采用电动轮驱动的电动汽车转矩协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源与环境的双重压力下,电驱动车辆已经成为当前汽车工业的发展趋势,电动轮驱动汽车更成为汽车领域的研究重点。本文分析了电动轮驱动车辆的关键技术,结合国内外的研究现状,将整车转矩协调控制作为研究的切入点和突破口,主要进行了以下研究:
     首先建立了电动轮驱动电动车仿真平台。该平台能够在驾驶员模型的转向角和油门踏板输入下,准确反映车辆运行的路径和姿态,并能进行路径跟踪。
     针对目前电机性能的现状,分析了电机输出转矩的稳态和动态误差对车辆直线行驶稳定性的影响,利用横摆角速度作为判据,实现对直线行驶过程中的驱动转矩进行协调控制,保证车辆直线行驶的稳定性。
     分析了车辆在转弯行驶过程中的能量消耗特点。在深入研究车辆的转弯行驶阻力之后,提出了车辆准中性转弯节能行驶模式。并以车辆滑移功率最小为优化目标,以车辆运动方程为约束条件,进行了车辆转矩协调控制,通过动态分配驱动转矩,改善汽车行驶过程中的能量分配,达到节省能量的目的。
     基于稳定性为目标的转矩协调控制系统。依据车辆横摆角速度的误差为判据,来估算车辆的行驶姿态。通过单轮或多轮控制使车辆的行驶姿态与路径达到最佳,并用BP神经网络方法实现了整车的驱动转矩差动分配。在制动力干涉之前结合驱动力控制,采取驱动转矩协调控制,减少制动力在主动安全控制中的参与范围,可以起到减少能量损耗的作用。
     最后以威乐三厢车为基础,建立电动轮驱动的理论研究与试验平台,利用dSPACE作为整车控制器,来验证所提的控制方法的正确性。
     本文提出的多目标的转矩协调控制系统可作为电动轮驱动领域研究的重要理论基础与参考,对掌握采用电动轮驱动的电动车的关键技术和形成自主开发能力具有重要的指导意义。
Nowadays the Electric Vehicles (EV) is the effective way to keep a sustainable development model under the pressure of the protection of natural environment and the growing shortage of oil resource for automobile industry. The vehicle driven by in-wheel motor has attracted quite a few researchers and development for its key technology in variants electric vehicle than ever before. Recently the in-wheel motor driving vehicle has been widely studied and applied by local car makers because of advantage such as flexible layout, independent control and well vehicle dynamics performance. Now many OEM has designed their concept in in-wheel motor driving vehicle such as Tianjin FAW and lots of in-wheel motor products such as Siemens and TM4, but the key technology is still in the process of forward. This paper is focus on the ECU of Torque Coordinate Control System based on the project of HTRDP 863 program. After reviewed the current status of in-wheel motor driving vehicle technology, we present the principle of energy saving and Torque Coordinate Control System.
     The study field on the Torque Coordinate Control System is summarized. Compared with the conventional electric vehicle, original transmission and mechanical system are disappeared and DOF of driven wheels of the in-wheel driving vehicle increased which brings the new question, e.g. electric differential, which enlarge the space of Electric Control Integration Process. The target of the torque coordinate strategy is designed to solve these questions caused by in-wheel motor. It contains the single motor torque control/ torque coordinate between wheels and axles/multi motor control model to ensure the safety/stability/energy saving for in-wheel motor vehicle. Below is the main content.
     In this paper, a 9-DOFs dynamics model is described as a muti-body system for offline model system simulation and validation. The basic model components are briefly below: 5-DOFs vehicle body except for vertical direction motion and 4 DOFs of four wheels rotation motion. Tire model is extremely important to torque Coordinating system as it describes all the governing forces and torques between the vehicle and the road surface. The author used the Uni-tire model which created by academician Mr KH Guo, the motor model is the brushless DC type and the driver model can pre-drive the desire lateral acceleration through single point trace method. All the sub function models are built in the matlab/simulink envir. With the order of the steering angle and gas pedal from driver model, vehicle simulator can simulate vehicle trace and pose of different driving maneuver, and target trace following can be conduct on this simu-platform. The simulation result is validated via Cruise soft environment.
     Acc. to the current tech status of in-wheel motor in nation, the torque response uniformity performance is discussed in detail. The error of the torque response is divided into static/dynamic respectively. The vehicle Straight Line (SL) stability caused by the static/dynamic error is analyzed. The author creates an Active Compensation Control Strategy (ACCS) to control the error to the single motor. The simulation and testing results demonstrate the ACCS is validity. But this control method ignored the cost of getting control parameter. So from the view of vehicle control, the control strategy realize the SL stability control wheels using the Yaw Rate as a rules for vehicle with difference torque output on the driven is proposed. In additional, we discuss the SL stability cause by response fluctuate of driven in-wheel motor.
     Due the capability of energy loaded is lower than conventional vehicle, how to effective use energy on the electric vehicle platform is another key technology. After review the research result of energy saving strategy for in-wheel motor system, we put more research on steering condition. First, energy flow characteristic is analyzed for driven axle base on the resistance force. A creative method quasi-neutral steering is proposed for vehicle turning. This method is validate on the simulator by FWD and 4WD driven model, it also achieve a good result under constant speed and acceleration maneuver.
     The wheel slip ratio indicates how much power is waste between driven motor and tire. From the point of power transmitted, the slip is smaller the power loss is lower. In this part, we take optimized wheel slip as required target and vehicle motion equation as limit to conduct Torque Coordinating Control System and dynamics distribute the driven torque to get the energy saving through the power flow control.
     Through compared the active safety system of conventional vehicle and in-wheel motor drive vehicle, a new range is defined in term of ABS/TC/ESP system on new platform which property of driven torque can be control independent acc. to variants objective. This allows the Torque Coordinating Control System working and keeping vehicle at bigger stability rang before ESC system active. The Torque Coordinating Control System can manage the vehicle driving pose using error of yaw rate as reference variable. Also it can be achieved the driving torque differ distribution by BP neural network via the way of highly efficient signal driven wheel control or multi driven wheels coordinating control. In addition, it decreased the brake energy loss by compress the ranges of active safety intervene through the proposal Torque Coordinating Control System.
     Finally, the independent driven platform system for validation and strategy testing has built using the Weile Hatchback passenger car. For achieved high quality result, the Torque Coordinating Control System is validated within the virtual HIL environment including DSPACE controller, actuator of the driven motor and a real car. The compensation control strategy is validated on this platform. The performance is satisfactory because the Torque Coordinating Control System is based on the motor accurately, fast and precisely responding.
     The main contribution of this dissertation is that designed a Torque Coordinating Control System for in-wheel motor driving electric vehicle. The conclusion of this paper can be as a theory instruction of torque coordinating control field. It also has the positive significance to master the key technology and get the ability to develop independently for auto industry.
引文
[1] Green Car congress. http://www.greencarcongress.com/electric_battery/index.html.
    [2] Energy Information administration, official Engergy statistics from the U.S. Government. http://www.eia.doe.gov/oil_gas/petroleum/info_glance/petroleum.html.
    [3]陈清泉,孙逢春.现代电动车技术[M].北京:北京理工大学出版社,2002.
    [4] Michael H. Westbrook. The Electric Car. The Institution of Electrical Engineers[M],2001.
    [5] Baldasano, J. Soriano, C. Boada. Emission inventory for greenhouse gases in the City of Barcelona[J]. Atmospheric Environment, Vol. 33, No.23, Oct 1999.
    [6]科学技术部.国家“十五”重大科技成就展.科技成果汇编, 2005.9.
    [7]科学技术部.国家“十五”863计划能源技术领域——电动汽车专项课题申请指南, 2001.10.
    [8] Rahnan Z, Butler k l, Ehsani M. A comparison study between two parallel hybrid control concepts[C]. SAE Paper, No.2000-01-0994.
    [9] Delpart S, Paganelli G, Guerra T, et al. Algorithm optimization tool for HEV strategies[C/CD]. The 16th International electric Vehicles Symposium, Oct. 12-16, Beijing, 1999.
    [10] Salman M, schouten N J, Kheir N A. Control strategies for parallel hybrid vehicles[C]. Proceedings of the American control conference, June 28-30, Chicago, 2000.
    [11] Glenn B, Washington G, Rizzoni G. Operation and control strategies for hybrid electric automobile[C]. SAE Paper, No. 2000-01-1537.
    [12] Chakib Alaoui. Electric vehicle energy management system [D]. University of Massachusetts Lowell, 1998.
    [13]童毅.并联混合动力系统动态协调控制问题研究[D].北京:清华大学,2004.
    [14]刘明辉.混合动力客车整车控制策略及总成参数匹配研究[D].长春:吉林大学,2005.
    [15] Schouten N J, Salman M A, Kheir N A, Energy management strategies for parallel hybrid vehicles using fuzzy logic[J]. Control Engineering Practice, 2003(11):171-177.
    [16] Morteza M G, Poursamad A, Ghalic B. Application of generic algorithm for optimization of control strategies in parallel hybrid electric vehicles[J].Journal of the Franklin Institute ,2006(343) :420-435.
    [17] Cajander D, Hoang L H. Design and optimization of torque controller for a switched reluctance motor drive for electric vehicles by simulation [J]. Mathematics and computers in simulation, 2006(7):333-344.
    [18] Delagrammatikas G J. Design optimization methodlogy for advanced and hybriddiesel-based antomotive powertrains [D].the University of Michigan, 2001.
    [19] Johnson v H, Wipke K B, Rausen D.J. HEV control strategy for real-time optimization of fuel economy and emissions[C]. SAE TRANSACTIONS, 2000:1677-1681.
    [20]国家发展和改革委员会.混合动力电动汽车类型和定义(征求意见稿).中国人民共和国汽车行业标准,QC/T××××-××××.
    [21]曾小华.混合动力客车节能机理与参数设计方法研究[D].长春:吉林大学,2006.
    [22]何洪文.混合动力车辆驱动系统研究和控制策略分析[D].北京:北京理工大学,2003.
    [23] National Research Council, 2002, Effectiveness and Impact of Corporate Average Fuel Economy Standards, National Academy Press, Washington D.C
    [24] Harry L. Husted. A Comparative Study of the Production Applications of Hybrid Electric Powertrains[C]. SAE Paper, No. 2003-01-2307.
    [25] Z. Rahman, K.L. Butler, M. Ehsani. A Comparion Study between Two Parrallel Hybrid Control Concepts[C]. SAE Paper, No. 2000-01-0994
    [26] http://www.greencarcongress.com/electric_battery/index.html
    [27]傅世枢.未来汽车趋势-世界将迎来电动轮汽车的新时代[J].轻型汽车技术,2006(1):32-33
    [28]杨胜明.直驱式轮毂马达之趋势与应用[R].淡江大学机电控制实验室.2003
    [29] Hiroshi Shimizu, junji Honda, Colby Bland. Concepts in electric vehicle Design [J].IEEE Trans, 1997, Vol.44:14-18.
    [30] Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimuzu. Evaluation of performance for the in-wheel driving system for the new concept electric vehicle‘KAZ’. EVS-19, Korea, Oct.2002.
    [31] Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimuzu, et al. Advanced direct drive system for new concept electric vehicle“KAZ[C]. Proceedings of the 18th International Electric Vehicle Symposium. Berlin, Germany, 2001.
    [32]葛英辉.轮式驱动电动车控制系统的研究[D].杭州:浙江大学,2004.
    [33] King-jct Tsingm, Chen G H. Computer-aidd design and analysis of direct-wheel drive. IEEE Transaction on power electronics, 1997.13(4)/2201-234.
    [34]刘俊.电动汽车电动轮驱动技术仿真研究[D].长春:吉林大学,2005.
    [35] Lyshevshi, Sinha. Analysis and control of hybrid electric vehicles with individual wheel brushless traction motors[C]. American Control Conference, 2000.2(6):28-30.
    [36]宋佑川.新一代电动汽车中电动轮设计方法研究[D].武汉:华中科技大学,2004.
    [37] M. Terashima, T. Ashikagam, T. Mizuno, et al. Novel motors and controlllers for high-performance electric vehicle with four in-wheel motors[C]. Industrial electronics, IEEE Transactions, 1997, Vol. 44:28-38.
    [38] Jeffery S. Ernat. Advanced hybrid electric wheel drive(ANED) 8×8. 23rd Army Science Conference. Orland, Florida, Dec.2-5, 2002.
    [39]罗建武,詹琼华,马志源等.开关磁阻电机电动轮驱动系统[J].华中科技大学学报(自然科学版),2007, Vol.35, NO.1:60-62.
    [40] C. Espance, M.Tekin, R. Bernard, et al. A new structure of a high Torque in wheel motor, IEEE 2006:158-162.
    [41]钱立军,赵韩,高立新.电动汽车开发的关键技术及技术路线[J].合肥工业大学学报(自然科学版),2002.25(1):14-18.
    [42]顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势[J],汽车研究与开发,2004.9(12):27-30.
    [43]陈勇,张建荣,张大明,电动轮技术在电动汽车中的应用及发展趋势[J].机械设计与制造,2006(10):169-171.
    [44]赵辉,孙立志,陆勇平.轮式驱动电动汽车的研究与实验[J].电机技术,1999(4):45-47.
    [45]孙逢春,程夕明.电动汽车动力驱动系统的现状及发展[J].汽车工程,2004.4:220-225.
    [46]天津一汽夏利股份有限公司.威乐混合动力轿车技术报告[内部资料],2008.
    [47]靳立强.电动汽车电动轮驱动理论与应用技术[D].长春:吉林大学,2006.
    [48]赵硕.电动轮驱动汽车差速技术研究[D].长春:吉林大学,2006.
    [49]张侠.电动轮驱动系统附着特性实时识别的试验研究[D].长春:吉林大学,2006
    [50]靳立强,王庆年,张缓缓等.电动轮驱动电动汽车差速技术研究[J].汽车工程,Vol.29, No.8, 2007:700-704.
    [51]靳立强,王庆年,宋传学.四轮独立驱动电动电动车动力学控制系统仿真[J].吉林大学学报(工学版), Vol.34,No.4,2004:547-553.
    [52]靳立强,王庆年,宋传学.电动轮驱动电动汽车动力学仿真模型及试验验证[J].吉林大学学报(工学版), Vol.37, No.4,2007:745-750.
    [53]王庆年,靳立强,宋传学等.轮胎与路面纵向附着特性的实时测定方法及其测试车:中国,CN200610016958.5[P].2006-11-22.
    [54] E.F.Drenth. Verification of the Haldex LSC system performance. 15th ADAMS European User’s Conference. Rome, 2000.
    [55] H. Huchtkoetter, T. Gassmann. Vehicle Dynamics and torque management devices [C]. SAE Paper, No.2004-01-0060.
    [56] J. Park, W. J. Kroppe, Dana. Torque vetoring Diffential dynamic track[C]. SAE Paper, No.2004-01-2053.
    [57] Kaoru Sawase, Yuichi Ushiroda, Takami Miura. Left-right torque technology as the core of super all wheel control. Mitsubishi Motors Technical Review, 2006, No.18: 16-23.
    [58] Takami Miura, Yuichi Ushiroda, kaoru Sawase, et al. Development of Integrated vehicles control system S-AWC, Mitsubishi Motors Technical Review, 2008, No.20: 21-25.
    [59] Sawase et al. Active yaw control employing driving force and braking force, JSAE Symposium Proceedings, No.9702, 9730894.
    [60] Sawase. Development of center-differential control system for high-performance four-wheel-drive vehicles. Mitsubishi Motors Technical Review, No.13, 2001.
    [61] Takahashi. Enhancement of performance of active yaw control system. JSAE Symposium, No.10-03, 2003.
    [62] Zhao Yan-e, Zhang Jianwu, Han Xu. Development of a high performance electric vehicle with four-independent-wheel drives [C]. SAE Paper, No.2008-01-1829.
    [63] King-Jet Tseng, G. H. Chen. Computer-Aided design and analysis of direct-driven wheel motor drive [C]. IEEE Transactions on Power Electronics, Vol.12, No.3, May 1997:517-526.
    [64] Yoichi Hori. Vehicle driven by electricity and control-resear on four-wheel motored“UOT Electric MachⅡ”. IEEE Transactions on Industrial Electronics, Vol.51, No.5, Oct.2004: 954-962.
    [65] Masayuki Terashima, Tadashi Ashikaga, Takayuki Mizuno, et al. Novel Motors and controllers for high performance electric vehicle with four in-wheel motors. IEEE Transactions on Industrial Electronics, Vol.44, No.1, February 1997:28-38.
    [66] D. Johnston, Longueuil, Quebec. TM4 motor-wheel drive and control system: performance, benefits and advantages. EVS-17, Montrenl, Lamada, 2000.
    [67]刘志茹.混合动力汽车动态过程主动控制研究[D].长春:吉林大学,2006.
    [68]金启前.混合动力客车试验与评价问题研究[D].长春:吉林大学,2006.
    [69] Zhang Huanhuan, Wang Qingnian, Jin Liqiang. Study on the straight-line running stability of the four-wheel independent driving electric vehicles[C]. SAE Paper, No.2007-01-3488.
    [70]张缓缓,王庆年,靳立强.四轮独立驱动电机特性对车辆直线行驶稳定性影响的研究[J].2007年APC联合学术年会论文,天津,2007.9:218-222.
    [71]李春生.双轮独立驱动电动车驱动系统的研究[D].杭州:浙江大学,2003.
    [72]余卓平,张立军,熊露.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报(自然科学版),2005.10,Vol.33, 10, pp.1355-1361.
    [73]范晶晶,毛明.基于经济性的三轴电传动车辆驱动力分配策略研究[J].车辆与动力技术,2007(1):59-52.
    [74] Huei Peng, Jwu-Sheng Hu. Traction/braking force distribution for optimal longitudinal motion during curve following [J]. Vehicle System Dynamics, Vol.26, No.4 , Oct.1996: 301-320.
    [75] Ossama Mokhiamar, Masato Abe. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control [J]. Journal of Dynamics System, Measurement and Control, Vol.126, Dec.2004:753-763.
    [76] Ossama Mokhiamar, Masato Abe. How the four wheels should share forces in an optimum cooperative chassis control. Control Engineering Practice, 2006(14):295-304
    [77]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学,2008.
    [78]余志生.汽车理论(第三版)[M].机械工业出版社,2006.
    [79] Farzad Tahami, Shahrokh Farhanghi. A novel driver assist stability system for all-wheel-drive electric vehicles. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL.52, NO.3, MAY 2003.
    [80] E. Esmailzadeh, A. Goodarzi, G. R. Vossoughi. Optimal yaw moment control law for improved vehicle handling. Mechatronics 13(2003): 659-675.
    [81] Motoki Shino, Naoya Miyamoto & YuQing Wang, et al. Traction control of electric vehicles considering vehicle stability. AMC2000-NAGOYA.
    [82] M. Croft-White, M. Harrison. Study of torque vectoring for all-wheel-drive vehicles[J]. Vehicle System Dynamics, Vol.44, Supplement, 2006:313-320.
    [83]贺鹏,掘洋一.四轮独立驱动电动汽车的稳定性控制及其最优动力分配法.河北工业大学学报,2007(8), Vol.36,No.4,pp.26-32.
    [84] H. E. Tseng, D. Madau & B. Ashrafi etc. Technical challenges in the development of vehicle stability control system[C]. Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast– Island of Hawaii, USA, Aug.22-27, 1999.
    [85] Mark O. Bodie, Aleksander Hac. Closed loop yaw control of vehicles using magneto-rheological dampers[C]. SAE paper, No.2000-01-0107.
    [86] Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle for improving handing and stability. JSAE Review 22(2001):473-480.
    [87] Nobuyoshi Mutoh, Kazuya Takita. A control method to distribute electric braking force between front and rear wheels in electric vehicle systems with independently driven front and rear wheels[C]. 2004IEEE. pp.2746-2753.
    [88] E. Esmailzadeh, G.R.Vossoughi & A.Goodarzi. Dynamic modeling and analysis of a four motorized wheels electric vehicle [J]. Vehicle System Dynamics, 2001, Vol.35, No.3, pp.163-194.
    [89] H. E. Tseng, D. Madau & B. Ashrafi etc. Technical challenges in the development of vehicle stability control system[C]. Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast– Island of Hawaii, USA, Aug.22-27, 1999.
    [90] S. Motoyama et al., Quantitive evalution for yaw control ability. In Prov. AVEC’98, 1998.
    [91] Shio-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion control on an electric vehicle with four independently driven in-wheel motors[C]. IEEE/ASME Transactions on Mechatronics, Vol.4, No.1, March 1999: 9-16.
    [92] Hideo sado, shin-ichiro Sakai, yoichi hori. Road condition estimation for traction control for electric vehicle traction control with slip ratio controller[C]. Proc. IEEE Int. Symp. Industrial Electronics, Slovenia: Bled, 1999:973-978.
    [93] Shin-ichiro Sakai, Hideo Sado & Yoichi Hori. Novel Skid Avoidance Method for Electric Vehicle with Independently Controlled 4 In-Wheel Motors[C], ISIE, 1999.7 Slovenia.
    [94] Yoichi Hori. Future Vehicle driven by Electricity and Control -Research on 4 Wheel Motored 'UOT March II'[C], Proc. of AMC 2002, invited paper, pp.1-14, 2002.7.3-5, Maribor.
    [95] Robert J. Rieveley, Bruce P. Minaker. Variable Torque distribution yaw moment control for hybrid powertrains [J].SAE Paper, No.2007-01-0278.
    [96] Jonas Fredriksson, Johan Andreasson, Leo Laine. Wheel force distribution for improved handling in a hybrid electric vehicle using nonlinear control. 43rd IEEE Conference on Decision and Control, Dec.14-17,2004, Atlantis:4081-4086
    [97]余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车转矩分配控制.同济大学学报(自然科学版), Vol.366, No.8, 2008: 1115-1119.
    [98] Pongsathorn Raksincaroensak, Motoki Shino, Masao Nagai. Motion control of miro-scale electric vehicle by DYC considering lane marker information [C]. The 8th IEEE International Workshop on Advanced Motion Control, 25th -28th March 2004, Kawasaki International Ceter, Japan.
    [99]郭立书,葛安林,张泰等.电子控制最佳转矩分配4wd系统的研究[J].农业机械学报,第33卷第6期,2002年11月,16-19.
    [100]严欣贤,李成刚,胡于进等.多轴驱动车辆的扭矩优化分配[J].汽车工程,2004, NO.9, pp. 13-14.
    [101] Junya Yamakawa, Keiji Watanabe. A method of optimal wheel torque determination for independent wheel drive vehicles [J]. Journal of Terramechanics 43(2006) 269-285.
    [102]王庆年,张缓缓,靳立强.四轮独立驱动电动车转向驱动的转矩协调研究[J].吉林大学学报(工学版),vol.37, No.5, 2007:985-989.
    [103] Segel. L. Research in fundamentals of automobile control and stability. SAE Transactions, 1957, 65:527-540.
    [104] D.J. Segal. Highway vehicle object simulation model. Programmers Manual, 1976.
    [105] D.J. Segal. Highway vehicle object simulation model. Users Manual, 1976.
    [106] ADI Technical staff. Seventeen--degree-of-freedom motor vehicle simulation. ApplicationReport, 1976.
    [107]朱波.基于驾驶员行为的车道保持系统神经网络决策与控制[D].长春:吉林大学,2006.
    [108] Joel R. Anstrom. Model development for hybrid electric vehicle stability assist sustems[D]. Pennsylvania: the Pennsylvania State University, 2002.
    [109] Z. Rahman, M Ehsani, K.L. Butler. An investigation of electric motor drive characteristics for EV and HEV propulsion system[C]. SAE Paper, No.2000-01-3062.
    [110] Se-Kyo Chung, Hyun-Soo Kim, Chang-Gyun Kim, and Myung-Joong Youn. A New Instantaneous Torque Control of PM Synchronous Motor for High-Performance Direct-Drive Applications. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998.
    [111] Yee-Pien Yang, Yih-Ping Luh, and Cheng-Huei Cheung. Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles—Part I: Multiobjective Optimal Design and Analysis. IEEE Transactions on Magnetics, VOL. 40, NO. 4, JULY 2004.
    [112] Y.P. Yang*, C.H. Cheung, S.W. Wu, J .P Wang. Optimal Design and Control of Axial-Flux Brushless DE Whell Motor for Electrical Vehicles. Proceedings of the 10th Mediterranean Conference on Control and Automation– MED,2002 Lisbon, Portugal, July 9-12, 2002.
    [113]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [114]高振海,姜立勇.汽车车道保持系统的BP神经网络控制[J].中国机械工程,Vol.16, NO.3 2005, PP. 272-276.
    [115] AVL Cruise data handbool [M].Jan.2005.
    [116]王伟华.混合动力汽车的研究[D].长春:吉林大学,2006,86-88.
    [117] L Austin, D Morrey. Recent advances in antilock braking system and traction control system[C]. IMechE D07199.
    [118]李静.4×4越野汽车牵引力控制策略与控制算法研究[D].长春:吉林大学,2003.
    [119] H. Decher, R. Emig & H.Schramm. Traction control for commercial vehicles, a further step towards safety on our roads[C]. SAE Paper, No.872272.
    [120] modeFRONTIER印刷材料.西迪阿特公司北京办事处资料,2005.ESTECO srl.
    [121] ModeFRONTIER User Manual [DK]. http:// www.esteco.it.
    [122]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [123]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制[J].上海交通大学学报,Vol.42, No.6, 2008(7):887-891.
    [124] Russell P. Osborn, taehyun Shim. Independent control of all-wheel-drive torque distribution[C]. SAE Paper, No. 2004-01-2052.
    [125] Shen X, Li D, Yu F. Study on vehicle control integration based on general actuator-plantstructure[C]. Proc of International Symposium on advanced vehicle control Symposium.Taiwan: National Tsing Hua University, 2006.
    [126]郭建华.双轴汽车电子稳定性协调控制系统研究[D].长春:吉林大学,2008.
    [127]余卓平,高晓杰.用于车辆稳定性控制的直接横摆力矩及车轮滑移率联合控制研究[J].汽车工程,Vol.28, No.9, 2006:844-848.
    [128]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,Vol.28,NO.2,2006,pp.105-113
    [129]郭三学,赵晓青,王少华等.汽车底盘新技术发展趋势分析[J].武警工程学报,Vol.16,NO.6,2000,pp.60-64.
    [130]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学,2003.
    [131] Ken Koibuchi, Masaki Yamamoto, Yoshiki Fukada, et al. Vehicle stability control in limit cornering by active brake[C]. SAE Paper, No.960487.
    [132]王德平.汽车驱动防滑控制与动力学稳定性控制德控制逻辑与算法研究[D].长春:吉林工业大学,1998.
    [133]王德平,郭孔辉.车辆动力学稳定性控制的控制原理[J].机械工程学报,2000, Vol.36, No.3:97-99.
    [134] Y. Shibahata, K. Shimada, T.Tomari. The improvement of vehicle maneuverability by direct yaw moment control[C]. AVEC’92: 452-457.
    [135]潘定海.汽车稳定性控制(VSC-Vehicle Stability Control).汽车动态模拟国家重点实验室学术交流资料,1999.7.
    [136]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [137]吴炎明,王纯贤,王治森.改进的BP算法及其应用研究[J].合肥工业大学学报(自然科学版), Vol.21, No.4, 1998(8):17-31.
    [138] Chan J W, Fallside F. An adaptive training algorithm for back-propagation networks. Speed and Language, 1987(2).
    [139]电动汽车重大专项总体组,电动汽车重大专项办公室.”十五”国家高技术研究发展计划(863计划)电动汽车重大专项进展[J].汽车工程,Vol.25, No.6, 2003:533-536.
    [140] Hottinger Baldwin Messtechnic GmbH. T10F Operating manual.1998.
    [141]西安中星测控有限公司.CS-IMU03数字式惯性测量单元说明书.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700