样性和系统发生关系的微卫星分析[J].遗传, 2007, 29(7): 837-843.
    [39]周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探[J].动物学研究,2001,22(4):257-264.
    [40] Li G, QUIROS C F. Cloning a major gene involved in the synthesis of Glucosinolates in Brassica [R]. San Diego ,CA: Plant Anmal and Microbe Genomes Conference ,2002.
    [41]张安世,邢智峰,刘永英,等.SRAP分子标记及其应用[J].安徽农业科学,2007,35(9):2562-2563.
    [42]程远辉.重庆何首乌遗传多样性的SRAP研究[J].中国中药杂志, 2007, 32(8): 661-663.
    [43]林忠旭.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].中国农学通报, 2004, 31(6): 622-626.
    [44]李慧芝. SRAP在葱栽培品种遗传多样性研究中的适用性分析[J].园艺学报,2007,34(4),929-934.
    [45]王传堂.花生相关扩增多态性(SRAP)标记的研究[J].花生学报, 2005, 34(3): 11-15.
    [46]李严.新型分子标记技术—SRAP技术体系优化及应用前景分析[J].中国农学通报, 2005, 21(5): 108-112.
    [47] Ferriol M, Pieo B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theor Appl Genet, 2003, 107: 271一282.
    [48] Riaz Ahmad, Marie Jasieniuk. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States[J]. Aquatic Botany, 2008, 88: 113-120.
    [49]姚建华,傅洪拓,龚永生,等. SRAP分子标记技术及其在水产育种中的应用前景[J].安徽农学通报, 2009, 15(08): 53-55.
    [50] BrownWM. The mitochondrial gene of animals[A]. Plenum, London, England, 1985, 95-130.
    [51] KimuraM. The neutral theory of molecular evolution[M]. Cambridge: Cambridge University Press, 1983.
    [52]张亚平,施立明.动物线粒体DNA多态性的研究概况[J].动物学研究,1992,13(3):298-298.
    [53]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化[J].水生生物学报,2000,24(4):384-391.
    [54]张方,米志勇.动物线粒体DNA的分子生物学研究进展[J].生物工程进展,1998,18(3):25-32.
    [55]邵爱华,朱江,史全良,等.暗纹东方纯线粒体DNA控制区结构和系统发育分析[J].中国水产科学2007, 14(3): 352-360.
    [56]张四明,吴清江,张亚平.中华鲟及其相关种类的mtDNA控制区串联重复序列及其进化意义[J].中国生物化学与分子生物学报.2000,16(4):458-461.
    [57]刘红艳,江世贵,苏天凤,等. 3个水域黄鳍绸线粒体DNA D-Loop基因序列多态性研究[J].水产学报, 2004, 28(4): 371-374.
    [58] Lee WJ, ConroyJ,HowellWH. Structure and evolution of teleost mitochondrial control regions[J]. MolEvol, 1995, 41(1): 54-66.
    [59]郑冰蓉,张亚平.南倒刺鱼巴mtDNA D-Loop区序列的遗传多样性研究[J].水利渔业,2002,22(3):15-16.
    [60]刘焕章.鱼类线粒体控制区的结构与进化—以鳑鮍鱼类为例[J].自然科学进展,2002,12(3):66-70.
    [61]王鹏,赵春刚,叶继丹,等.乌苏里拟鲿人工繁育技术及开发利用—乌苏里拟鲿仔幼鱼食性与生长的初步研究[J].水产学杂志,2001,14(2):4-6.
    [62]潘伟志,王鹏,赵春刚.乌苏里拟鲿人工繁育技术及开发利用--乌苏里拟鲿繁殖生物学及人工催产初步研究[J].水产学杂志,2001,14(2):1-3.
    [63]陈军,潘伟志,赵春刚.乌苏里拟鳄苗种培育技术[J].黑龙江水产.2006,3:13-17.
    [64]潘伟志,尹洪滨,孙中武,等.乌苏里拟鲿同功酶分析[J].东北林业大学学报,2006,34(6):66-69.
    [65]于波.乌苏里拟鲿精巢发育的周年变化及精子入卵研究[D].东北林业大学硕士论文.2008.
    [66]薛淑群,尹洪滨.乌苏里拟鲿的染色体组性研究[J].水产学杂志, 2008, 25(2): 75-78.34(6): 66-69 .
    [67]海燕,何宁,康明辉,等.新型分子标记SRAP及其应用[J].河南农业科学, 2006, 9:9 -11.
    [68]杨迎花,李先信,曾柏全,等.新型分子标记SRAP的原理及其研究进展[J].湖南农业科学, 2009, (5): 15-17.
    [69]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学学报, 2003, 48(15): 1676-1679.
    [70]丁炜东,曹丽萍,曹哲明.草鱼种质相关SRAP及SCAR的分子标记[J].动物学报, 2008, 54(3): 475-481.
    [71]田明礼,吴孝兵.扬子鳄SRAP-PCR反应体系的优化及引物筛选[J].安徽师范大学学报(自然科学版). 2008, 31(2): 163-167.
    [72] Li·C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet. 2001, 103: 455-461.
    [73]辛文婷,孙中武,尹洪滨,等.黄颡鱼雌雄差异的SRAP标记[J].东北林业大学学报, 2009, 37(5): 112-113.
    [74] You Feng, Xiang Jianhai, Song Linsheng, et al. Genetic variation in natural and cultured stocks of SHANDONG Paralichthys olivaceus as revealed by RAPD[J]. Studia Marina Sinica, 2002, 44: 28-234.
    [75] You Feng, Zhang Peijun, Wang Keling, et al. Genetic variation of natural and cultured stocks of Paralichthys olivaceus by allozyme and RAPD[J]. Chinese Journal of Oceanology and Limnology, 2007, 25(1): 78-84.
    [76]张志伟,仲霞铭,张志勇,等.草鱼野生群体和人工繁殖群体遗传结构的比较研究[J].中国水产科学, 2007, 14(5): 721-725.
    [77]张全启,徐晓斐,齐洁,等.牙鲆野生群体和养殖群体的遗传多样性分析[J].中国海洋大学学报, 2004, 34(5): 816-820.
    [78]李弛.利用SRAP、SSR分子标记检测分析29份棉花种质遗传完整性[J].植物遗传资源学报. 2007, 8(1): 21-25.
    [79]姚建华,傅洪拓,龚永生,等. SRAP分子标记技术及其在水产育种中的应用前景[J].安徽农学通报. 2009, 15(08): 53-55.
    [80]程宁宁,杨爱国,刘志鸿,等.栉孔扇贝(♀)×虾夷扇贝(♂)子一代杂种优势的SRAP分析[J].海洋科学, 2009, 10:107-111.
    [81]王守现,刘宇,耿小丽,等.应用SRAP标记对六个鸡腿菇菌株的多态性分析[J].江西农业大学学报,2006, 05: 753-757.
    [82]李巧燕,林瑞庆,朱兴全. SRAP分子标记及其应用概述[J].热带医学杂志,2006,6(4):467-469.
    [83]郑翠芳,朱晓东,方丽娜,等.爱玉子性别与品系的SRAP分析[J].热带作物学报,2009,30(12):1740-1745.
    [84]辛文婷.黄颡鱼SRAP遗传图谱的构建[D].东北林业大学, 2009.
    [85]傅洪拓,乔慧,姚建华,等.基于SRAP分子标记的海南沼虾种群遗传多样性[J].生物多样性, 2010, 18(2): 150-154.
    [86]李大宇,殷倩茜,侯宁,等.黄颡鱼不同生态地理分布群体遗传多样性的微卫星分析[J].海洋与湖沼,2009,40(4):460-468.
    [87] Thorp J P. The molecular dock hypothesis:Biochemical evolution,genetic differentiation, and systematic[J]. Annual Review of Ecology Systematic, 1982,13(1):139-168.
    [88]马洪雨.三种重要海水养殖鱼类性别特异标记和微卫星标记开发及遗传连锁图谱构建[D].中国海洋大学博士论文.2009.
    [89]凌立彬,司伟,傅洪拓,等.建鲤性别相关分子标记的初步研究[J].南京农业大学学报,2007, 30 (2) : 147-150.
    [90] Iturra P, Medrano J F, Bagley M.Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout[J]. Genetiea, 1998, 101:209-213.
    [91] Balazs K, Sandor E, Rehard B. Male一specific DNA markers from African catfish(Clarias gariepinus) [J].Genetica,2001,110:267-276.
    [92]王亮晖,司伟,傅洪拓.运用AFLP技术分析鲤鱼雌雄之间的差异[J].安徽农学通报,2007,13(12):41-43.
    [93]李静.半滑舌鳎养殖群体遗传结构分析及性别特异AFLP分子标记的筛选[D].中国海洋大学硕士论文.2006.
    [94]杨东.尼罗罗非鱼性别决定机制和性别相关的分子标记[D].华中农业大学硕士论文.2006.
    [95]徐成.牙鲆雌核发育分析鉴定与性别决定机制研究[D].中国科学院博士论文.2000.
    [96]司伟.全雌鲤鱼育种技术及性别相关分子标记研究[D].南京农业大学硕士论文.2006.
    [97]肖武汉,张亚平.鱼类线粒体DNA的遗传与进化[J].水生生物学报, 2000,24(4):384- 391.
    [98] Clayton D A. Replication of animal mitochondrial DNA[J]. Cell, 1982, 28: 693- 705.
    [99] SbisàE, Tanzariello F, Reyes A, et al.Mammalian mitochondrial D-loop region structure analysis :identification of new conserved sequences and their functional and evolutionary implifications[J]. Gene , 1997, 205 :125-140.
    [100]唐文乔,胡雪莲,杨金权.从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性[J].生物多样性, 2007, 15(3) :224-231.
    [101] Zhu D,Jamieson B G, Hugall A,et al.Sequence evolution and phylogenetic signal in control region and cytochrome sequences of rainbow fishes[J]. Mol Biol Evol ,1994 ,11 :672-683.
    [102] Bowen BW, Muss A, Rocha LA, et.al. Shallow mtDNA coalescence in Atlantic pygmyangel fishes indicates a recent invasion from the Indian Ocean[J]. J Hered , 2006, 97(1):1-12.
    [103] LiuHZ, TzengC, TengHY. Sequnece variations in the mitochongdrial DNA control region and their implications for the phylogeny of cypriniformes[J].Can J Zool, 2002,80(3):569-581.
    [104]张燕,张鹗,何舜平.中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J].水生生物学报, 2003, 27(5):463-467.
    [105] Wolstenholme D R. Animal mitoehondrial DNA: Structural and evolution [M]. Mitochondrial Genomes. San Diego: Aeademie, 2006:173-372.
    [106] Saceone C, Pesole G, SbisàE. The main regulatory region of mammalian mitochondrial DNA: Strueture-function model and evolutionary pattern[J].Journal of Molecular Evolution 1991, 33(l):83-91.
    [107] SbisàE, Tanzariello F, Reyes A, et al.Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional and evolutionary implications[J]. Gene, 1997, 205(l-2): 125-140.
    [108]张艳春.大口鳒线粒体全序列的研究和鲽形目鱼类系统进化分析[D].中国海洋大学,2009.
    [109]周丽.大鳍鳠(Mystus macropterus Bleeker)遗传多样性及其线粒体控制区结构的研究[D].西南大学,2008.
    [110] Ettore Randi, Vittorio luechini. Organization and evolution of the mitochondrial DNA control region in the avian genus alectoris[J]. Mol Evol, 1998, 47 : 449 -462..
    [111]刘焕章.用mtDNA 12S rRNA序列变异检验鲤形目鱼类系统发育关系[J].遗传学报, 2004, 31(2):137-142.
    [112] Lee WJ, ConroyJ, Howell WH. Structure and evolution of telcost mitochondrial control regions[J]. MolEvol, 1995, 41(1): 54-66.
    [113] Broughton R E,et al.Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera[J].Geneties,1994,138:179.
    [114]赫崇波,曹杰,刘卫东,等.圆斑星蝶及相关种类线粒体DNA控制区结构分析[J].遗传, 2007, 29(7): 829-836.
    [115] Zhang Y G, Wang D S. Studies on the osteology of the bagrid catfishes from Jialing River (IV): an approach to the phylogenetic relationship[J]. Journal of Southwest China Normal University, 1995, 20 (4) :432-439.
    [116]戴凤田,苏锦祥.鲿科八种鱼类同工酶和骨骼特征分析及系统演化的探讨(鲇形目:鲿科) [J].动物分类学报, 1998, 23 (4) : 432-439.
    [117]彭作刚,何舜平,张耀光.细胞色素b基因序列变异与东亚鲿科鱼类系统发育[J].自然科学进展,2002 (6) : 596-600.
    [118]张燕,张鹗,何舜平.中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J].水生生物学报, 2003, 27 (5) : 463-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700