复杂装备智能机内测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文讨论的复杂装备主要以军用电子学装备为背景,也称复杂电子学装备或复杂电子学系统,简称电子学装备。复杂装备综合测试技术是实现装备可靠性、维修性、保障性、测试性和安全性的重要技术手段。
     复杂装备综合测试包括机内测试(Built-in Test,BIT)和地面测试系统(Ground-Test System,GTS)两大部分。机内测试是指在系统、设备内部提供的在线检测、状态识别和故障定位与隔离的自动化测试能力。地面测试系统是装备外部提供在线或离线检测、任务剖面仿真、故障诊断与定位的自动化测试系统。综合检测技术是装备整体设计、组件设计、状态监测、故障诊断和维修决策等方面的共性关键技术,能够大大提高装备的状态监测和故障诊断能力,增强维修效率,保证装备战备完好率。
     论文针对电子学装备的机内测试技术和地面测试技术展开了深入研究,其中重点研究机内测试关键技术。全文贯穿将电子学装备BIT与GTS理论与工程化紧密结合的研究思路。
     论文主要针对电子学装备智能综合测试设计与实际工程应用的不足开展研究,在研究过程中着重解决两个问题:
     第一,复杂电子学装备智能BIT建模、设计、智能综合检测与故障诊断基础理论与基础问题的研究与分析。
     第二,应用BIT和GTS综合测试先进理论与新型技术,针对复杂电子学装备工程应用开展相关技术的研究与探索。
     针对这两大方面,论文开展了深入研究,其主要的工作与贡献包括:
     1)应用复杂系统建模和系统工程的理论与方法,针对电子学装备建立BIT测试模型、分析关键指标的度量和测试知识表示方法;将基于统计理论的组件和系统模型与装备BIT可测试性设计紧密结合,提出了针对复杂电子学系统机内测试层次模型,并开展了工程化应用实践研究。
     2)探讨了先进的BIT智能检测手段,并应用于电子学装备BIT智能检测实践中;运用信息融合、小波变换、神经网络、马尔可夫模型等先进的理论工具,对电子学装备经常遇到的故障模式进行深入的分析。研究了在装备测试中常见的突变信号特点,应用小波分析建立了突变信号处理框架,给出了带维修态的马尔可夫故障处理模型。
     3)分析了装备测量信息的不确定性问题及其产生的原因,运用贝叶斯决策、系统辨识和参数估计等技术解决实际工程中出现的问题;讨论了基于最大熵原理测量信息先验分布的详细计算算法,给出了仿真结果。
     4)针对电子学装备BIT设计需求,开展了先进现场总线与实时网络的BIT分布式测试关键技术研究,分析了基于TTCAN的调度算法及其应用方法。在工程中设计了基于ARM920T、Cortex-M3和PowerPC的BIT测试节点,研制了原理样机。分析了智能装备所需要的任务关键实时调度算法,提出了一种基于任务关键度的实时调度算法(Critical-based Schedule Algorithms,CSA)。
     5)针对电子学装备“五性”“三化”要求和装备研制需求,开展了装备BIT和GTS通用化、组合化的测试设备设计技术研究。提出了复杂电子学装备通用地面测试接口(General Ground-Test Interface,GGTI)标准,规范了测试接口设计,研制了基于GGTI的通用化、系列化测控板卡。提出了基于系统芯片的系统级BIT一体化设计,完成了原型验证。
     复杂电子学装备BIT与GTS智能综合测试技术的研究还处在发展阶段,在理论与工程研制方面还存在许多有待解决的问题。论文在复杂电子学装备综合测试领域的工作为今后进一步的研究提供了新的技术和思路。
This dissertation discusses the complicated equiments mainly applied in Military Electronics System (MES), and can be called Complicated Electronics System (CES). The integrated testing technique of CES is an important approach to improve reliability, maintainability, supportability, testability, safety and diagnostic capability of complicated military equipments greatly. It can be improved the operational readiness and increased maintenance support capacity of complex equiment system.
     Integrated testing of CES includes Built-in test (BIT) and Ground-Test System (GTS). The BIT technology is defined as an on-board hardware-software diagnostic in equipment and system. The GTS is defined as on-line or off-line testing outside of equiments. The integrated testing means to achieve measurement data, identify faults for CES, and it is a common key technique of system design, compoment design, condition monitoring, fault diagnosis, maintaining decision and so on.
     This dissertation discusses the BIT and GTS technology of complicated equiments,especially for BIT of CES. It studies on design and application of BIT and GTS in CES, combines BIT and GTS system modeling, design, intelligent detection and diagnosis with the development of new military equipments closely today.
     Because the BIT and GTS design and application in CES have some problems, so BIT and GTS technologies become a key issue that should be well solved. This dissertation mainly study on two topics:
     Firstly, it is pay attention to study and anylize on the basic theories and essence problems in system model, design, monitoring and diagnosis of intelligent BIT and GTS technology for CES.
     Secondly, how to apply the advance theory and new-style technology of intelligent BIT and GTS to the complicated equipment design and manufacture systematically.
     The main results in the dissertation are as follows:
     1) According to complicated system modeling and system engineering theory, established BIT and GTS testability model, key measurement index, and test knowledge representation methods. It is combined components and system model in statistic mathematics with the design of equipment testability, and applied in engineering practice for complicated electronic equipments.
     2) Discuss the advanced methods of intelligent detection and diagnosis, such as information fuse, wavelet transform, netural networks, and markov model etc, and analyzed the abrupt change phenomena, fault pattern, then submits a uniform process architecture for CES.
     3) Analyzed the reasons of uncertainty problems in measurement information of CES, exerted bayes decision, system identification, and parameter estimation to solve the practice problems in engineering environment. It submits a full algorithm to compute the prior distribution using maximum entropy principle and discussed the process methods for small samples in the CES.
     4) This paper studied on advanced field bus and real-time network technology for requestion of BIT design in the CES, designed a lot of BIT test nodes with AT91RM9200, Cortex M3 and PowerPC processors, and produced the test devices. In order to improve real-time performance of equipment, anylized the real-time schedule algorithms and submitted a Critical-based Schedule Algorithms (CSA).
     5) In order to implement“five nature”and“seriation, generalization andmodularizatio”of CES, submitted a kind of testability design for BIT and ATE. The paper submits a General Ground-Test Interface (GGTI) stardard, designs a series of testing board, and submits an integrated schema for BIT in CES based on system-chip. The devices that made in our project have successfully applied in the real devices and systems.
     At present, the research work on BIT and GTS of complicated electronic equiments are at the stage of initial development, and there are many problems still open. The relative technologies and mechanism presented in this dissertation may provide some new techniques and ideas for the development of the integrated testing of complicated electronic equiments.
引文
[1]温熙森,徐永成,易晓山,陈遁.智能机内测试理论与应用[M].国防工业出版社,2002.1
    [2]曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社,1996
    [3]甘茂治.维修性设计与验证[M].北京:国防工业出版社,1995
    [4]陈光衤禹. .可测性设计技术[M].北京:电子工业出版社,1997
    [5]曾芷德.数字系统测试及可测性[M].长沙:国防科技大学出版社,1992
    [6]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社, 2003
    [7] Dale W R. SMART BIT: An AI Approach to Better Systems-Level Built-in Test [C]. Proc. Of Annual Reliability and Maintainability Symposium, 1987:31-34
    [8] Merlino D H., Hadjilogiou J. Built-In Test Strategies for Military Systems [C]. Proceedings of Reliability and Maintainability Symposium, 1989:59-65
    [9] James E,Charles O. Implementationof Expert System / AI Technology for Reducing Ground Test in Present and Future Launch System [J]. AIAA-91-0655, 1991:1-10
    [10] George L D. Two-Level Maintenance: How Do You Get There? [C]. Proceedings of Annual Reliability and Maintainability Symposium, 1991:397-399
    [11] Colins M. A Universal Framework for Managed Built-in Test [C]. International Test Conference, 1993:21-29
    [12] Robert X. Diagnosis from Within the System [C]. Proceeding of IEEE Instrumentation & Measurement Magazine, 2002:43-47
    [13] Wang Zhiying,Ma Weidong, Xiong Guangze. A complex electronics system built-in-test based on time-triggered CAN bus [C]. The eighth international conference on electronic measurement and instruments, 2007,8:947-950
    [14]徐永成,温熙森,刘冠军,易晓山.智能BIT概念与内涵探讨[J].计算机工程与应用,2001,14:29-32.
    [15]徐永成. BIT中智能故障诊断理论与方法研究[D].长沙:国防科技大学,1999.
    [16]徐永成,温熙森,易晓山,刘冠军.机内测试技术发展趋势分析[J].测控技术,2001,20(8):1-4.
    [17]王志颖,马卫东,熊光泽.面向安全关键系统的机内测试装置设计与实现[C].第16届全国测控、计量、仪器仪表学术年会, 2006,9:892-896
    [18]曲东才.系统可测试性与航空武器系统[J].测控技术,1997,16(2):8-10.
    [19]陈幼玲,徐志磊.基于可靠性的复杂装备综合集成设计[J].中国工程科学,2008, 10(7):28-34
    [20]朱文革,李世其,王峻峰,尹文生.复杂装备虚拟维修系统设计[J].华中科技大学学报(自然科学版), 2009, 37(1):1-4
    [21]王志颖.复杂装备智能BIT建模与设计技术研究[R].中国工程物理研究院GF报告, ZW-E-2009004.(总装GF报告编号GF-A1000006M)
    [22] MIL-STD-1309C. Definitions of Terms for Testing, Measurement and Diagnostics [S]. 1992
    [23] GJB2547-95.装备测试性大纲[S]. 1995
    [24] MIL-STD-2165. Testability Program for System and Equipments [S]. 1985
    [25] MIL-STD-2165A. Testability Program for System and Equipments [S]. 1993
    [26] IEEE-STD-1522. IEEE Trial-Use Standard for Testability and Diagnosability Characteristics and Metrics [S]. 2004
    [27]杨仕平.分布式任务关键实时系统的防危(Safety)技术研究[D].电子科技大学, 2004
    [28]柳新民.机电系统BIT间歇故障虚警抑制技术研究[D].国防科技大学,2005
    [29] Simpson W,Sheppard J. System Complexity and Integradted Diagnostics [J]. IEEE D&T of Computer, 1991,8(3):16-30
    [30] Sheppard J,Simpson W. Fault Isolation in an Integrated Diagnostics [J]. IEEE D&T of Computer,1993,10(1):52-66
    [31] Deb S, Pattipati K et.al. Multi-Signal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis [C]. IEEE AutoTest Conference, 1994:361-373
    [32] Westervelt K. F/A-18D (RC) built-in-test false alarms [C]. Proceedings of the IEEE 2002 Aerospace Conference, 2002, 6: 2961-2970
    [33] Allen D. Probabilities associated with a built-in-test system, focus on false alarms [C]. IEEE Autotestcon 2003: 643-645
    [34] Westervelt K. Root cause analysis of BIT false alarms [C]. Proceedings of the IEEE Aerospace Conference, 2004, 6:3782-3790.
    [35] V. G. Zourides, Smart built in test-An overview [C].. IEEE Autotestcon, 1989, 10: 67-74
    [36] Halter K A, Zbytniewski J D, Anderson K. Smart Built-in-Test (BIT) [C]. IEEE Autotestcon, 1985: 140-147
    [37] Press R E, Aylstock F W, Learoyd C H et al. The Application of Neural Network Technology to Built-in Test False Alarm Filtering [C]. The 9th AIAA Computing in Aerospace Conference, Technical Papers, (A94-11401 01-62), 1993, 2:1389-1398
    [38] Ayistock F, Elerin L, Hintz J, and et al. Neural Network False Alarm Filter (Volume 1). ADA293097, 1994
    [39] Ayistock F, Elerin L, Hintz J, and et al. Neural Network False Alarm Filter (Volume 2). ADA293114, 1994
    [40] Elerin L, Hintz J, Joseph C, and et al. Using neural networks to improve built-in test [C]. The 10th AIAA Computing in Aerospace Conference, Collection of Technical Papers (A95-25751 06-61), 1995: 280-290
    [41]雷旺敏.全固态相控阵三坐标雷达机内测试设计[J].现代雷达,1999,21(4):19-25
    [42]张宏伟,李志强,都学新.火控雷达BIT设计研究[J].现代雷达,2001, 23(4):31-33
    [43]侯其坤.机载雷达系统的BIT设计[J].现代雷达,2003, 25(11):7-9
    [44]都学新,夏明飞,王志云.某型雷达BIT的设计与实现[J].火力与指挥控制,2004,29(2): 94-96.
    [45]张宝珍,曾天翔.智能BIT技术[J].测控技术,2000, 19(11):1-4
    [46]温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报,1999, 21(1):97-101
    [47]徐永成. BIT中智能故障诊断理论与方法研究[D].国防科技大学, 1999
    [48]王新峰.机电系统BIT特征层降虚警技术研究[D].国防科技大学, 2005
    [49]杨光.机电产品BIT系统传感层降虚警的理论与技术研究[D].国防科技大学, 2003
    [50]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术[D].国防科技大学, 2008
    [51]杜金榜,王跃科,王湘祁,杨湘.军用自动测试设备的发展趋向[J].计算机自动测量与控制, 2001,9(5):1-3
    [52]曲东才.军用测试和综合诊断技术[J].测控技术, 2002,21(5)67-69
    [53]黄考利,连光耀,魏忠林.装备自动测试系统软件的可测试性设计与分析[J].计算机测量与控制, 2004,12(8):794-797
    [54]刘兴堂,梁炳成,刘力,何广军等.复杂系统建模理论、方法与技术[M].科学出版社,2008.6
    [55]王志颖,熊光泽.一种小型高集成智能测试装置的设计与实现.电子技术应用. 2004,30(12):35-38
    [56]刘凯,陈志东,邹德福,马丽敏. MEMS传感器和智能传感器的发展[J].仪表技术与传感器, 2007,9:9-11.
    [57] Y.W. Yang. Monitoring of Rocks Using Smart Sensors [J]. Tunneling and Underground Space Technology, 2007, 2(22): 206-221.
    [58] IEEE 1451.2-1997. IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheets (TEDS) Formats [S]. Piscataway, New Jerse08855. 1997.9
    [59] IEEE Std 1451.1-1999. Standard for a Smart Transducer Interface for Sensors and Actuator-Network Capable Application Processor (NCAP) Information Model [S]. Piscataway New Jersey 08855, 1999.9
    [60] IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-Scan Architecture, Piscataway: IEEE standards Press, 1993
    [61] IEEE Std 1149.1-2001. IEEE Standard Test Access Port and Boundary-Scan Architecture, Piscataway: IEEE standards Press, 2001
    [62] IEEE Std 1500-2005. IEEE Standard Testability Method for Embedded Core-based Integrated Circuits. Piscataway: IEEE standards Press, 2005
    [63] Sharma R, Saluja K K. An implementation and analysis of a concurrent built-in self-test technique. Digest International Symposium on Fault-Tolerant Computing, 1988: 164-169
    [64] Lin T H, Shin K G An Optimal Retry Policy Based on Fault Classification. IEEE Trans. On Computers, 1994,43(9): 1014-1025
    [65] Andrea B, Silvano C, Felicita D q Fabrizio G Discriminating Fault Rate and Persistency to Improve Fault Treatment. FTCS 1997: 354-362
    [66] Olivier C, Stephane L. Failure Diagnosis of Discrete Event Systems: The Case of Intermittent Faults. Proceedings of the 41 st IEEE Conference on Decision and Contro1,2002:4006-4011
    [67] Nakagawa T, Yasui K. Optimal testing-policies for intermittent faults. IEEE Transactions on Reliability, 1989,38(5):577-580
    [68] Kun-Jen Chung. Optimal Testing-Times for Intermittent Faults. IEEE Transactions on Reliability, 1995,44(4): 645-647
    [69] Prasad V B. Markovian model for the evaluation of reliability of computer networks with intermittent faults. IEEE Circuits and Systems, 1991,4 (6):2084-2087
    [70] Ismaeel A A, Bhatnagar R. Test for detection and location of intermittent faults in combinational circuits. IEEE Trans. on Reliability, 1997, 46(2): 269-274.
    [71]周东华,叶银忠.现代故障诊断与容错控制[M].清华大学出版社,2000
    [72]李俭川.贝叶斯网络故障诊断与维修决策方法及应用研究[D].国防科技大学,2002
    [73]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].国防工业出版社,1998
    [74]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策, 2001,16(5):518-522
    [75]潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-611
    [76]冯志红,林志贵,王炜.基于信息融合的模拟电路故障诊断方法分析[J].电子测量与仪器学报, 2008, 22(6):47-43
    [77]朱大奇,杨永清,于盛清.电子部件故障诊断的Dempster-Shafer信息融合算法[J].控制理论与应用,2004,21(4):659-663
    [78] Basseville M,Nikiforov I V. Detection of Abrupt Changes: Theory and Application [M]. New York: John Wiley & Sons Inc., 1997.1
    [79]胡峰,孙国基.非平稳过程突发性故障的在线检测与辨识[J].自动化学报,2001,27(1):120-124
    [80]陈良均,朱庆棠.随机过程及应用[M].高等教育出版社, 2003:100-158
    [81]李国丽,王孝武.用马尔柯夫可靠性模型对测量仪表进行故障概率排序.合肥工业大学学报(自然科学版),1997,20(4):32-36
    [82]朱正福,李长福,何恩山,杨春华.基于马尔可夫链的动态故障树分析方法[J].兵工学报,2008,29(9): 1104-1107
    [83]柳新民,邱静,刘冠军.BIT系统的三态马尔可夫模型分析[J].国防科技大学学报,2004,26(1):84-88
    [84]陈云翔.可靠性与维修性工程[M].国防工业出版社, 2007.
    [85] Charles E. Ebeling. Introduction to Reliability and Maintainability Engineering [M]. McGraw-Hill Education, 2008
    [86] Zadeh L A. From Circuit Theory to System Theory [J]. Proc. IRE, 1962, 50(5): 541-865
    [87] Holger Kantz, Thomas Schreiber. Nonlinear Time Series Analysis [M]. Cambridge University Press, 1997
    [88]胡德文.非线性与多变量系统相关辨识[M].国防科技大学出版社, 2001
    [89]王惠文.偏最小二乘回归方法及应用[M].国防科技出版社,北京,1996
    [90] Richard O D, Peter E H, David G S. Pattern Classification [M]. John Wiley & Sons. Inc., 2001
    [91] Aapo H, Juha K, Erkki O. Independent Component Analysis [M]. John Wiley & Sons. Inc., 2001
    [92] Lee T W, Lewicki M S,Sejnowski. ICA mixture models for unsupervised classification of non-gaussian sources and automatic context switching in blind signal separation [J]. IEEE Trans. Pattern Recognition and Machine Intelligence, 2000,22(10):1-12
    [93] Scholkopf B, Smola A, et al. Kernel Principal Component Analysis [C]. Proceeding of ICANN` 97. LNCS, Springer, 1997: 583-589
    [94] Scholkopf B, Smola A, et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 10:1299-1319
    [96]刘杰,王普,刘炳章.最大熵试验法及其应用[J].自动化学报,2007,33(11):1226-1229
    [97]杨杰,胡德秀,吴中如.基于最大熵原理的贝叶斯不确定性反分析方法[J].浙江大学学报(工学版), 2006,40(5):810-816
    [98]童玲,陈光衤禹. .测量数据处理中的Bayes理论与最大熵方法[J].电子科技大学学报,2007,36(1):78-80
    [99] Darroch J N, Ratcliff D. Generalized Iterative Scaling for Log-Linear Models[J]. Ann. Math. Statist, 1972,43(5):1470-1480
    [100] Berger A, Della Pietra V J, Della Pietra S A. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996, 22(1):39-71
    [101] Nancy G Leveson. Software Safety in Embedded Computer Systems [J]. Communications of the ACM,1991,34(2):34-46
    [102] Anderson E, Katwijk J, Zalewski J. New Method of Improving Software Safety in Mission Critical Real-Time Systems [C]. Proc. 1999 International System Safety Conference, Orlando, Florida , 1999
    [103] Wika, K J, Knight J C. On The Enforcement of Software Safety Policies [C]. Proceedings of the 10th Annual Conference on Computer Assurance, Gaithersburg, MD, 1995:83-93
    [104] Wika, K J, Safety Kernel Enforcement of Software Safety Policies [D]. Department of Computer Science, University of Virginia, Charlottesville, VA, 1995
    [105] Totel E, Blanquart J P, Deswarte, Y, Powell, D. Supporting Multiple Levels of Criticality[C]. IEEE Symposium on Fault Tolerant Computing Systems, Munich, 1998
    [106] Furth B, Halang W A. A Survey of Real-Time Computing Systems [J]. International Journal of Mini and Microcomputers, 1994, Vol.16, No.3: 78-83
    [107] Townend P, Jie X and Munro M. Building Dependable Software for Critical Applications: Multi-Version Software Versus One Good Version [C]. Proceedings of the Sixth International Workshop on Object-Oriented Real-Time Dependable Systems, 8-10 Jan. 2001, 103-110
    [108] Parnas D L, Asmis G J K, Madey J. Assessment of Safety-Critical Software in Nuclear Power Plants [J]. Nuclear Safety, 1991,32(2): 189-198
    [109] Simpson A C. Safety through security [D]. Programming Research Group, Oxford University Computing Laboratory, 1996
    [110] Anderson E, Katwijk J, Zalewski J. New Method of Improving Software Safety in Mission-Critical Real-Time Systems [C]. Proc. 17th Int'l System Safety Conf., System Safety Society, Unionville, VA, 1999, pp. 587-596.
    [111] Rushby J. Kernels for Safety [J]. In Safe and Secure Computing Systems, 1997, 310-320
    [112]杨仕平,桑楠,熊光泽.基于Ethernet技术的安全关键实时网络[J].软件学报, 2005,16(1):121-134
    [113]杨仕平,桑楠,熊光泽.安全关键软件的防危性测评技术研究[J].计算机学报, 2004,27(4):442-450
    [114]王志颖.飞行器电子系统地面测控软件设计[A].中国工程物理研究院科技年报,2001
    [115] Liu C L, Layland J W. Scheduling Algorithm for Multiprogramming in a Hard Real Time Environment [J]. Journal of the ACM, 1973, 20(1): 40-61
    [116] Sha L, Sathaye S S. A Systematic Approach to Designing Distributed Real-Time Systems [J]. IEEE Computer, 1993, 26(9):68-78
    [117] Stankovic J, Spuri M, Natale M D et al. Implication of Classical Scheduling Results for Real-Time Systems [J]. IEEE Computer, 1995, 28(6):16-25
    [118] Burns A. Scheduling hard real-time system: a review [J]. Soft. Eng. Jour., 1991, 5: 116-128
    [119] Wang Y, Saksena M. Scheduling fixed priority tasks with preemption threshold [C]. In Proc. of IEEE Real-Time Computing Systems and Applications Symposium, 1999:328-335
    [120] Lehoczky J P, Sha L, Ding Y. The RM Scheduling Algorithm: Exact Characterization and Average Aase Behavior [C]. In: Proc. of the 10th IEEE Real-Time Systems Symp., 1989:166-171
    [121] Bini E, Buttazzo G C, Giuseppe M. Rate monotonic scheduling: the hyperbolic bound [J]. IEEE Transactions on Computers, 2003, 52(7): 933-942
    [122] Sha L, Rajkumar R, Lehoczky J P. Priority inheritance protocols: An approach to real-time synchronization [J]. IEEE Transactions on computers, 1990, 39(9): 1175-1185
    [123] Buttazzo G C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Application. Kluwer Academic Publisher, 1997
    [124] Baruah S, Haritsa J. Scheduling for Overload in Real-Time Systems [J]. IEEE Transactions on Computers, 1997, 40( 9):1034-1039
    [125] ISO 11898. Road Vehicles-Interchange of Digital Information - Controller Area Network for High Speed Communication [S]. 1994
    [126] Tindell KW, Hansson H, Wellings A J. Analyzing real-time communications: Controller area network [J]. Real-Time Systems Symposium . 1994:259-263.
    [127] Leen G, Heffernan D. A new time triggered controller area network [J]. Microprocessors and Microsystems, 2002, 26:77-94
    [128] IEEE 802.1Q. IEEE Standard for Local and Metropolitan Area Networks: Virtual Bridge Local Area Networks. 1998
    [129] Lann G, Riviere N. Real-time communications over broadcast networks: the CSMA/DCR and the DODCSMA/CD protocols [A]. Technical Report 1863, INRIA, March 1993
    [130] Eidson C J. The Application of IEEE 1588 to Test and Measurement Systems [EB/OL]. http: //www. lxistandard.org/papers/paperOverview/, 2005
    [131]任江涛,蔡远文.新一代总线技术LXI在航天测试领域的应用[J]航天控制,2005,9:79-83
    [132]张丽花,马捷中,翟正军.基于VXI、PXI和LXI的网络化混合测试系统设计[J].计算机测量与控制, 2008,16(8):1059-1061
    [133] IEEE 1588-2002. Standard for A Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. 2002
    [134] Tindell K,Burns A,Wellings A J. Calculating Controller Area Network (CAN) Message Response Times [J]. Control Engineering Practice, 1995, 3(8): 1163-1169
    [135]王志颖.一种嵌入式测试装置的设计与实现[A]. GF报告,ZW-E-2007307
    [136]王志颖.地面测控系统“三化”技术研究[A]. GF报告,ZW-E-2008025(总装GF报告编号GF-A0115485)
    [137]王志颖,马卫东.一种PL/M语言到C语言自动翻译器的设计与实现[J].计算机工程与应用, 2004, 40(30):109-112
    [138] Ma Weidong,Wang Zhiying. An Embedded Web Services Framework and Data Representation for Distributed Testing Environment [C]. The 8th International Conference on Electronic Measurement and Instruments,2007,8:2580-2583
    [139]王志颖,马卫东,熊光泽.面向安全关键系统的实时数据处理软件设计[J].计算机工程与设计,2006, 27(2):201-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700