农业活动影响下的岩溶作用及碳汇效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现阶段为应对全球气候变化,人类活动对岩溶作用的影响特别是对岩溶作用碳汇效应的影响研究备受关注。研究表明,碳酸盐岩的溶蚀及地下水中的HC03-并不完全是碳酸风化碳酸盐岩的结果,随着农业和城市化的发展,大量N肥的使用、污水的排放以及酸雨的增加,硝酸和硫酸参与了碳酸盐岩的溶蚀,而这种溶蚀作用并不消耗大气或土壤中的CO2,但是会增加碳酸盐岩的溶蚀量并增加水体中的HCO3-含量。以往利用水化学方法和标准溶蚀试片法估算岩溶地质过程形成的C02汇,其结果明显偏大
     本文采用标准溶蚀试片法和水化学-流量法,并结合稳定同位素;以受农业活动影响强烈的重庆青木关地下河流域为研究对象,利用CTDP300多参数水质自动记录仪、WGZ-1型光电数字水位计、HOBO小型气象站在线自动监测电导率、水位以及降雨等数据,并获取流域耕地面积数据。于2010、2011年分月采集地下水样,分析常规水化学和地下水溶解无机碳δ13C、634S、87Sr/86Sr,并采集各月土壤CO2浓度及δ13C数据,等;探讨了岩溶作用对环境变化的敏感性,流域农业活动对岩溶作用过程和碳汇的影响,发现农业活动对岩溶作用过程产生明显的影响,进而影响到岩溶地质碳汇
     青木关地下河水的物理化学具有明显的时空变化特征。地下河水化学pH、Ec、T、Ca2+、Mg2+、K+、Na+、HCO3-、Cl-、SO42-和N03-以及不同土地利用下溶蚀速率表现出不同时间尺度的变化特征(年、月、日及暴雨尺度)。岩溶作用随环境变化表现出的不同尺度变化特征,充分说明了岩溶作用的速率较快,对环境变化的敏感性强,其积极参与了短时间尺度的碳循环过程,对大气CO2的回收具有重要意义。
     研究区内不同土地利用类型下,土壤pH值、土壤有机质、土壤C02及溶蚀速率差异显著。不同土地利用类型不同季节影响土下溶蚀速率的主要影响因素不同。农业活动能显著增加碳酸盐岩的溶蚀量,青木关地下河流域农业活动所增加的碳酸盐岩溶蚀强度大约10.98t/km2·a,在整个流域内其所消耗的CO2量约19.14t/a(实际上不消耗CO2),占根据标准溶蚀试片所计算得出的整个流域CO2消耗量的6%。
     地下水水化学及δ13CDIC值证实青木关地下河流域人类活动带来的硝酸和硫酸参与了碳酸盐岩的溶蚀,地下水中的DIC是碳酸、硝酸、硫酸共同溶蚀碳酸盐岩形成的。各月碳酸溶蚀碳酸盐岩产生D1C占地下水中总DIC的比例,在55.53%~81.25%之间,雨季(62.98%)普遍低于旱季(74.86%);硝酸和硫酸溶蚀碳酸盐岩产生DIC占地下水中总DIC的比例在18.75%-44.47%,雨季(37.02%)高于旱季(25.14%)。青木关地下河流域碳酸溶蚀碳酸盐岩产生的DIC总量为14.67×106mol/a,岩溶作用产生的净CO2汇的量为7.335×106 mol/a或0.323×109g/a,碳汇强度为0.732×106 mol/km2·a。硝酸和硫酸溶蚀碳酸盐岩产生的DIC为7.48×106 mol/a,约占DIC总量的33.8%,单位面积耕地上硝酸和硫酸溶蚀碳酸盐岩产生DIC的强度为1.89×106 mol/km2·a。
     地下水δ15N证实地下水硝态氮污染主要来源于化肥、土壤有机氮、粪便和生活污水;地下水δ34S值为5.23%o~11.07‰, SO42浓度在0.52~0.97mmol/L,雨水δ34S值为2.34‰~6.06%o,S042-浓度在0.09~0.17mmol/L,地下水S042-主要来源于生活污水、雨水以及农业活动。地下水中的N03-、S042-离子并不完全来自于硝酸和硫酸溶蚀碳酸盐岩的反应,这与根据水化学计算得出的结论相一致。地下水87Sr/86Sr值证实不同季节施肥和酸雨影响强度和硝酸硫酸溶蚀碳酸盐岩的比例施肥期间>雨季>旱季。这与水化学计算的碳酸溶蚀碳酸盐产生的DIC占总DIC的比例和硝酸硫酸溶蚀碳酸盐岩产生的DIC占总DIC的比例相一致。地下水δ13CDIC理论值与实测值基本符合,也证实研究结果是可信的。地下水δ15N、δ34S、87Sr/86Sr和δ13CDIC同位素值证据说明了研究方法与结论是正确的可靠的。
In recent decades, under the background of global change, it is controversial whether and how karst processes become a carbon sink, especially when impacted by anthropogenic activities. The study showed that dissolution of carbonate rocks and HCO3- in groundwater could not be solely attributed to the fact that carbon acid erodes carbonate rocks. With the increasing development of agriculture and urbanization, nitric acid and sulfuric acid from widely-used nitrogenous ferlizer, waster water and acid rain take part in dissolve carbonate rocks. It will not consume carbon dioxide that is originated from atmosphere or soil, but will increase the amounts of dissolved carbonate rocks and HCO3- concentration. It is obvious that the amount of carbon sink that was calculated by karst geological processes based on traditionally hydrochemical methods and standard limestone tests tends to be overestimated.
     In this thesis, a combined method of standard limestone tests and hydrochemistry-discharge as well as stable isotopes was applied to calculate the amount of karst carbon sink in Qingmuguan subterranean stream watershed, a region where has been suffered strong interference from anthropogenic agricultural activities.
     A series of instruments, such as CTDP300 multi-parameter sensors, WGZ-1 optical digital level gauge and HOBO automatic station were used to monitoring water quality, water level and rainfall. Samplings took place monthly from 2010 to 2011 for routine analysis of hydrochemistry,δ13C,δ34S, 87Sr/86Sr and monitoring of soil carbon dioxide and 813C. Based on the above data collected, we discussed karst process's sensitivity responding to environmental changes and effects from agricultural activities on karst process and carbon sink. It was found that agricultural activities could exert important influences on karst process to change karst geological carbon sink.
     There were significant temporally and spatially physicochemical features of Qingmuguan subterranean stream. The hydrochemistry of groundwater, such as pH,Ec, T, Ca2+, Mg2+, K+, Na+,HCO3-,Cl-,SO42- and NO3- and dissolution rates under different types of land use showed different values at various time scales. The karst processes revealed changeable characteristics at different scales with the changing environment, which indicated that the rates of karst process are going fast and make quick response to environmental changes. So karst process actually plays a vital role in uptaking atmospheric carbon dioxide since it takes part in processes of carbon cycling in short-time scale.
     Soil pH, soil organic matters, soil CO2 and rates of dissolution under various land use types showed markedly values. The main influential factors to rates of dissolution were different under different land use types in different seasons. It was found that agricultural activities could have helped to dissolve carbon rocks, elevating 10.98t/km2·a in Qingmuguan subterranean stream. It consumed 19.14t/a CO2 which was equivalent to 6% CO2 consumed based on a calculation of standard limestone dissolution test in the whole watershed.
     Hydrochemistry and carbon isotopic compositions of groundwater proved that niric acid and sulfic acid originated from anthropogenic activities in Qingmuguan subterranean stream watershed did take part in dissolving carbonate rocks. The DIC concentrations in groundwater were derived from a joint dissolution of carbon acid, nitric acid and sufric acid. DIC from dissolution of carbonate rocks by carbon acid takes a large range of total DIC in groundwater, between 55.53% and 81.25%; the ratios were lower in the rainy period (62.98%) while higher in the drought period (74.86%). In contrast, DIC from dissolution of carbonate rocks by nitric acid and sulfic acid covered a range of 18.75%-44.47%; the ratios were higher in the rainy period (37.02%) than in the drounght period which was 25.14%. The annual yield of DIC from the dissolution of carbonate rockes by carbon acid in Qingmuguan subterranean stream amounted to 14.67×106mol/a. In this case, the net carbon sink based on karst process was 7.335×106mol/a or 0.323×10 g/a and the carbon sink intensity was 0.732×106 mol/km2·a. DIC from the dissolution of carbonate rockes by nitric acid and sulfuric acid in Qingmuguan subterranean stream was up to 7.48×106 mol/a mol/a, contributing to 33.8% of total DIC with a carbon sink intensity of 1.89×106 mol/km2·a.
     The 815N in groundwater verified that nitrate contamination of groundwater was mainly from fertilizer, soil organic nitrogen, manure and domestic sewage. The 834S values were in the range of 5.23‰~11.07‰with SO42- concentration between 0.52 and 0.97mmol/L.δ34S values in rainwater ranged from 2.34%o to 6.06%o with SO42- concentration in the midst of 0.09 and 0.17mmol/L. Thus, SO42- in groundwater should have been attributed to domestic sewage, rainwater and agricultural activities. The NO3-、SO42- did not completely participate in the reaction with carbonate rocks, which was in agreement with results calculated by hydrochemistry. The 87Sr/86Sr ratios tended to validate that the effects produced by nitric acid and sulfuric acid in different levels of fertilizing or acid rain showed differences, that is, higher solution of carbonate rocks by nitric acid and sulfuric acid in fertilizing periods and the rainy period than in the drought period. The isotopic proofs were consistent with results calculated from hydrochemical items. Moreover, the calculatedδ13CDic of groundwater were compliance with the monitored ones, approving the results were believable. The combined use ofδ15N,δ34S,87Sr/86Sr andδ13CDIC was to verify further that the research methods and conclusion were reliable.
引文
[1]章程.不同土地利用下的岩溶作用强度及碳汇效应[J].科学通报,2011,56(26):2174~2180.
    [2]Yuan D.The carbon cycle in karst [J].Zeitschrift fur Geomorphologie Neue Folge,1997,108(Suppl-Bd):91-102.
    [3]刘再华.大气CO2两个重要的汇[J].科学通报,2000,45(21):2348-2351.
    [4]Jiang Z,Yuan D.CO2source-sink in karst processes in karst areas of China Episodes,1999,22(1):33-35.
    [5]徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956.
    [6]刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献.中国岩溶2000,19(4):293-300.
    [7]刘再华,何师意,袁道先,赵景波.土壤中的CO2及其对岩溶作用的驱动.水文地质工程地质,1998,4:42-45.
    [8]章程.不同土地利用土下溶蚀速率季节变化差异及其影响因素.地质论评,2010,56(1):136-140.
    [9]章程,谢运球,吕勇,蒋勇军等.不同土地利用方式对岩溶作用的影响.地理学报,2006,61(11):1181-1188.
    [10]Semhi K.,Amiotte Suchet P.,Clauer N.and Probst J.-L.Impact of nitrogen fertilizers on the naturalweathering-erosion processes and fluvial transport in the Garonne basin.Applied Geochemistry,2000,15(6):865-874.
    [11]West T.Q.,McBride A.C. The contribution of agriculture lime to carbon dioxide emissions in the Unite States:dissolution, transport, and net emissions. Agriculture, Ecosystems and Environment,2005,108:145-154.
    [12]Oh N.H.,Raymond P.A. The contribution of agricultural liming to riverine bicarbonate export andCO2 sequestration in the Ohio River basin. Global Biogeochemical Cycle,2006,20(3)GB3012, doi:10.1029/2005GB002565.
    [13]Ray mond P.A.,Oh N-H.,Turner R.E.,Broussard W.Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.Nature,2008,451:449-452.
    [14]Perrin A.-S.,Probst A.,Probst J.-L.Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:implications for weathering CO2 uptake at regional and global scales.Geochimica et Cosmochimica Acta,2008,72:3105-3123.
    [15]Li S.L.,Liu C.Q.,Li J.,Lang Y.C.,Ding H.,Li L.Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints.Chemical Geology.2010,77:301-309.
    [16]Barnes R.T.,Raymond P.A. The contribution of agriculture and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 2009.266(3-4):327-336.
    [17]Baker,A.,Cumberland,S.,Hudson,N.Dissolved and total organic and inorganic carbon in some British rivers.Area,2008,40(1):117-127.
    [18]李林立,况明生,张远瞩,王建立,谢世友,蒋勇军,刘玉.典型表层岩溶泉水短时间尺度动态变化规律.水科学进展,2006,17(2):222-226.
    [19]Liu Z.,Groves C.,Yuan D.,et al.Hydrochemical variations during flood pulses in the south-west China peak cluster karst:impacts of CaCO3-H2O-CO2 interactions.Hydrological Processes,2004,18:2423-2437.
    [20]Zhang C.,Yan J.,Pei J.,Jiang Y.Hydrochemical variations of epikarst springs in vertical climate zones:a case study in Jinfo Mountain National Nature Reserve of China.Environmental Earth Sciences,2010,DOI:10.1007/sl2664-010-0708-y.
    [21]苟鹏飞,蒋勇军,扈志勇等.典型岩溶槽谷区地下河水文动态响应研究.中国岩溶,2009,28(2):149-154.
    [22]赵敏,曾成,刘再华.土地利用变化对岩溶地下水溶解无机碳及其稳定同位素组成的影响.地球化学,2009,38(6):565-572.
    [23]Zhao M.,Zeng C.,Liu Z.,Wang S.Effect of different land use/land cover on karst hydro geochemistry:a paired catchment study of Chenqi and Dengzhanhe,Puding,Guizhou,SW China.Journal of Hydrology,2010,388:121-130.
    [24]Etchanchu D.and Probst J.-L. Evolution of the chemical composition of the Garonne river during the period 1971-1984. Hydrol.Sci,1988,J.33:243-256.
    [25]Spence J.,Telmer K.The role of sulfur in chemical weathering and atmospheric CO2 fluxes:evidence from major ions,δ 13CDIC,and δ34SSO4 in rivers of the Canadian Cordillera.Geochimica et Cosmochimica Acta,2005,69:5441-5485.
    [26]Lerman A.,Wu L.CO2 and sulfuric acid controls of weathering and river water composition.Journal of Geochemical Exploration,2006,88:427-430.
    [27]Lerman A.,Wu L., Mackerzie F.T. CO2 and H2SO4 consumption in weathering and material transport to the ocean,and their role in the global carbon balance.Marine Chemistry,2007,106:326-350.
    [28]Li S.L.,Calmels D.,Han G.,Gaillardet J.,Liu C.Q.Sulfuric acid as an agent of carbonate weathering constrained by δ13 CDIC:Examples from Southweat China.Earth and Planetray Science Letters,2008,270:189-199.
    [29]刘丛强,蒋颖魁,陶发祥,郎赟超,李思亮.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环.地球化学,2008,37(4):404-414.
    [30]Jiang Y.,Wu Y.,Yuan D.Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong underground river system in Yunan,China.Environmental Science&Technology,2009,43:7676-7683.
    [31]Jiang Y.,Wu Y.,Groves C.,Yuan D.,Kambesis P.Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan,China. Journal of Contaminant Hydrology,2009,109:49-61.
    [32]刘再华,袁道先,姜光辉,etal.水一岩一气相互作用引起的水化学动态变化研究—以桂林岩溶试验场为例.水文地质工程地质,2003,30(4):13-18.
    [33]任美锷,刘振中.岩溶学概论[M].北京:商务印书馆,1983:55-89.
    [34]蓝家程,傅瓦利等.岩溶山区土壤性质及其对土下溶蚀速率的影响[J].水土保持学报,2011,25(2):58-62.
    [35]刘再华,李强,汪进良,etal桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译.中国岩溶,2004,23(3):169-176.
    [36]章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究—以广西马山弄拉兰电堂泉和东旺泉为例.中国岩溶,2003,22(1):1-5.
    [37]Hess J,Wlite W.Storm response of the karstic carbonate aquifer of southcentral Kentueky. Journal of Hydrology,1988,99(3-4):235-252.
    [38]Liu Z H,Groves C,Yuan D X,et al.South China karst aquifer storm-scale hydrochemistry. Ground Water,2004,42(4):491-499.
    [39]Liu, Z.H. and Dreybrodt, W., Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow:tke role of the diffusion boundary layer and the slow reaction H2O+CO2(?)H++HCO3-[J]. Geochimica et Cosmochimica Acta,1997,61(14):2879-2889.
    [40]刘再华.不同CO2分压下的白云岩溶解动力学机理.中国科学,2001,31(4):377-384.
    [41]张兴波,蒋勇军,邱述兰等.农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例.地球科学进展,2012,27(4):93-102.
    [42]王冬银,章程,谢世友,等.亚高山不同植被类型区的雨季岩溶溶蚀速率研究[J].地球学报,2007,28(5):488~495.
    [43]潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程[J].中国岩溶,1999,18(4):287-296.
    [44]袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1993:23-30.
    [45]Daniel L.Kelting J A B,Gerry S E.Estimating root respiration, microbial respiration in the rhizosphere,and root-free soil respiration in forest soils[J].Soil Biochemistry,1998,30(7):961-968.
    [46]杨平恒,章程,孙玉川.土壤环境因子对土下岩溶溶蚀速率的影响:以重庆金佛山国家自然保护区为例[J].地学前缘,2007,34(5):920-926.
    [47]袁文昊,贺秋芳,杨平恒,旷颖仑,蒲俊兵,刘仙.典型岩溶槽谷地下河水化学时空变化特征及影响因素初探[J].西南大学学报,2009,31(6):160-164.
    [48]汪智军,杨平恒,旷颖仑,贺秋芳,袁文昊,袁道先.基于”N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学,2009,30(12):3548-3554.
    [49]Laure Gandois,Anne-Sophie Perrin,Anne Probst.Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment [J]. Geochimica et Cosmochimica Acta,2011,75:1185-1198.
    [50]Deines P, Langmuir D,Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta,1974,38:1147-1164.
    [51]Clark,I.; Fritz,P. Environmental Isotopes in Hydrogeology[M]. Lewis Press:Boca Raton, FL.,1997
    [52]Deines,Peter.Carbon isotope effects in carbonate systems[J]. Geochim. Cosmochim. Acta,2004,68:2659-2679.
    [53]杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下水示踪试验中应用-以青木关地下河系统岩口落水洞至姜家泉段为例[J].中国岩溶,2008,27(3):215-220.
    [54]杨平恒,罗鉴银,袁道先,等.降雨条件下岩溶槽谷泉水的水文地球化学特征[J].水利学报,2009,40(1):67-74.
    [55]汪智军,梁轩,袁道先.岩溶流域不同土壤剖面溶解性碳氮分布和淋失特征.水土保持学报,2010,24(6):83-87.
    [56]贾鹏.利用N和Sr同位素示踪农业区岩溶地下河系统硝酸盐污染来源[D].重庆:西南大学,2010.
    [57]贺秋芳,杨平恒,袁文昊,等.微生物与化学示踪岩溶地下水补给源和途径[J].水文地质工程地质,2009,36(3):33-38.
    [58]刘仙.基于basins/hspf模型的岩溶槽谷区地下水模拟研究——以重庆青木关地下河系统为例[D].重庆:西南大学,2009.
    [59]张强.岩溶地下水脆弱性风险性评价[D].重庆:西南大学,2009:56.
    [60]刘丽红.岩溶槽谷流域地表降水径流过程模拟研究:以重庆青木关岩溶槽谷为 例[D].重庆:西南大学,2011.
    [61]苟鹏飞.岩溶地下水质变化及影响因素研究——以重庆青木关地下河流域为例[D].重庆:西南大学,2011.
    [62]Han G, Liu C.-Q,2004. Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chemical Geology,204,1-21.
    [63]Vitoria, L., Otero, N., Soler, A., Canals, A.,2004. Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environmental Science & Technology.38,3254-3262.
    [64]DePaolo, D.J., Ingram, B.L.,1985. High-resolution stratigraphy with strontium isotopes.Science,227,938-941.
    [65]Johnson, T.M., DePaolo, D.J.,1994. Interpretation of isotopic data in groundwater-rock systems:model development and application to Sr isotope data from Yucca Mountain. Water Resources Research.30,1571-1587.
    [66]Howarth, R.J., McArthur, J.M.,1997. Statistics for strontium isotope stratigraphy. A robust LOWESS fit to the marine Sr-isotope curve for 0-206 Ma, with look-up table for the derivation of numerical age. Journal of Geology,105,441-446.
    [67]Han, G., Liu, C.-Q.,2006. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China. Science of the Total Environment.364,165-174.
    [68]汪智军.青木关岩溶流域水土系统碳氮同位素特征及其生态环境意义[D].重庆:西南大学,2011.
    [69]Kendall C. Tracing nitrogen sources and cycling in catchments. In:Kendall C,McDonnell J J (eds.), Isotope tracers in catchment hydrology[M]. Blackwell: Scientific Publications,1998:519-576.
    [70]Kendall C, Elliott E M,Wankel S D. Tracing anthropogenic inputs of nitrogen to ecosystems. In:Michener R,Lajtha K (eds.), Stable isotopes in ecology and environment science(2nd ed)[M]. Blackwell:Scientific Publications,2007:375-499.
    [71]宋柳霆等.贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研究地球化[J],2008,37(6):556-564.
    [72]Clark 1.,Fritz P..Environmental isotopes in hydrogeology[M].New York:McGraw-Hill,Inc..1988,p4.
    [73]Strauss H..Geological evolution from isotope proxy signals-sulfur[J].Chemical Geology.1999,161:89-101.
    [74]王恒纯主编.同位素水文地质学[M].地质出版社.1991,p 191.
    [75]Chen J.,ChuX..Sulphur isotope composition of Triassic marine sulfates of South China[J].Chemial Geology.1988,72:155-161.
    [76]Li X D, Masuda H, Kusakabe M. et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan basin, China[J].Geochemical Journal,2006,40(4):309-332.
    [77]Mizota C, Sasaki A. Sulfur isotope composition of soils and fertilizers:Differences between Northern and Southern hemispheres[J].Geoderma,1996,71(1-2):77-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700