基于内容的多光谱遥感影像检索若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多光谱遥感影像作为大幅面、多波段的对地观测数据,包含了丰富的光谱反射和辐射信息,为地物识别和判读提供了细致的诊断性依据,是地理信息系统和3S集成应用系统的重要基础数据。随着航空航天技术、传感器技术的飞速发展,人类可以更加方便快捷地获得大量对地实时观测数据,并将其广泛应用于各类地物、地貌和地质监测与规划等应用中。对地观测数据的急剧增长使遥感影像的快速浏览和高效检索成为一项繁琐、艰难的工作,甚至在一定程度上严重限制了遥感影像的共享与应用。基于内容的图像检索(CBIR)技术试图在计算机理解图像内容的基础上实现图像数据的合理组织和符合人类感知习惯的查询检索,为多光谱遥感影像的管理和检索提供了新的发展思路。然而多光谱遥感影像描述的地物光谱信息丰富、种类繁多、位置关系复杂、主题内容不明确,其视觉信息提取和数据组织方法与应用于普通图像、医学影像的基于内容检索系统有着较大差别。本文针对遥感影像特征提出了一套行之有效的CBIR系统技术方案,在影像自动分割、地物特征提取与匹配、高维视觉索引和数据存储模型等关键技术上提出了具有实用意义的创新,本文所讨论的各项关键技术可广泛应用于遥感影像的计算机辅助判读、地物识别、动态目标跟踪、灾害和变化监测等领域。
     本文的主要内容包括:
     ①系统归纳和分析了目前CBIR国内外研究现状和主要科研成果,总结了其中所涉及到的各项关键技术,分析了遥感影像区别于普通图片、医学影像的不同之处以及由此带来的基于内容检索技术实现过程中的难点,并指出了解决问题的出发点和方法。
     ②指出光谱纹理是多光谱遥感影像描述地物之间区别的重要视觉特征,是遥感影像自动分割最值得依赖的地物本质性特征。重点总结分析了当前基于多尺度小波和马尔可夫随机场模型(MRF)的纹理特征表达方法和遥感影像自动分割实现,并指出了其中存在的不足。为了兼顾像素之间和波段之间的光谱变化规律,将MRF模型应用于多光谱遥感影像的光谱纹理描述,通过实验分析,指出了有效的MRF模型光谱纹理特征描述方法。在此基础上,利用四叉树影像划分方法提出一种以检索为目的的遥感影像自动分割和地物对象一致性光谱纹理特征提取方法。针对纹理特征提取与纹理一致性假设存在的矛盾进一步提出利用主成份分析法(PCA)提高分割效率的方法。
     ③详细总结了各类基于形状的图像检索技术,在分析各种对象形状特征描述方法特点和不足的基础上,指出区域形状描述方法相对于轮廓形状描述方法更适用于遥感地物对象。根据遥感影像光谱纹理自动分割结果的特征,在格网形状描述方法基础上提出一种采用特殊采样和编码方法的区域形状特征描述和相似性查询方法。该方法具有良好的尺寸、平移、旋转不变性,而且具有较高的特征提取效率和较大的特征压缩比,并利用实验充分验证了该方法的可行性和形状对象检索效率。
     ④概括总结了应用于高维数据集的向量空间索引结构和度量空间索引结构,通过理论分析指出度量空间索引方法是摆脱高维数据索引“维度灾难”的有效途径,适用于高维视觉特征的遥感影像快速查询。在详细分析金字塔技术(PT)和iDistance索引机制和适用范围的基础上,将这两种优秀的度量空间高维索引方法结合起来,提出了一种能够根据高维数据分布特征进行空间划分的度量空间高维索引方法。该索引能够在一次查询处理中同时完成针对距离和空间方位的数据过滤操作,实验证明具有较高的剪枝效率。
     ⑤针对遥感影像的大幅面、海量性特征,结合本文提出的遥感影像自动分割策略,选择无重叠的四叉树分块作为多光谱遥感影像数据的存储管理基本单元。为了克服传统四叉树空间索引在处理大范围邻域查找时I/O次数多、查询效率低的不足,依据Hilbert空间填充曲线规则对四叉树空间索引进行改造,提出了针对非满四叉树分块的Hilbert空间填充曲线生成方法和分块影像数据组织策略。实验证明这种数据组织策略具有较高的空间聚集特性,在处理大范围遥感影像同质区域数据查询时,具有较高的数据访问效率。
     总结本文研究工作,主要贡献及创新点可概括如下:
     ①提出了一种以马尔可夫随机场模型为基础的地物光谱纹理特征描述和提取方法,并在此基础上设计实现了以检索为目的的遥感影像自动分割方法。
     ②提出以索引为目的的地物形状特征描述和提取方法,该特征描述具有平移、旋转和尺寸不变等特性,而且抗噪能力强、相似性匹配计算简便。
     ③提出了一种能够充分反映数据分布特征的度量空间高维索引结构,可高效处理高维数据的k-NN查询,该索引结构广泛适用于具有空间聚集特性的高维数据集。
     ④提出了以图像分析为基础的遥感影像组织策略,并利用Hilbert空间填充曲线特征对传统四叉树空间索引进行改进,有效提高了同质纹理区域和空间相邻地物影像的数据访问效率。
     文章在结论部分指出需要进一步深入研究的问题。
As large-scale, multiband earth observation data, multispectral remote sensing image(MRSI) which includes rich information of reflection and radiation that provides the finediagnostic foundation for the object discrimination and interpretation is the GIS and 3Sintegration application system's important element data. With the fast developing ofaeronautics, astronautics and sensor technology, now we could acquire plenty of real-timeearth observation data more conveniently, and widely use these data in the application ofdiverse earth objects, terrain and geology's inspection and layout. Along with sharpincrease of earth observation data's amount, the fast browse and efficient retrieval ofMRSI becomes a burdensome and tough work, which, to some extent, severely restrictsthe share and application of the RS images. The Content-Based Image Retrieval (CBIR)technology tries to implement the image data's rational organization and query retrievalcorresponding to our human being's perception habit, and supplies a new developmentdirection for the management and retrieval of MRSI. However, the spectral information ofearth objects based on the description of MRSI is ample, of great variety and also hascomplex positional relations, unclear theme content, based on these characters, the visualinformation retrieval and data organization method aimed at the MRSI has a big differencewith the content-based retrieval system used in common images and medical pictures.
     This paper advances a suit of effective technical scenario for the content-basedretrieval system according to the RS image's characters, advances the practical innovationin the key techniques of image autonomous segmentation, earth object character retrievaland matching, data storage model and high dimension visualization indexing. The keytechniques discussed in this paper could be widely used in the area of computer aided discrimination of RS image, earth object recognition, dynamic target tracking, disaster andtransformation surveillance and so on. The main content in this paper includes:
     1. Firstly, this paper systemic conclude and analyse currently CBIR research statusand mainly achievement, summarize the related key technology of CBIR technology,analyse the difference between RS image and common image, medical picture and thedifficulty bring forwarded because of this in the implementation process of CBIRtechnology, and indicate the jumping-off place of trouble shooting.
     2. Secondly, this paper indicate that spectral texture is important visual feature usedto distinguish the earth object according to MRSI description, and is the RS imageautonomous segmentation's most worthwhile reliant essential character of earth object.Specifically summarize and analyse currently texture feature express method andimplementation of RS image automatic segmentation which based on the multi-scalewavelet and Markov Random Field (MRF) model, then indicate the disadvantage of it. Toboth consider the spectral varying rule of interpixel and interband, we use the MRF modelto give the spectral texture description of MRSI, according to analysis of experiment result,indicate an effective MRF model spectral texture character description method. Based onthis, utilize Quad-tree image partition methodology to bring forward a method of RSimage automatic segmentation and earth object's consistency spectral texture characterextraction with the aim of retrieval, and advance a method to improve the automaticsegmentation's efficiency using principal component analysis.
     3. Thirdly, this paper particularly summarizes each kind of shape-based imageretrieval technology, on the basis of analyse each object shape character descriptionmethod's advantage and disadvantage, indicate that region-shape description method ismore suitable for the RS earth object than contour-shape description. Then according tothe character of RS image spectral texture automatic segmentation result and on the basisof grid shape description method, advance an adaptable method of region shape character description and comparability searching. This method has favorable scale, translation androtation invariance, and also has high character efficiency computing efficiency bigcharacter descriptor compression ratio, we use the experiment demonstrate the feasibilityof this method and the shape object's retrieval efficiency.
     4. Fourthly, this paper summarizes the vector space indexing machenism and metricspace indexing structure which applied to high dimension data set, through academicanalysis we indicate that the metric special indexing method is an efficient way to get ridof high-dimension data indexing's "curse of Dimensionality", and apply to the RS imagefast searching of high-dimension visual feature. Then based on the detailed analysis of PTand iDistance's indexing mechanism and suitable area, we combine this two excellentmetric special indexing method, put forward a metric special high-dimensional indexingmethod which could process space partition according to the high-dimension datadistribution feature. Then demonstrate through academic analysis and experiment that thisindexing could accomplish the distance and space direction aimed data filter operation inone query processing, and has good filtering efficiency
     5. Finally, according to the large-scale, magnanimity feature of RS image and thestrategy of RS image texture automatic segmentation proposed in this paper, theun-overloaded quad-tree-based blocks are used as the elements of MSRI's storagemanagement. To overcome the flaw of conditional quad-tree special indexing's large I/Otime and low query efficiency in processing large scale neighbor searching, we modify thequad-tree space indexing based on the Hilbert spce filling curve law, and then advance theHilbert space filling curve building method in allusion to the partition of un-filledquad-tree and block image data's organization strategy. The experiment proved that thiskind of data organization strategy has favorable space congregate character, and has betterdata accessing efficiency when process large scale RS image's homogeneous region dataquery.
     To sum up, the primary contribution and innovation in this paper are as follows:
     1. Firstly, a new feature descriptor of RS spectral texture is proposed which isextracted by MRF model. Based on this feature descriptor this paper further design andimplemented a RS image automatic segmentation method with the aim of retrieval.
     2. Secondly, a new shape feature descriptor and extraction method are proposed,which have characters of scale invariance, translation invariance and rotation invariance,and have strong antinoise ability. And the calculation of the similarity match is relativelysmall.
     3. Thirdly, this paper proposes a new high-dimensional indexing structure for metricspace which could sufficiently reflect the data distribution character, and could process thehigh-dimensional data's k-NN query with high efficiency, this kind of indexing could bebroadly applied to the high-dimension data set that owns the space congregate character.
     4. Finally, a new organization strategy of RS image based on image analysis isproposed. This paper utilize the Hilbert space filling curve character to reconstruct thequad-tree space indexing, and effectively improve the data accessing efficiency ofhomogeneous texture region and images of space neighbor earth object.
     In the conclusion, the successive problems and destinations are pointed out.
引文
[1] R. Fidel, T. Bellardo Hahn, E. M. Rasmussen, P. J. Smith. Challenges in indexing electronic text and images. Information Processing & management, 1995, 31(2):259.
    [2] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, et al. Content-based image retrieval at the end of the early years, In: IEEE Transactions on Pattern Analysis and Machine Intelligence, Dec. 2000,22(12): 1349-1380.
    [3] Dionysius P. Huijsmans, Nicu Sebe. How to complete performance graphs in content-based image retrieval: Add generality and normalize scope, In: IEEE Transactions on Pattern Analysis and Machine Intelligence, Feb. 2005, 27(2):245-251.
    [4] C. Faloutsos, R. Barber, M. Flickner, et al. Efficient and effective querying by image content, Journal of Intelligent Information Systems, 1994,3(34): 231-262.
    [5] Amarnath Gupta, Ramesh Jain, Visual information retrieval. Communications of the ACM, 1997, 40(5): 71-79.
    [6] Alexander P. Pentland, Rosalind W. Picard, Stan Sclaroff. Photobook: tools for content-based manipulation of image databases, In: Proceedings of SPIE - The International Society for Optical Engineering, 1995,2368: 37-50.
    [7] Wei-Ying Ma, B. S. Manjunath. NETRA: A toolbox for navigating large image databases, Multimedia Systems, May 1999, 7(3): 184-198.
    [8] Michael Ortega-Binderberger, Sharad Mehrotra. Relevance feedback techniques in the MARS image retrieval system. Multimedia Systems, 2004,9(6): 535-547.
    [18] B. S. Manjunath, Phillipe Salembier, Sikora Thomas. Introduction to MPEG-7-Multimedia Content Description Interface, John Wiley & Sons Ltd., 2002:187-212.
    [19] Robert M. Haralick. Statistical and Structural Approaches to Texture. In: Proceedings of the 4th Internationl Joint Conference on Pattern Recognition, 1979,67(5): 786-804.
    [20] Hideyuki Tamura, Shunji Mori, Takashi Yamawaki. Textural Features Corresponding to Visual Perception, In: IEEE Transactions on Systems, Man and Cybernetics, 1978, SMC-8(6): 460-473.
    [21] Rama Chellappa, Shankar Chatterjee. Classification of Textures Using Gaussian Markov Random Fields, In: IEEE Transactions Acoustic, Speech and Signal Processing, 1985, ASSP-33(4): 959-963.
    [22] Rajiv Mehrotra, James E Gary. Similar-shape retrieval in shape data management. Computer, 1995, 28(9): 57-62.
    [23] Ian T. Yong, J. E. Walker, J. E. Bowie. An analysis technique for biological shape. Information and Contrl, Aug. 1974,25(4): 357-370.
    [24] Dmitry Chetverikov, Yuri Khenokh. Matching for shape defect detection. Lecture Notes in Computer Science, Computer Analysis of Images and Patterns, 1999,1689:367-374.
    [25] Dengsheng Zhang, Guojun Lu. A comparative study of Fourier descriptors for shape representation and retrieval. Journal of Visual Communication and Image Representatoin, Mar. 2003, 14(1): 41-60.
    [26] Alberto Del Bimbo, Pietro Pala. Visual image retrieval by elastic matching of user sketches. IEEE Transactions Pattern Analysis and Machine Intelligence, Feb. 1997,19(2): 121-132.
    [27] R. Chellappa, R. Bagdazian, Fourier coding of image boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1984, PAMI-6(1):102-105.
    [28] Haruo Asada, Michael Brandy. Curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1986, 8(1): 2-14.
    [29] H. Freeman, A. Saghri, Generalized chain codes for planar curves. Proceedings of the 4th International Joint Conference on Pattern Recognition, Nov. 1978: 701-703.
    [30] William I. Groskey, Peter Neo, Rajiv Mehrotra. Pictorial index mechanism for model-based matching. Proceedings of the 5th International Conference on Data Engineering, 1989:180-187.
    [31] David McG Squire, Terry M. Caelli. Invariance signature: characterizing contours by their departures from invariance. Computer Vision Image Understanding, Mar.2000, 77(3): 284-316.
    [32] James Hafner, Harpreet S. Sawhney, Will Equitz, et al. Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. on Pattern Analysis and Machine Intelligence, Jul. 1995,17(7): 729-736.
    [33] Volker Gaede, Oliver Gunther. Multidimensional Access Methods. ACM Computing Surverys, Jun. 1998, 30(2): 170-231.
    [34] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. Proceedings of Annual Meeting (ACM Special Interest Group on Management of Data), 1984, 14(2): 47-57.
    [35] Xiang Sean Zhou, Thomas S. Huang. Relevance feedback for image retrieval: a comprehensive review. Multimedia Systems, Apr. 2003, 8(6): 536-544.
    [36] Y. Lu, C. Hu, X. Zhu, et al. A unified framework for semantics and feature based relevance feedback in image retrieval systems. Proceedings of ACM International Conference on Multimedia, 2000: 31-37.
    [37] Edward Remias, Gholamhosein Sheikholeslami, Aidong Zhang. Block-Oriented Image Decomposition and Retrieval in Image Database Systems. Proceedings of the Interantional Workshop on Multi-Media Database Management Systems, 1996: 85-92.
    [38] 冯玉才.数据库系统基础(第二版).武汉:华中理工大学出版社,1997.
    [39] Christos Faloutsos. Gray codes for partial match and range queries. IEEE Transactions on Software Engineering, Oct. 1988, 14(10): 1381 - 1393.
    [40] J.A. Orenstem. Redundancy in Spatial Databases. Proceedings of ACM SIGMOD International Conference on Management of Data, 1989: 295-305.
    [41] David J. Abel, David M. Mark. A comparative analysis of some two-dimensional orderings. International Journal Geographical Information Systems, Jan., 1990, 4(1): 21-31.
    [42] John R. Smith, Shih-Fu Chang. Automated Binary Texture Feature Sets for Image Retrieval. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1996, 4: 2239-2242.
    [43] Robert M. Haralick, K. Shanmugam, Its'Hak Dinstein. Texture features for image classification. IEEE Transactions on Systems Man and Cybernetics, Nov. 1973, 3(6): 610-621.
    [44] J.W. Woods. Two-dimensional discrete Markovian fields. IEEE Transactions on Information Theory, 1972, 18:232-240.
    [45] R. L. Kashyap and R. Chellappa. Estimation and choice of neighbors in spatial interaction models of images. IEEE Transactions on Information Theory, 1983, 29: 60-72.
    [46] R. Chellappa. Two-dimensional discrete Gaussian-Markov random field models for image processing. Proceedings of the International Conference on Systems, Man and Cybernetics, 1983: 920-924.
    [47] 蔡自兴,徐光祐.人工智能及其应用 (第二版).北京 清华大学出版社,1996.
    [48] Charles Bouman, Bede Liu. Multiple resolution segmentation of textured images. IEEE Transactions Pattern Analysis and Machine Intelligence, 1991,13(2): 99-113.
    [49] Santhana Krishnamachari, Rama Chellappa. Multiresolution Gauss Markov random field models. Technical Report: University of Maryland at Collage Park, Jan. 1995.
    [50] Mary L. Comer, Edward J. Delp. Segmentation of textured images using a multiresolution Gaussian autoregressive model. IEEE Transactions on Image Processing, 1999, 8(3): 408-420.
    [51] Andrew Laine, Jian Fan.Texture classification by wavelet packet signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov. 1993, 15(11):1186-1191.
    [52] P. Salembier, J. R. Smith. MPEG-7 Multimedia description schemes. IEEE Transactions on Circuits and Systems for Video Technology, Jun. 2001, 11(6):748-759.
    [53] N. Vasconcelos, A. Lippman. Bayesian relevance feedback for content-based image retrieval. Proceedings of IEEE Workshop on Content-based Access of Image and Video Libraries, 2000, 12: 63-67.
    [54] Y. A. Aslandogan, C. T. Yu. Automatic feedback for content based image retrieval on the web. Proceedings of IEEE International Conference on Multimedia and Expo,Aug. 2002, 1:221-224.
    [55] David A. Clausi, Bing Yue. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imager. IEEE Transactions on Geoscience and Remote Sensing, Jan. 2004, 42(1): 215-228.
    [56] R. Chellappa, Yu-Hen Hu, Sun-Yuan Kung. On Two-Dimensional Markov Spectral Estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing (ASSP), 1983, 31(4): 836-841.
    [57] 赵银娣,张良培,李平湘.广义马尔可夫随机场及其在多光谱纹理影响分类中的应用.遥感学报,2006,10(1):123-129.
    [58] 浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2001.
    [59] G. Sharma, R. Chellappa. A Model-Based Approach for Estimation of Two-Dimensional Maximum Entropy Power Spectra. IEEE Transactions on Information Theory, 1985, 31(1): 90-99.
    [60] Chee Sun Won, Haluk Derin. Maximum Likelihood Estimation of Gaussian Markov Random Field Parameters. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 1988, 2: 1040-1043.
    [61] R.L. Kashyap, R. Chellappa, N. Ahuja. Decision rules for choice of neighbors in random field models of images. Computer Graphics and Image Processing, 1981, 15(4): 301-318.
    [62] Rangasami L. Kashyap, Ramalingam Chellappa. Estimation and choice of neighbors in spatial interaction models of images. IEEE Transactions on Information Theory, Jan. 1983, 29(1): 60-72.
    [63] A. Gagalowicq, S. D. Ma, C. Toumier-Lasserve. Efficient models for color textures. Proceedings of 8th International Conference Pattern Recognition, 1986:412-414.
    [64] Kenneth R.Castleman著,朱志刚,石定机译.数字图像处理.北京:电子工业出版社,1998.
    [65] R. Barber, W. Equitz, M. Flickner, et al. Efficient Query by Image Content for Very Large Image Databases. In 38th Annual IEEE Computer Society International Computer Conference, 1993:17-19.
    [66] J. Silverman, D. Cooper. Bayesian clustering for unsupervised estimation of surface and texture models. IEEE Trans. Pattern Analysis and Machine Intelligence, Jul. 1988, 10(4): 482-495.
    [67] G. Hughes. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Transactions on Information Theory, 1968, IT 14(1): 635-639.
    [68] Luis O. Jimenez, Jorge L. Rivera-Medina. Integration of spatial and spectral information homogenous by means of unsupervised extraction and classification for objects applied to multispectral and hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 844-851.
    [69] N. Kambhatla, R. A. Leen. Dimension reduetion by local principal component analysis. Neural ComPutation, 1997, 9(7): 1493-1516.
    [70] 杨诸胜.高光谱图像降维及分割研究.西北工业大学,硕士学位论文,2006.
    [71] 彭玉华.小波变换与工程应用.北京:科学出版社,2000.
    [72] 章毓晋.基于内容的视觉信息检索.北京:科学出版社,2003:102-116.
    [73] Hae-Kwang Kim, Jong-Deuk Kim. Region-based shape descriptor invariant to rotation, scale and translation. Signal Process: Image Communication, 2000, 16(1): 87-93.
    [74] M. Peura, J. Iivarinen. Efficiency of simple shape descriptors. Proceedings of the Third International Workshop on Visual Form, May 1997: 443-451.
    [75] K. Hirata, T. Kato. Query by visual example - content based image retrieval. Proceedings of the 3rd International Conference on Extending Database Technology, 1992:56-71.
    [76] Farzin Mokhtarian, Alan Mackworth, Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(1): 34-43.
    [77] W. I. Groskey, R. Mehrotra. Index-based object recognition in pictorial data management, Comput. Vision Graphics Image Process. 1990, 52: 416-436.
    [78] Stefano Berretti, Alberto Del Bimbo, Pietro Pala. Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Transactions Multimedia, 2000, 2(4): 225-239.
    [79] C.-L. Huang, D.-H. Huang. A content-based image retrieval system. Image Vision Comput. 1998,16: 149-163.
    [80] Wayne Niblack, Ron Barber, Will Equitz, et al. QBIC Project: querying images by content using color, texture and shape. Proceedings of SPIE - The International Society for Optical Engineering, 1993,1908: 173-187.
    [81] D. Mohamad, G. Sulong, S. S. Ipson. Trademark matching using invariant moments. Second Asian Conference on Computer Vision, Dec. 1995,I:439-444.
    [82] G. Cortelazzo, G. A. Mian, G. Vezzi, et al. Trademark shapes description by string-matching techniques. Pattern Recognition, 1994,27(8): 1005-1018.
    [83] A. K. Jain, A. Vailaya. Image retrieval using color and shape. Pattern Recognition,1996,29(8): 1233-1244.
    [84] H. V. Jagadish. A retrieval technique for similar shapes. Proceedings of ACM SIGMOD, May 1991: 208-217.
    [85] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
    [86] B.M. Mehtre, M.S. Kankanhalli, W.F. Lee. Shape measures for content-based image retrieval: a comparison, Inf. Process. Manage. 1997, 33(3): 319-337.
    [87] R.J. Prokop, A.P. Reeves. A survey of moment-based techniques for unoccluded object representation recognition, Graph. Models Image Process. 1992, 54:438-460.
    [88] G. Taubin, D.B. Cooper. Recognition andpositioning of rigid objects using algebraic moment invariants. SPIE Conference on Geometric Methods in Computer Vision, 1991, 1570: 175-186.
    [89] B. Scassellati, S. Slexopoulos, M. Flickner. Retrieving images by 2D shape: a comparison of computation methods with human perceptual judgments. SPIE Proceedings on Storage andRetrieval for Image and Video Databases Ⅱ, San Jose, CA,USA, 1994,2185:2-14.
    [90] W. Niblack, R. Barber, W. Equitz. The QBIC project: querying image by content using color, texture and shape. Proceedings of SPIE Storage and Retrieval for Image and Video Databases, 1993,1908: 173-187.
    [91] Michael Reed Teague. Image analysis via the general theory of moments. Journal of the Optical Society of America. 1980, 70(8): 920-930.
    [92] Cho-Huak Teh, Roland T. Chin. On image analysis by the methods of moments.IEEE Transactions Pattern Analysis and Machine Intelligence, 1988,10(4):496-513.
    [93] Simon X. Liao, Miroslaw Pawlak. On image analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(3): 254-266.
    [94] Ardeshir Goshtasby. Description and discrimination of planar shapes using shape matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7(6): 738-743.
    [95]董道国,薛向阳,罗航哉.多维索引数据回顾.计算机课学 ,2002,29(3): 1-6.
    [96] T. Sellis, N. Roussopoulos and C. Faloutsos. The R~+-Tree: A dynamic index for multidimensional objects. Proc. 13th Int. Conf. on Very Large Databases, 1987:507-518.
    [97] N. Beckmann, H. P. Kriegel, R. Schneider, et al. The R~*-Tree: an efficient and robust access method for points and rectangles. Proceedings of the SIGMOD Conference, 1990: 322-331.
    [98] S. Berchtold, D. A. Keim, H. P. Kriegel. The X-Tree: An index structure for high dimensional data. Proceedings of the 22nd VLDB Conference, 1996: 28-39.
    [99] David A. White, Ramesh Jain. Similarity indexing with the SS-Tree. Proceedings of 12th International Conference on Data Engineering, 1996:516-523.
    [100] N. Katayama, S. Satoh. The SR-Tree: An index structure for high dimensional nearest neighbor queries. Int. Proc. of the ACM SIGMOD International Conference on Management of Data, 1997: 369-380.
    [101] J. Nievergelt, H. Hinterberger, K. Sevcik. The grid file: An adaptable, symmetric multikey file structure. Proceedings of the Third ECI Conference, 1981:236-251.
    [102] J. L. Bentley, J. H. Friedman. Data structures for range searching. ACM Comput. Surv. 1979, 11(4): 397-409.
    [103] R. Rinkel, J. L. Bentley. Quad Trees: A data structure for retrieval of composite keys. Acta Informatica, 1974, 4(1): 1-9.
    [104] Ertem Tuncle, Hakan Ferhatosmanoglu, Kenneth Rose. VQ-Index: An Index Structure for Similarity Searching in Multimedia Database. Proceedings of the ACM International Multimedia Conference and Exhibition, 2002: 543-552.
    [105] Stefan Berchtold, Christian Bohm and Hans-Peter Kriegel. The Pyramid-Technique: Towards Breaking the Curse of Dimensionality. ACM Special Interest Group on Management of Data, 1998, 27(2): 142-153.
    [106] H. V. Jagadish, Beng Chin OOI, Kian-Lee Tan, et al. iDistance: An Adaptive B~+-Tree Based Indexing Method for Nearest Neighbor Search. ACM Transaction on Database Systems, 2005, 30(2): 364-397.
    [107] 赵时英,等.遥感应用分析原理与方法.北京:科学出版社,2003.
    [108] Edward Remias, Gholamhosein Sheikholeslami, Aidong Zhang. Block-Oriented Image Decomposition and Retrieval in Image Database Systems. Proceedings of the International Workshop on Multi-Media Database Management Systems, 1996: 85-92.
    [109] 李德仁,宁晓刚.一种新的基于内容遥感图像检索的图像分块策略.武汉大学学报(信息科学版),2006,31(8):659-662.
    [110] J. A. Orenstem. Spatial Query Processing in an Object-oriented Database System. Proceedings of ACM SIGMOD, 1986: 326-336.
    [111] C. Faloutsos. Mulaatmbute Hashmg Usmg Gray Codes. Proceedings of ACM SIGMOD, 1985: 227-238.
    [112] J. A. Orenstem, T. H. Merett. A Class of Data Structures for Associative Searching. Proceedings of SIGMOD, 1984: 181-190.
    [113] C. Faloutsos. Gray Codes for Paral Match and Range Queries. IEEE Transactions on Software Engmeering, 1987.
    [114] A. Guttman. R Trees A Dynamic Index Structure for Spaaal Searchmg. Proceedings of ACM SIGMOD International Conference on the Management of Data, 1984: 47-57.
    [115] B. Moon, H.V. Jagadish, C. Faloutsos, J.H. Saltz. Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(1): 124-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700