水稻条纹病毒mRNA转录起始机制及其NSvc2蛋白在植物细胞中的亚细胞定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条纹病毒(Rice stripe virus,RSV)作为纤细病毒属的典型成员,是引起水稻条纹叶枯病的病原物,在灰飞虱体内循回并增殖,以持久方式经卵传播,在我国广大稻区已经造成了极其严重的危害。通过几十年的努力,研究者在RSV的很多方面取得了巨大的成果,如基因组结构及其编码策略和蛋白功能、病毒粒子形态、抗病育种等,但还有很多方面值得更深入地认识和研究。RSV是一个负义链RNA病毒,其RNA5’端并不存在帽子结构,而其mRNA5'末端却有一段非病毒来源的RNA序列,那么这些短的、非病毒的帽子结构的来自什么地方,又有什么规律可寻呢?另一个值得关注的问题是RSV病毒粒子形态,RSV与布尼亚病毒科病毒的亲缘关系十分近,但二者的病毒粒子形态却差别非常大,这是又是什么原因造成的呢?为了解答这两个疑惑,本研究开展了以下两方面的研究:
     1.水稻条纹病毒mRNA转录起始机制的研究
     RNA帽子结构存在于所有真核生物mRNA和大多数病毒基因组RNA的5’端,它对于RNA的有效剪切、RNA出核转运和RNA自身稳定具有重要的作用。但是分段负义链RNA病毒的RNA5’端不存在帽子结构,而其mRNA5'末端却有一段非病毒来源的RNA序列,RSV mRNA5'端同样存在这样的序列,RSV是否和其他负义链RNA病毒一样通过“抓帽”机制获得这些帽子结构。
     为了探明RSV mRNA5'端这些短的、非病毒的帽子结构的来源机制,本研究将RSV和具5,端帽子结构的正义链RNA病毒黄瓜花叶病毒(Cucumber mosaic virus, CMV)共侵染本氏烟,结果发现前者可“窃取”后者RNA5’端的帽子结构并起始自身RNA的转录,而且优先切割在与RSV RNA3'端多碱基互补的位点。源于CMV的RNA帽子长度达到12-20nt(nucleotides)时可以起始RSV长距离转录,但长度为12-16nt的RNA前导序列最适合RSV长距离转录起始,可产生了更多的CMV-RSV嵌合体。虽然从CMV RNA切割而来的初始帽子长度较短(10-13nt),但是这些源于CMV帽子结构、可起始RSV mRNA长距离转录的RNA前导序列包含多达5个额外的AC重复。经序列分析发现这些AC重复通过引物重配机制添加到CMV RNA初始的、较短的帽子上,而且每经历一次引物重配即可增加一个AC到RNA帽子结构上,如此循环,较短的RNA帽子逐步增长至较长的帽子结构(12-20nt)。值得注意的是,源于CMV RNA1/2的初始RNA帽子(10或11nt)不可以直接进行转录延伸,只有当其帽子长度增至12nt以上才可以被用于直接延伸。这些结果表明引物重配机制可以使较短的CMV RNA帽子序列逐步增长至较长且合适长度的RSV RNA帽子结构,从而促使形成较稳定的转录起始复合体,有利于RSV RNA转录起始并长距离延伸。
     2. RSV NSvc2蛋白在植物细胞中的亚细胞定位研究
     纤细病毒属病毒与布尼亚病毒科病毒具有极高的亲缘关系,但是纤细病毒的病毒粒子呈细丝状且不具包膜,而布尼亚病毒的病毒粒子是具包膜的球状粒子。在布尼亚病毒的球状病毒粒子形成过程中其糖蛋白起了十分重要的作用,是决定病毒粒子形态的关键因子。RSV基因组RNA2的互补链vcRNA2编码的一个多聚蛋白RSV NSvc2蛋白与布尼亚病毒的糖蛋白具有很高的同源性,且具有许多共同的特征,但病毒粒子形态却截然不同,是否是其糖蛋白的特性发生改变从而导致其病毒粒子形态的变化。
     为了阐明这个问题,首先通过序列分析发现:RSV NSvc2蛋白具有4个跨膜区域(6-26aa、269-291aa、362-379aa和807-827aa),其中2个区域是信号肽(1-18aa和362-379aa),而且其成熟过程在382aa位点发生切割形成NSvc2-N(41kDa)和NSvc2-C (51kDa)两个成熟蛋白。为了进一步明确RSV病毒粒子形态的成因,本研究在本氏烟中更深入地研究了NSvc2的特征,结果发现:在RSV自然侵染水稻和本氏烟的过程中糖蛋白NSvc2的确发生切割,形成两个成熟蛋白NSvc2-N和NSvc2-C,而且NSvc2-N单独表达时定位于高尔基体,而NSvc2-C单独表达时却积累于内质网,但是一旦二者共同表达时,NSvc2-N即可把Svc2-C从内质网招募到高尔基体上,而且这种从内质网到高尔基体的转运是依赖有功能的细胞早期分泌途径COP I和COP Ⅱ,且定位于高尔基体的NSvc2可与高尔基体一起沿着内质网运动。进一步通过缺失和重组嵌合突变体发现NSvc2的高尔基体定位信号位于NSvc2-N的C端区域(269-315aa),涵盖了NSvc2-N跨膜区和相邻的24aa的胞浆尾部。这些结果表明RSV糖蛋白NSvc2蛋白在植物细胞中定位于高尔基体,与布尼亚病毒科病毒糖蛋白的细胞学特征相同,为RSV的认识提供了新的视角,有望寻找到RSV病毒粒子线状形态的真正成因。
Rice stripe virus (RSV), the type member of the genus Tenuivirus, caused significant losses in rice fields in China and is known to be transmitted by Laodelphax striatellus in a persistent, circulative-propagative manner. Currently, RSV raised serious concerns and was focused on the genome structure and its coding strategy, the function of proteins, resistance breeding and other aspects, but many aspects are worthy of in-depth knowledge and research. RSV, a negative-sense strand RNA virus, has no cap structure at its RNAs5' terminal, whereas there is a non-viral RNA sequence at its mRNAs5'terminal. It was asked where do these short, non-viral cap structures come and what rules can be found it? Another issue of concern is the morphology of RSV particles. RSV and the viruses of Bunyaviridae have a close phylogenetic relationship, but how to explain the phenomena that the morphologies of their particles are largely different. To answer these doubts, two aspects were carried out in this study as follows:
     1.RSV mRNA transcription initiation mechanism
     RNA cap structure found at the5'end of eukaryotic mRNA and the majority of the viral genomic RNA. The cap has several important biological roles, such as protecting mRNA from degradation by5'exoribonucleases and directing pre-mRNA splicing and mRNA export from the nucleus. But all segemet, negative-sense strand RNA virus have no cap structure at its RNAs5'terminal, whereas there is a non-viral RNA sequence at its mRNAs5'terminal, as well as RSV. But whether RSV acquiring cap structures from cellular mRNAs by'cap snatching'has not been determined.
     To ascertain the origin of these short and non-viral cap structure, in this study RSV and Cucumber mosaic virus (CMV), a sense strand RNA virus having the cap structure at its RNAs5'end, were co-infected Nicotiana benthamiana. CMV RNAs were found to serve as cap donors for rice stripe virus (RSV) transcription initiation during their co-infection of N. benthamiana. The5'end of CMV RNAs was cleaved preferentially at residues that had multiple-base complementarity to the3'end of the RSV template. The length requirement for CMV capped primers to be suitable for elongation varied between12and20nt (nucleotides), and those of12-16nt were optimal for elongation and generated more CMV-RSV chimeric mRNA transcripts. The original cap donors that were cleaved from CMV RNAs were predominantly short (10-13nt). However, the CMV capped RNA leaders that underwent long-distance elongation were found to contain up to five repetitions of additional AC dinucleotides. Sequence analysis revealed that these AC dinucleotides were used to increase the size of short cap donors in multiple prime-and-realign cycles. Each prime-andrealign cycle added an AC dinucleotide onto the capped RNA leaders; thus, the original cap donors were gradually converted to longer capped RNA leaders (of12-20nt). Interestingly, the original10nt (or11nt) cap donor cleaved from CMV RNA1/2did not undergo direct extension; only capped RNA leaders that had been increased to>12nt were used for direct elongation. These findings suggest that this repetitive priming and realignment may serve to convert short capped CMV RNA leaders into longer, more suitable sizes to render a more stabilized transcription complex for elongation during RSV transcription initiation.
     2-Subcellular localization of RSV NSvc2proteins in plant cells
     Viruses of Tenuivirus have a close phylogenetic relationship with the viruses in the family of Bunyaviridae, but Tenuiviruses adopt a long filamentous morphology while Bunyaviruses are membrane-enveloped sphere particles. For the viruses in Bunyaviridae, targeting of glycoproteins to the Golgi apparatus plays a pivotal role in the maturation of membrane-enveloped sphere particle. NSvc2glycoprotein encoded by RSV vcRNA2, exhibiting high homology with glycoproteins of Bunyaviruses, has many characteristics in common with glycoprotein of the viruses in the family Bunyaviridae. However, their viron morphologies are different. We will ask whether the characteristics of RSV glycoprotein NSvc2resulted in the difference the virion morphology between RSV and viruses in the family Bunyaviridae.
     To support this speculation, the amino acids sequences of RSV NSvc2were analyzed firstly. The results showed that RSV NSvc2has four transmembrane (TM) domains (6-26aa,269-291aa,362-379aa and807-827aa). And two of them (1-18aa and362-379aa) were also predicted to be a signal peptide. RSV NSvc2was cut at382aa into two mature proteins amino-terminal NSvc2(NSvc2-N,41kDa) and carboxyl-terminal NSvc2(NSvc2-C,51kDa). To further clarify the causes of RSV particle morphology, we described the characteristics of RSV NSvc2in N. benthamiana. The results supported that RSV NSvc2could be processed really into two mature proteins NSvc2-N and NSvc2-C. Meanwhile, we demonstrated that NSvc2-N glycoprotein targeted to the Golgi apparatus whereas NSvc2-C accumulated in the ER membrane in N. benthamiana cells. Upon co-expression, NSvc2-N redirected NSvc2-C from ER to Golgi apparatus. The targeted NSvc2glycoproteins moved together with Golgi stacks along the ER track. Targeting of NSvc2glycoproteins to Golgi apparatus was strictly dependent on functional anterograde traffic out of the ER to Golgi or retrograde transport route. Further analysis of expressed truncated and chimeric NSvc2proteins demonstrated that the Golgi targeting signal mapped to a region of NSvc2-N (amino-acid269-315) encompassing the transmembrane domain and the adjacent24amino-acids of the cytosolic tail. All these data determined that RSV NSvc2targeted into Golgi stack. These cytological features of RSV glycoproteins are similar with the viruses of Bunyaviridae. Our findings provide new insights into the intracellular targeting of RSV glycoproteins in plant cells, and the real causes of RSV filamentous particles will be expected to find.
引文
Altamura LA, Bertolotti-Ciarlet A, Teigler J, Paragas J, Schmaljohn CS, Doms RW (2007) Identification of a novel C-terminal cleavage of Crimean-Congo hemorrhagic fever virus PreGN that leads to generation of an NSM protein. J Virol 81:6632-6642
    Andersson AM, Melin L, Bean A, Pettersson RF (1997a) A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J Virol 71:4717-4727
    Andersson AM, Melin L, Persson R, Raschperger E, Wikstrom L, Pettersson RF (1997b) Processing and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus. J Virol 71:218-225
    Andersson I, Simon M, Lundkvist A, Nilsson M, Holmstrom A, Elgh F, Mirazimi A (2004) Role of actin filaments in targeting of Crimean Congo hemorrhagic fever virus nucleocapsid protein to perinuclear regions of mammalian cells. J Med Virol 72:83-93
    Banerjee AK (1980) 5'-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev 44:175-205
    Barbier P, Takahashi M, Nakamura I, Toriyama S, Ishihama A (1992) Solubilization and promoter analysis of RNA polymerase from rice stripe virus. J Virol 66:6171-6174
    Battisti AJ, Chu YK, Chipman PR, Kaufmann B, Jonsson CB, Rossmann MG (2011) Structural Studies of Hantaan Virus. J Virol 85:835-841
    Bergeron E, Vincent MJ, Nichol ST (2007) Crimean-Congo hemorrhagic fever virus glycoprotein processing by the endoprotease SKI-1/S1P is critical for virus infectivity. J Virol 81:13271-13276
    Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS, Doms RW (2005) Cellular localization and antigenic characterization of crimean-congo hemorrhagic fever virus glycoproteins. J Virol 79:6152-6161
    Betenbaugh M, Yu MC, Kuehl K, White J, Pennock D, Spik K, Schmaljohn C (1995) Nucleocapsid-Like and Virus-Like Particles Assemble in Cells Infected with Recombinant Baculoviruses or Vaccinia Viruses Expressing the M-Segments and the S-Segments of Hantaan-Virus. Virus Res 38:111-124
    Bishop DH, Gay ME, Matsuoko Y (1983) Nonviral heterogeneous sequences are present at the 5'ends of one species of snowshoe hare bunyavirus S complementary RNA. Nucleic acids research 11:6409-6418
    Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks:the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441-447
    Bouloy M, Pardigon N, Vialat P, Gerbaud S, Girard M (1990) Characterization of the 5'and 3'Ends of Viral Messenger-Rnas Isolated from Bhk-21-Cells Infected with Germiston Virus (Bunyavirus). Virology 175:50-58
    Bouloy M, Plotch SJ, Krug RM (1978) Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA 75:4886-4890
    Bucher E, Sijen T, de Haan P, Goldbach R, Prins M (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329-1336
    Caton AJ, Robertson JS (1980) Structure of the host-derived sequences present at the 5'ends of influenza virus mRNA. Nucleic acids res 8:2591-2603
    Chen SY, Compans RW (1991) Oligomerization, transport, and Golgi retention of Punta Toro virus glycoproteins. J Virol 65:5902-5909
    Chen SY, Matsuoka Y, Compans RW (1991a) Assembly and polarized release of Punta Toro virus and effects of brefeldin A. J Virol 65:1427-1439
    Chen SY, Matsuoka Y, Compans RW (1991b) Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology 183:351-365
    Chomchan P, Li SF, Shirako Y (2003) Rice grassy stunt tenuivirus nonstructural protein p5 interacts with itself to form oligomeric complexes in vitro and in vivo. J Virol 77:769-775
    Chomchan P, Miranda GJ, Shirako Y (2002) Detection of rice grassy stunt tenuivirus nonstructural proteins p2, p5 and p6 from infected rice plants and from viruliferous brown planthoppers. Arch Virol 147:2291-2300
    Cianci C, Tiley L, Krystal M (1995) Differential activation of the influenza virus polymerase via template RNA binding. J Virol 69:3995-3999
    Collett MS (1986) Messenger RNA of the M segment RNA of Rift Valley fever virus. Virology 151:151-156
    Darnell JE, Jr. (1979) Transcription units for mRNA production in eukaryotic cells and their DNA viruses. Prog Nucleic Acid Res Mol Biol 22:327-353
    DaSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753-1771
    Decroly E, Ferron F, Lescar J, Canard B (2012) Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 10:51-65
    Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914-918
    Dobie DK, Blair CD, Chandler LJ, RaymsKeller A, McGaw MM, Wasieloski LP, Beaty BJ (1997) Analysis of LaCrosse virus S mRNA 5'termini in infected mosquito cells and Aedes triseriatus mosquitoes. J Virol 71:4395-4399
    Du Z, Xiao D, Wu J, Jia D, Yuan Z, Liu Y, Hu L, Han Z, Wei T, Lin Q, Wu Z, Xie L (2011) p2 of rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol Plant Pathol 12:808-814
    Duijsings D, Kormelink R, Goldbach R (1999) Alfalfa mosaic virus RNAs serve as cap donors for tomato spotted wilt virus transcription during coinfection of Nicotiana benthamiana. J Virol 73:5172-5175
    Duijsings D, Kormelink R, Goldbach R (2001) In vivo analysis of the TSWV cap-snatching mechanism:single base complementarity and primer length requirements. Embo J 20:2545-2552
    Elliott RM (1990) Molecular biology of the Bunyaviridae. J Gen Virol 71 (Pt 3):501-522
    Elliott RM (1997) Emerging viruses:the Bunyaviridae. Mol Med 3:572-577
    Elshuber S, Allison SL, Heinz FX, Mandl CW (2003) Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Firol.84:183-191
    Ergonul O (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6:203-214
    Eshita Y, Ericson B, Romanowski V, Bishop DH (1985) Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J Virol 55:681-689
    Estabrook EM, Tsai J, Falk BW (1998) In vivo transfer of barley stripe mosaic hordeivirus ribonucleotides to the 5' terminus of maize stripe tenuivirus RNAs. Proc Natl Acad Sci USA 95:8304-8309
    Estrada DF, Boudreaux DM, Zhong D, St Jeor SC, De Guzman RN (2009) The Hantavirus Glycoprotein G1 Tail Contains Dual CCHC-type Classical Zinc Fingers. J Biol Chem 284:8654-8660
    Estrada DF, Conner M, Jeor SC, Guzman RN (2011) The Structure of the Hantavirus Zinc Finger Domain is Conserved and Represents the Only Natively Folded Region of the Gn Cytoplasmic Tail. Front Microbiol 2:251
    Estrada DF, De Guzman RN (2011) Structural characterization of the Crimean-Congo hemorrhagie fever virus Gn tail provides insight into virus assembly. J Biol Chem 286:21678-21686
    Falk BW, Tsai JH (1998) Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36: 139-163
    Ferron F, Li Z, Danek E1, Luo D, Wong Y, Coutard B, Lantez V, Charrel R, Canard B, Walz T, Lescar J (2011) The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. Plos Pathogens 7:e1002030
    Filipowicz W, Furuichi Y, Sierra JM, Muthukrishnan S, Shatkin AJ, Ochoa S (1976) A protein binding the methylated 5'-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc Natl Acad Sci USA 73:1559-1563
    Filone CM, Heise M, Doms RW, Bertolotti-Ciarlet A (2006) Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors. Virology 356:155-164
    Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306:219-224
    Fontana J, Lopez-Montero N, Elliott RM, Fernandez JJ, Risco C (2008) The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol 10:2012-2028
    Furuichi Y, Shatkin AJ (2000) Viral and cellular mRNA capping:past and prospects. Adv Virus Res 55:135-184
    Garcia CC, Candurra NA, Damonte EB (2000) Antiviral and virucidal activities against arenaviruses of zinc-finger active compounds. Antivir Chem Chemother 11:231-237
    Garcia CC, Candurra NA, Damonte EB (2002) Mode of inactivation of arenaviruses by disulfide-based compounds. Antiviral Res 55:437-446
    Garcia CC, Djavani M, Topisirovic I, Borden KLB, Salvato MS, Damonte EB (2006) Arenavirus Z protein as an antiviral target:virus inactivation and protein ollgomerization by zinc finger-reactive compounds. J Gen Virol 87:1217-1228
    Garcia CC, Ellenberg PC, Artuso MC, Scolaro LA, Damonte EB (2009) Characterization of Junin virus particles inactivated by a zinc finger-reactive compound. Virus Res 143:106-113
    Garcin D, Kolakofsky D (1990) A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 64: 6196-6203
    Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, Kolakofsky D (1995) The 5'ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69: 5754-5762
    Garry CE, Garry RF (2004) Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class Ⅱ viral fusion protein (beta-penetrenes). Theor Biol Med Model 1:10-10
    Geerts-Dimitriadou C, Goldbach R, Kormelink R (2011a) Preferential use of RNA leader sequences during influenza A transcription initiation in vivo. Virology 409:27-32
    Geerts-Dimitriadou C, Zwart MP, Goldbach R, Kormelink R (2011b) Base-pairing promotes leader selection to prime in vitro influenza genome transcription. Virology 409:17-26
    Gerrard SR, Bird BH, Albarino CG, Nichol ST (2007) The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 359:459-465
    Gerrard SR, Nichol ST (2002) Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J Virol 76:12200-12210
    Gerrard SR, Nichol ST (2007) Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology 357:124-133
    Goldsmith CS, Elliott LH, Peters CJ, Zaki SR (1995) Ultrastructural characteristics of Sin Nombre virus, causative agent of hantavirus pulmonary syndrome. Arch Virol 140:2107-2122
    Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A, Labrie L, Laliberte JF, Roberts L (2005) Calicivirus translation initiation requires an interaction between VPg and elF 4 E. EMBO Rep 6:968-972
    Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews 63:128-148
    Gro MC, Dibonito P, Accardi L, Giorgi C (1992) Analysis of 3'-ends and 5'-ends of n-messenger and nss-messenger rnas of toscana phlebovirus. Virology 191:435-438
    Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S (2008) The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15: 500-506
    Haferkamp S, Fernando L, Schwarz TF, Feldmann H, Flick R (2005) Intracellular localization of Crimean-Congo Hemorrhagic Fever (CCHF) virus glycoproteins. Virol J 2:42
    Hamamatsu C, Toriyama S, Toyoda T, Ishihama A (1993) Ambisense coding strategy of the rice stripe virus genome:in vitro translation studies. J Gen Virol 74 (Pt 6):1125-1131
    Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F (2007) De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiology 143:1640-1650
    Hanton SL, Matheson LA, Brandizzi F (2006) Seeking a way out:export of proteins from the plant endoplasmic reticulum. Trends Plant Sci 11:335-343
    Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS (2009) The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149:1005-1016
    Hepojoki J, Strandin T, Wang H, Vapalahti O, Vaheri A, Lankinen H (2010) Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol 91:2341-2350
    Huiet L, Feldstein PA, Tsai JH, Falk BW (1993) The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5'termini. Virology 197:808-812
    Huiskonen JT, Hepojoki J, Laurinmaki P, Vaheri A, Lankinen H, Butcher SJ, Grunewald K (2010) Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. J Virol 84: 4889-4897
    Huiskonen JT, Overby AK, Weber F, Grunewald K (2009) Electron Cryo-Microscopy and Single-Particle Averaging of Rift Valley Fever Virus:Evidence for G(N)-G(C) Glycoprotein Heterodimers. J Virol 83:3762-3769
    Ihara T, Matsuura Y, Bishop DH (1985) Analyses of the mRNA transcription processes of Punta Toro phleboviras (Bunyaviridae). Virology 147:317-325
    Ishikawa K, Omura T, Hibino H (1989) Morphological-Characteristics of Rice Stripe Virus. J Gen Viro 70:3465-3468-
    Jaaskelainen KM, Kaukinen P, Minskaya ES, Plyusnina A, Vapalahti O, Elliott RM, Weber F, Vaheri A, Plyusnin A (2007) Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol 79:1527-1536
    Jin H, Elliott RM (1993a) Characterization of bunyamwera virus-s rna that is transcribed and replicated by the 1-protein expressed from recombinant vaccinia virus. J Virol 67:1396-1404
    Jin H, Elliott RM (1993b) Non-viral sequences at the 5'ends of Dugbe nairovirus S mRNAs. J Gen Virol 74:2293-2297
    Johansson P, Olsson M, Lindgren L, Ahlm C, Elgh F, Holmstrom A, Bucht G (2004) Complete gene sequence of a human Puumala hantavirus isolate, Puumala Umea/hu:sequence comparison and characterisation of encoded gene products. Virus Res 105:147-155
    Kakutani T, Hayano Y, Hayashi T, Minobe Y (1991) Ambisense segment 3 of rice stripe virus:the first instance of a virus containing two ambisense segments. J Gen Virol 72:465-468
    Kawaguchi A, Nagata K (2007) De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EmboJ26:4566-4575
    Kikkert M, Van Lent J, Storms M, Bodegom P, Kormelink R, Goldbach R (1999) Tomato spotted wilt virus particle morphogenesis in plant cells. J Virol 73:2288-2297
    Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R (2004) Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321:23-28
    Koganezawa H, Doi Y, Yora K (1975) Purification of rice stripe virus. Annals of the Phytopathological Society of Japan 41:148-154
    Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL (2011) Negative-strand RNA viruses:The plant-infecting counterparts. Virus Res 162:184-202
    Kormelink R, Vanpoelwijk F, Peters D, Goldbach R (1992) Nonviral heterogeneous sequences at the 5'ends of tomato spotted wilt virus messenger-rnas. J Gen Virol 73:2125-2128
    Kuge H, Brownlee GG, Gershon PD, Richter JD (1998) Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 26:3208-3214
    Kuismanen E, Hedman K, Saraste J, Pettersson RF (1982) Uukuniemi virus maturation:accumulation of virus particles and viral antigens in the Golgi complex. Mol Cell Biol 2:1444-1458
    Lamb RA, Krug RM (1996) Orthomyxoviridae:The viruses and their replication.
    Le May N, Bouloy M (2012) Antiviral escape strategies developed by bunyaviruses pathogenic for humans. Front Biosci (Schol Ed)4:1065-1077
    Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, Kim DH, Lee KH, Hwang I (2002) ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. Plant Physiol 129:1507-1520
    Lelke M, Brunotte L, Busch C, Gunther S (2010) An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J Virol84:1934-1944
    Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H (2010) Antagonism of type Ⅰ interferon responses by new world hantaviruses. J Virol 84:11790-11801
    Li ML, Rao P, Krug RM (2001a) The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. Embo J 20:2078-2086
    Li S, Li X, Sun L, Zhou Y (2012) Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virol 56:75-79
    Li YI, Chen YJ, Hsu YH, Meng M (2001b) Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. J Virol 75:782-788
    Liang D, Ma X, Qu Z, Hull R (2005a) Nucleic acid binding properly of the gene products of rice stripe virus. Virus Genes 31:203-209
    Liang D, Qu Z, Ma X, Hull R (2005b) Detection and localization of Rice stripe virus gene products in vivo. Virus Genes 31:211-221
    Lopez-Montero N, Risco C (2011) Self-protection and survival of arbovirus-infected mosquito cells. Cell Microbiol 13: 300-315
    Lowen AC, Boyd A, Fazakerley JK, Elliott RM (2005) Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J Virol 79:6940-6946
    Lowen AC, Noonan C, McLees A, Elliott RM (2004) Efificient bunyavirus rescue from cloned cDNA. Virology 330: 493-500
    Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A (2010) Entry of Bunyaviruses into Mammalian Cells. Cell Host Microbe 7:488-499
    Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T, Merits A, Kaariainen L (2001) Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75:6249-6255
    Maia IG, Haenni A, Bernardi F (1996) Potyviral HC-Pro:a multifunctional protein. JGen Virol 77:1335-1341
    Matsuoka Y, Chen SY, Compans RW (1991) Bunyavirus Protein-Transport and Assembly. Curr Top Microbiol 169: 161-179
    Matsuoka Y, Chen SY, Holland CE, Compans RW (1996) Molecular determinants of Golgi retention in the Punta Toro virus G1 protein. Arch Biochem Biophys 336:184-189
    Merits A, Kettunen R, Makinen K, Lampio A, Auvinen P, Kaariainen L, Ahola T (1999) Virus-specific capping of tobacco mosaic virus RNA:methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS Lett 455:45-48
    Meyer BJ, de la Torre JC, Southern PJ (2002) Arenaviruses:genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 262:139-157
    Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT (2008) Storage of cellular 5'mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci USA 105:19294-19299
    Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne Q Gunther S, Canard B (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6:e1001038
    Murphy FA, Harrison AK, Whitfield SG (1973) Bunyaviridae:morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology 1:297-316
    Nebenfuhr A, Staehelin LA (2001) Mobile factories:Golgi dynamics in plant cells. Trends Plant Sci 6:160-167
    Nguyen M, Haenni AL (2003) Expression strategies of ambisense viruses. Virus Res 93:141-150
    Nguyen M, Ramirez BC, Goldbach R, Haenni AL (1997) Characterization of the in vitro activity of the RNA-dependent RNA polymerase associated with the ribonucleoproteins of rice hoja blanca tenuivirus. J Virol 71:2621-2627
    Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C (2005) Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol 79:10852-10863
    Oufattole M, Park JH, Poxleitner M, Jiang L, Rogers JC (2005) Selective membrane protein internalization accompanies movement from the endoplasmic reticulum to the protein storage vacuole pathway in Arabidopsis. Plant Cell 17: 3066-3080
    Overby AK, Pettersson RF, Grunewald K, Huiskonen JT (2008) Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. P Natl Acad Sci USA 105:2375-2379
    Overby AK, Pettersson RF, Neve EP (2007a) The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol 81:3198-3205
    Overby AK, Popov V, Neve EP, Pettersson RF (2006) Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae):a useful system for studying bunyaviral packaging and budding. J Virol 80: 10428-10435
    Overby AK, Popov VL, Pettersson RF, Neve EP (2007b) The cytoplasmic tails of Uukuniemi Virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles. J Virol 81: 11381-11391
    Pasquato A, Ramos da Palma J, Galan C, Seidah NG, Kunz S (2013) Viral envelope glycoprotein processing by proprotein convertases. Antiviral Res 99:49-60.
    Patterson JL, Holloway B, Kolakofsky D (1984) La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J Virol 52:215-222
    Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320-325
    Piper ME, Sorenson DR, Gerrard SR (2011) Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One 6:e18070
    Plassmeyer ML, Soldan SS, Stachelek KM, Martin-Garcia J, Gonzalez-Scarano F (2005) California serogroup, GC (Gl) glycoprotein is the principal determinant of pH-dependent cell fusion and entry. Virology 338:121-132
    Plassmeyer ML, Soldan SS, Stachelek KM, Roth SM, Martin-Garcia J, Gonzalez-Scarano F (2007) Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide. Virology 358:273-282
    Plotch SJ, Bouloy M, Krug RM (1979) Transfer of 5'-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc Natl Acad Sci USA 76:1618-1622
    Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847-858
    Prehaud C, Lopez N, Blok MJ, Obry V, Bouloy M (1997) Analysis of the 3'terminal sequence recognized by the Rift Valley fever virus transcription complex in its ambisense S segment. Virology 227:189-197
    Pullikolil P, Benjannet S, Mayne J, Seidah NG (2007) The proprotein convertase SKI-1/S1P:alternate translation and subcellular localization. J Biol Chem 282:27402-27413
    Qi XX, Lan SY, Wang WJ, Schelde LM, Dong HH, Wallat GD, Ly H, Liang YY, Dong CJ (2010) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468:779-U765
    Raju R, Raju L, Hacker D, Garcin D, Compans R, Kolakofsky D (1990) NONTEMPLATED BASES AT THE 5'ENDS OF TACAR1BE VIRUS MESSENGER-RNAS. Virology 174:53-59
    Ramanathan HN, Chung DH, Plane SJ, Sztul E, Chu YK, Guttieri MC, McDowell M, Ali G, Jonsson CB (2007) Dynein-dependent transport of the hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J Virol 81:8634-8647
    Ramirez BC, Garcin D, Calvert LA, Kolakofsky D, Haenni AL (1995) Capped nonviral sequences at the 5'-end of the messenger-mas of rice-hoja-blanca-virus ma4. J Virol 69:1951-1954
    Ramirez BC, Haenni AL (1994) Molecular-Biology of Tenuiviruses, a Remarkable Group of Plant-Viruses. J Gen Virol 75: 467-475
    Rao P, Yuan W, Krug RM (2003) Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. Embo J 22:1188-1198
    Ravkov EV, Nichol ST, Compans RW (1997) Polarized entry and release in epithelial cells of Black Creek Canal virus, a New World hantavirus. J Virol 71:1147-1154
    Ravkov EV, Nichol ST, Peters CJ, Compans RW (1998) Role of actin microfilaments in Black Creek Canal virus morphogenesis. J Virol 72:2865-2870
    Reguera J, Weber F, Cusack S (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6:e1001101
    Ribeiro D, Borst JW, Goldbach R, Kormelink R (2009a) Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta. Virology 383:121-130
    Ribeiro D, Foresti O, Denecke J, Wellink J, Goldbach R, Kormelink RJ (2008) Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum-and Golgi-derived pleomorphic membrane structures in plant cells. J Gen Virol 89:1811-1818
    Ribeiro D, Goldbach R, Kormelink R (2009b) Requirements for ER-Arrest and Sequential Exit to the Golgi of Tomato Spotted Wilt Virus Glycoproteins. Traffic 10:664-672
    Ronka H, Hilden P, Von Bonsdorff CH, Kuismanen E (1995) Homodimeric association of the spike glycoproteins G1 and G2 of Uukuniemi virus. Virology 211:241-250
    Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN (2012) An Assembly Model of Rift Valley Fever Virus. Frontiers in Microbiology 3:254
    Ruusala A, Persson R, Schmaljohn CS, Pettersson RF (1992) Coexpression of the membrane glycoproteins Gl and G2 of Hantaan virus is required for targeting to the Golgi complex. Virology 186:53-64
    Salanueva IJ, Novoa RR, Cabezas P, Lopez-Iglesias C, Carrascosa JL, Elliott RM, Risco C (2003) Polymorphism and structural maturation of Bunyamwera virus in golgi and post-golgi compartments. J Virol 77:1368-1381
    Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST (2006) Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by fUrin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J Virol 80:514-525
    Sanchez AJ, Vincent MJ, Nichol ST (2002) Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76:7263-7275
    Schibler U, Perry RP (1977) The 5'-termini of heterogeneous nuclear RNA:a comparison among molecules of different sizes and ages. Nucleic Acids Res 4:4133-4149
    Schmaljohn CS (1996) Bunyaviridae:The viruses and their replication.
    Schmaljohn CS, Schmaljohn AL, Dalrymple JM (1987) Hantaan virus M RNA:coding strategy, nucleotide sequence, and gene order. Virology 157:31-39
    Scholten OE, Paul H, Peters D, Van Lent JW, Goldbach RW (1994) In situ localisation of beet necrotic yellow vein virus (BNYVV) in rootlets of susceptible and resistant beet plants. Arch Virol 136:349-361
    Scregin SV, Samokhvalov El, Petrova ID, Vyshemirskii 01, Samokhvalova EG, Lvov DK, Gulorov VV, Tyunnikov GI, Shchelkunov SN, Netesov SV, Petrov VS (2004) Genetic characterization of the M RNA segment of Crimean-Congo hemorrhagic fever virus strains isolated in Russia and Tajikistan. Virus Genes 28:187-193
    Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9:645-653
    Shi X, Elliott RM (2002) Golgi localization of Hantaan virus glycoproteins requires coexpression of Gl and G2. Virology 300:31-38
    Shi X, Elliott RM (2004) Analysis of N-linked glycosylation of hantaan virus glycoproteins and the role of oligosaccharide side chains in protein folding and intracellular trafficking. J Virol 78:5414-5422
    Shi X, Kohl A, Li P, Elliott RM (2007) Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J Virol 81:10151-10160
    Shi X, Lappin DF, Elliott RM (2004) Mapping the Golgi Targeting and Retention Signal of Bunyamwera Virus Glycoproteins. J Virol 78:10793-10802
    Shimizu T, Toriyama S, Takahashi M, Akutsu K, Yoneyama K (1996) Non-viral sequences at the 5'termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. J Gen Virol 77:541-546
    Shuman S (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66:1-40
    Simons JF, Pettersson RF (1991) Host-derived 5'ends and overlapping complementary 3'ends of the two mRNAs transcribed from the ambisense S segment of Uukuniemi virus. J Virol 65:4741-4748
    Sin SH (2005) Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci USA 102:5168-5173
    Smith JF, Pifat DY (1982) Morphogenesis of sandfly viruses (Bunyaviridae family). Virology 121:61-81
    Snippe M, Willem Borst J, Goldbach R, Kormelink R (2007) Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology 357:115-123
    Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV):RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 97:2373-2378
    Spiropoulou CF, Albarino CG, Ksiazek TG, Rollin PE (2007) Andes and Prospect Hill hantaviruses differ in early induction of intcrfcron although both can downregulate intcrferon signaling. J Virol 81:2769-2776
    Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46:95-110
    Strandin T, Hepojoki J, Vaheri A (2013) Cytoplasmic tails of bunyavirus Gn glycoproteins-Could they act as matrix protein surrogates? Virology 437:73-80
    Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H (2011a) The cytoplasmic tail of hantavims Gn glycoprotein interacts with RNA. Virology 418:12-20
    Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H (2011b) Inactivation of hantaviruses by N-ethylmaleimide preserves virion integrity. J Gen Virol 92:1189-1198
    Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K (2005) A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol 46:245-249
    Takahashi M, Toriyama S, Hamamatsu C, Ishihama A (1993) Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J Gen Virol 74:769-773
    Takahashi M, Toriyama S, Kikuchi Y, Hayakawa T, Ishihama A (1990) Complementarity between the 5'-and 3'-terminal sequences of rice stripe virus RNAs. J Gen Virol 71:2817-2821
    Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PDT (2005) Hantavirus Gc glycoprotein:evidence for a class Ⅱ fusion protein. J Gen Virol 86:2937-2947
    Toriyama S (1982) Characterization of Rice Stripe Virus:a Heavy Component Carrying Infectivity. J Gen Virol 61: 187-195
    Toriyama S (1986a) Rice stripe virus:prototype of a new group of viruses that replicate in plants and insects. Microbiol Sci 3:347-351
    Toriyama S (1986b) An Rna-Dependent Rna-Polymerase Associated with the Filamentous Nucleoproteins of Rice Stripe Virus. J Gen Virol 67:1247-1255
    Toriyama S, Takahashi M, Sano Y, Shimizu T, Ishihama A (1994) Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenui viruses. J Gen Virol 75:3569-3579
    Toriyama S, Watanabe Y (1989) Characterization of Single-Stranded and Double-Stranded Rnas in Particles of Rice Stripe Virus. JGen Virol 70:505-511
    Tormakangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J (2001) A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 13:2021-2032
    van Knippenberg I, Lamine M, Goldbach R, Kormelink R (2005) Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology 335:122-130
    Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST (2003) Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SK.I-1.J Virol 77:8640-8649
    Walter CT, Barr JN (2011) Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 92: 2467-2484
    Wang GJ, Hewlett M, Chiu W (1991) Structural variation of La Crosse virions under different chemical and physical conditions. Virology 184:455-459
    Wang H, Alminaite A, Vaheri A, Plyusnin A (2010) Interaction between hantaviral nucleocapsid protein and the cytoplasmic tail of surface glycoprotein Gn. Virus Res 151:205-212
    Weber F, Haller 0, Kochs G (1996) Nucleoprotein viral RNA and mRNA of Thogoto virus:A novel "cap-stealing" mechanism in tick-borne orthomyxoviruses? J Virol 70:8361-8367
    Xiong R, Wu J, Zhou Y, Zhou X (2008a) Identification of a movement protein of the tenuivirus rice stripe virus. J Virol 82: 12304-12311
    Xiong R, Wu J, Zhou Y, Zhou X (2009) Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 387:29-40
    Xiong RY, Cheng ZB, Wu JX, Zhou YJ, Zhou T, Zhou XP (2008b) First report of an outbreak of Rice stripe virus on wheat in China. Plant Pathol 57:397-397
    Xiong RY, Wu JX, Zhou YJ, Zhou XP (2008c) Identification of a Movement Protein of the Tenuivirus Rice Stripe Virus. J Virol 82:12304-12311
    Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X (2012) Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J Gen Virol 93:194-202
    Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458:909-913
    Yuan Z, Chen H, Chen Q, Omura T, Xie L, Wu Z, Wei T (2011) The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of Rice stripe virus. Virus Res 159: 62-68
    Zhang C, Pei XW, Wang ZX, Jia SR, Guo SW, Zhang YG, Li WM (2012) The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology 425:113-121
    Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X (2010) Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics 11:303
    Zhang HM, Yang J, Sun HR, Xin X, Wang HD, Chen JP, Adams MJ (2007) Genomic analysis of rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch Virol 152:1917-1923
    Zhang HW, Qu ZC, Zhang Xn, Bai FW, Wan YZ, Shao Mh, Ye MM, Shen DL (2002) PepTidEs selected from phage display library may change the conformation of S protein of rice stripe virus. Lett Pept Sci 9:15-20
    Zhang XY, Fugere M, Day R, Kielian M (2003) Furin processing and proteolytic activation of Semliki Forest virus. J Virol 77:2981-2989
    Zhao SL, Dai XJ, Liang JS, Liang CY (2012a) Surface display of rice stripe virus NSvc2 and analysis of its membrane fusion activity. Virol Sin 27:100-108
    Zhao SL, Zhang GZ, Dai XJ, Hou YL, Li M, Liang JS, Liang CY (2012b) Processing and intracellular localization of rice stripe virus Pc2 protein in insect cells. Virology 429:148-154
    Zhou Y, Yuan Y, Yuan FH, Wang M, Zhong H, Gu MH, Liang GH (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnology Letters 34:965-972
    Zhu Y, Hayakawa T, Toriyama S, Takahashi M (1991) Complete nucleotide sequence of RNA 3 of rice stripe virus:an ambisense coding strategy. JGen Virol 72:763-767
    王晓红,叶寅,王苏燕,田波(1997)水稻条纹叶枯病毒基因组含vRNA2 ORF片段的克隆、序列分析及其在原核中的表达.科学通报 42:438-441
    曲志才,沈大棱,徐亚南,谈家桢,RogerHULL(1999)水稻条叶枯病毒基因产物在水稻和昆虫体内的Western印迹分析.遗传学报:512-517
    林奇田,林含新,吴祖建,林奇英,谢联辉(1998)水稻条纹病毒外壳蛋白和病害特异蛋白在寄主体内的积累.福建农业大学学报:67-71
    林奇英,谢联辉,周仲驹,谢莉妍,吴祖建(1990)水稻条纹叶枯病的研究II.病害的分布和损失.福建农学院学报:421-425
    熊如意,吴建祥,周益军,周雪平(2009)水稻条纹病毒NS2基因原核表达产物多克隆抗体制各及受侵染水稻和灰飞虱体内NS2检测.植物病理学报 39:95-99
    魏太云,林含新,吴祖建,林奇英,谢联辉(2004)中国水稻条纹病毒两个亚种群代表性分离物全基因组核苷酸序列分析.中国农业科学37:846-850
    刘利华,吴祖建,林奇英(2000)水稻条纹叶枯病细胞病理变化的观察.植物病理学报 30 306
    吴爱忠,赵艳,曲志才,沈大棱,潘重光,苏德明(2001)水稻条叶枯病毒(RSV)的SP蛋白在介体灰飞虱内的亚细胞定位.科学通报:1183-1186
    张开玉,熊如意,吴建祥,周雪平,周益军(2008)水稻条纹病毒编码蛋白在灰飞虱体内的检测及其与CP体外结合研究.中国农业科学:4063-4068
    谢联辉,魏太云,林含新,吴祖建,林奇英(2001)水稻条纹病毒的分子生物学.福建农业大学学报:269-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700