低原子序数元素能量色散X荧光仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线荧光光谱仪的不断完善和发展所带动的X射线荧光分析技术已被广泛用于冶金、地质、矿物、石油、化工、医疗、刑侦、考古等诸多部门和领域。本人从构成低原子序数元素能量色散X荧光仪的几个关键问题如探测器、分析电路、稳定高压电源、标准样品数据库、谱数据处理、系统软件设计以及整机的研制等入手,以国土资源部“十五”地质调查项目为依托、充分吸收已有X荧光分析技术的精华、积极引进IT技术、微电子技术以及数字信号处理技术,并针对已有X荧光分析技术存在的不足之处进行深入研究。完成了低原子序数元素能量色散X荧光仪的研制。
     在X荧光分析仪器中,X射线探测器的稳定性、能量分辨率、X射线发生器的稳定性以及“源-样-探”的几何位置关系是影响能量色散X荧光分析仪性能关键。本文论述的研制方案中,采用了电致冷Si-PIN半导体探测器,X光管作为X射线源,避免了同位素激发源可能对环境造成的污染;设计了真空测量系统,能显著提高分析仪器对低原子序数元素的探测效率;研制了采用ARM7微处理器作为核心控制芯片和以太网作为通信手段的多道脉冲幅度分析器,具有功耗低、信噪比高、稳定性好、通讯速度快等特点;设计了多道谱处理软件,能有效识别特征峰,可以进行标定测量,分析测量,长稳测试等工作,并采用了模式识别技术实现对样品进行自动分类测试,同时设计了Linux平台的数据处理软件适用于安全性可靠性更高的场合。
     由于低原子序数元素能量色散X荧光仪采用的电致冷半导体探测器能在工业现场或野外条件下工作,能达到室内(Si)Li半导体探测器的水平,并采用了微型X光管,以及成熟的谱处理技术,因此仪器在体积、重量、分析精度均能满足现场或实验室条件的分析测试要求。随着矿产开发、油气勘探的不断发展,以及世界环保要求的不断提高,该仪器将会在矿产勘探、油气勘探、选矿、冶炼、工业产品有害物质检测等领域发挥重要作用,带来巨大的社会效益和经济效益。
Having been droved by the successive improvement and development of XRF spectrometer, XRF(X-Ray Fluorescence) Spectrometry is widely used in many departments and fields, such as metallurgy, geology, minerals, petroleum, chemical, medical, criminal investigation, archaeological and so on. From the key technical points of low-Z elements energy X-ray fluorescence Spectrometry such as detector, MCA, stable high power, database of standard samples, processing of the spectrum, design of system software and research of the whole instrument, the researches were carried on deeply according to the shortages of the technique of X-ray fluorescence Spectrometry existed. And the researches figured as support of "Five-Year Plan" Geological Survey scientific project of Ministry of Land and Resources, references of the key technique of X-ray fluorescence Spectrometry existed and intervening of information technique, micro-electronics technique and digital signal processing technique.
     The performances of EDXRF analyzer are mainly influenced by the stability and energy resolution of X-ray detector, the stability of X-ray generator and the geometric relationship of location of the Source-Sample-Detector in X-ray spectrometer. The research scheme used thermoelectrically cooled Si-PIN X-ray detector and took X-ray tube as the source of X-ray, which can effectively avoid the pollution of isotope excitation source to environment. Vacuum measurement system was designed to significantly improve the detecting efficiency of analytical instrument for low-Z elements. The MCA was developed in this paper. It was consist of the soul part of ARM7 MCU and the communication means by Ethernet, and had many features, such as low-power, high-SNR, excellent stability, high-speed data exchange, etc. Multi-channel spectrum processing software also was designed, which can recognizes characteristic peaks effectively and possesses functions of calibration, analysis and test of stability, etc. The automatically classification analysis of sample was implemented by Pattern-Recognition technique. At the same time, the software on Linux platform was developed for more safe and stable field.
     Low-Z elements Energy-XRF spectrometer, adopting electric refrigeration semiconductor detector, can be used in industrial or open field. It can reached the performances of indoor (Si)Li semiconductor detector. Micro X-ray tube was applied in this spectrometer and spectrum processing technology was mature, so in the condition of scene or experimental laboratory, this instrument can meets the need of analysis and measurement in many aspects, such as bulk, weight and analytical accuracy. With the development of exploiting minerals and oil gas, and the increasing request of world environment protection, this type of instrument may plays an important role in the area of mineral and oil exploration, mineral separating, smelt metal and detecting noxious constituent of manufactured products, and brings in huge economic benefit and social benefit yet.
引文
[1]杨明太,X射线荧光光谱仪的现状,核电子学与探测技术,2006年6期
    [2]曹利国,能量色散X射线荧光方法,成都科技大学出版社,1998
    [3]贾文懿,核地球物理的理论与实践,四川大学出版社,2001
    [4]复旦大学、清华大学、北京大学,原子核物理实验方法(上),原子能出版社,1981
    [5]Amptek Inc.Operating Manual XR-100CR X-ray Detector System and PX2CR Power Supply/Shaper[M].Revision 13,2003.
    [6]王芝英,核电子技术原理,原子能出版社,1989
    [7]程业勋,我国核地球物理的发展与展望 物探与化探 2002年8月 第26卷第4期
    [8]章晔、葛良全等,核地球物理学的X射线荧光技术在我国固体矿产资源中的研究与应用 地球物理学报1989年7月 第32卷第4期
    [9]葛良全,海底X射线荧光探测系统的研制 成都理工学院学报2001年1月第28卷第1期
    [10]赖万昌等,新一代高灵敏度手提式X荧光仪的研制 物探与化探 2002年8月第26卷第4期
    [11]M.F.Arnett,M.Coulombe等TCP/IP实用技术指南,清华大学出版社,1997
    [12]周建斌,USB接口技术在核谱测量系统中的应用,核电子学与探测技术,2002年5期
    [13]周建斌,C8051F020MCU在核谱测量系统中的应用研究,核电子学与探测技术,2005年5期
    [14]周建斌,基于微机打印接口的1024道分析系统的研制,核电子学与探测技术,2000年2期
    [15]周立功,ARM嵌入式系统基础教程,北京航空航天大学出版社,2005
    [16]周立功,ARM嵌入式系统实验教程(一),北京航空航天大学出版社,2004
    [17]田泽,嵌入式系统开发与应用实验教程,北京航空航天大学出版社,2005
    [18]田泽译,ARM SoC体系结构,北京航空航天大学出版社,2003
    [19]杜春雷,ARM体系结构与编程,清华大学出版社,2003
    [20]王敏,ARM在核数据采集系统中的应用与软件设计,核电子学与探测技术,2006年3期
    [21]赖万昌,新型高灵敏度XRF分析仪的研制与应用,核技术,2003.11
    [22]任家富、周建斌等,基于DSP技术的多道脉冲幅度分析器的设计,核电子学与探测技术,2006年5期
    [23]陆昆,电子设计技术,电子科技大学出版社,1997
    [24]马忠梅 单片机的C语言应用程序设计,北京航空航天大学出版社,2001
    [25]李华,MCS-51系列单片机实用接口技术,北京航空航天大学出版社,1996
    [26]格伦F.偌尔,辐射探测与测量,原子能出版社,1984
    [27]张开春,X荧光谱与人工神经网络相结合对陶片产地识别的研究,核技术,2006.11
    [28]曹利国,核地球物理勘探方法,原子能出版社,1991
    [29]朱明亮,能量色散X荧光分析仪测定生铁样品,理化检验.化学分册,2003.4
    [30]王克军,基于单片微机的核能谱数据采集系统研究,核电子学与探测技术,2004年4期
    [31]张金山,Visual C++5.0易学活用,四川大学出版社,1997
    [32]官章全,Visual C++6.0类库大全,电子工业出版社,1999
    [33]王小琴,一种新型水泥样品X荧光分析仪的研制,核电子学与探测技术,2002年2期
    [34]周建斌,全谱测量中的一种计算机稳谱方法,核电子学与探测技术,1998年3期
    [35]任家富、周建斌等,EDXRF便携式高精度X荧光分析仪,核技术,2006.9
    [36]扬全玖等,基于AVR单片机与USB接口的高速多道核数据采集系统,核技术,2006.4
    [37]吕彦凤,能量色散X荧光法快速测定高炉渣中的硅钙镁,中国冶金,2006.11
    [38]马国立,基于Windows操作系统的X荧光光谱分析软件,核技术,2005.1
    [39]丁卫撑,USB总线技术在现场X荧光分析仪中的应用,核电子学与探测技术,2004年5期
    [40]王颖,能量色散X荧光分析仪分析钒钛烧结矿中的SiO2、CaO和TFe,理化检验.化学分册,2004.8
    [41]李向春,MDX1060型X荧光分析仪的应用与实践,水泥工程,2004.2
    [42]马英杰,小型化管激发X射线荧光仪的研制,成都理工大学学报,2004.1
    [43]于晓林,岛津μEDX微区能量色散型X射线荧光光谱仪,现代仪器,2003.5
    [44]王联强,美国ASOMA仪器公司台式X射线荧光仪介绍,检验检疫科学,2003.4
    [45]吴永鹏,新一代多道X射线荧光分析仪的研制,分析测试技术与仪器,2003.1
    [46]范永开,Linux应用开发技术详解,人民邮电出版社,2006
    [47]齐亮译,C++GUI Qt3编成,北京航空航天大学出版社,2006
    [48]王小琴,MODBUS通讯协议在现场水泥成分X荧光分析仪中的应用,核电子学与探测技术,2003年6期
    [49]周蓉生,小型化管激发X荧光仪的研制及初步应用,中国地质,2001.5
    [50]童运福,多种矿石多元素X荧光分析技术,核技术,2000.9
    [51]Milner,Simon,XRF analysis of aluminium alloys,Aluminium International Today,2006.9
    [52]Shimizu,Kazuaki,analyzer for XRF analysis of light elements,American Laboratory,2006.10
    [53]Aiginger H.Historical Development and Principles of Total Reflection X-Ray Fluorescence Analysis[J].Spectrochim Actra,1991,46B(10):1313.
    [54]Klockenkamper R.TXRF Workshop at Dortmund,Federal Republic of Germany[J].Spectrochim Actra,1989,44B(5):433.
    [55]Alder I.X-ray Emission Spetrography in Geology[Z].Elsevier Publishing Co.N.Y,1966,258.
    [56]Birks L S.X-ray Spectrochemical Analysis[Z].Ed2,Interscience Publishers.N Y,1969,190.
    [57]Olwen Williams-Thorpe,PhilipJ.Potts C.Wbb.Field-Portable Non-Destructive Analysis of Lithic Archaeological Samples by X-ray Fluorescence Instrumentation using a Mercury Iodide Detector:Comparison with Wavelength-Dispersive XRF and a Case Study in British Stone Axe Provenancing[J].Journal of Archaeological Sciecnce,26(1999)215-237.
    [58]Li Guohui,Fan Shouzhong.Direct determination of 25 elements in dry powdered plant materials by X-ray fluorescence spectrometry[J].Journal of Geochemical Exploration.55(1999) 10-12.
    [59]R.Al-Merey,J.Karajou,H.Issa.X-ray fluorescence analysis of geological samples:exploring the effect of sample thickness on the accuracy of results[J].Applied Radiation and Isotopes.62(2005)501-508.
    [60]Amptek Inc.X-ray detector,Gamma ray detector,Charge sensitive amplifier,et.al[EB/OL].(2005-6-22)[2006-4-2].http://www.amptek.com/index.html.
    [61]Amptek Inc.The XR-100CR and the Gold Ibex from Akrotiri,Greece[EB/OL].(2005-4-1)[2006-4-2].http://www.amptek.com/art.html.
    [62]AMPTEK INC,OPERATING MANUAL XR-100CR X-RAY DETECTOR SYSTEM,2003
    [63]贾文懿,核地球物理仪器,原子能出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700