用户名: 密码: 验证码:
面向三维模型检索的特征提取算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维扫描设备和三维建模软件的发展,三维模型的数量快速增长并且广泛地应用于各个领域中,研究一套高效的三维模型检索系统势在必行。在三维模型检索系统中,特征提取算法是其关键技术。三维模型一般被划分为两种类型:刚体三维模型和非刚体三维模型,相应地形成了刚体三维模型库和非刚体三维模型库,它们分别应用于某些特定领域,然而更多的应用需要既包含刚体三维模型又包含非刚体三维模型的通用三维模型库。
     三维模型检索主要包括模型标准化预处理、特征提取和相似度计算三个步骤。本论文主要研究特征提取算法,从刚体三维模型特征提取、非刚体三维模型特征提取、通用三维模型特征提取三个方面展开并提出解决算法。具体问题包括:如何对有空洞的刚体三维模型进行特征提取;如何解决非刚体三维模型特征提取过程中尺度变化问题;如何提取特征来提高通用三维模型的检索准确率;本文的主要贡献如下:
     (1)对于刚体三维模型库检索,提出了融合特征提取算法,这种算法联合使用视图特征和函数变换特征,提高了刚体三维模型的检索准确率。视图特征是基于三维模型的投影图像来获取的,用来提取三维模型的外轮廓信息;函数变换特征用来提取三维模型的内部结构特征,通过径向积分函数变换和球面积分函数变换分别从径向和轴向来提取特征,这样可以充分描述三维模型,而且对于有空洞的三维模型也可以正确检索。
     (2)对于非刚体三维模型库检索,提出了多尺度局部特征提取算法。首先在多个尺度上提取三维模型的关键点,为了提高关键点的可靠性我们通过计算关键点的重复度来最终确定关键点的位置,在多个尺度上检测关键点是为了防止在固定尺度上关键点遗漏的问题,使用主轴曲率比例来自动选择多个尺度。然后,在关键点处提取热核信号特征,热核信号对于平移和旋转具有不变性,但是对于尺度变化是敏感的,我们提出把热核信号纳入到特征袋框架中。在特征袋框架中尺度问题转化成平移问题,通过直方图量化技术来解决平移问题,从而解决了热核信号的尺度敏感问题。
     (3)对于通用三维模型库检索,提出了基于拓扑和视图的特征提取算法。对于通用三维模型检索需要同时考虑刚体三维模型和非刚体三维模型的特点。我们联合使用拓扑特征和视图特征,拓扑特征用多分辨率Reeb图来表示,视图特征是从空间结构环图像获取;多分辨率Reeb图描述三维模型的整体拓扑结构,空间结构环图像描述三维模型的局部特征。我们从三维模型的关键拓扑点处捕获三维模型的二维图像,关键拓扑点是基于三维模型本身的形状结构获取的,克服了传统算法渲染图像时增加的额外约束条件;视图特征比起传统算法的低维度的几何特征可以更好地描述三维模型的局部信息。
     (4)为了验证本文算法有效性,我们设计并实现了三维模型检索原型系统。通过在该系统上的大量实验表明,本文提出的特征提取算法能够提高三维模型的检索准确率。
With the development of3D scanners and modeling software, the number of3D models increases quickly and3D models play important role in many fields, so a high-efficiency3D model retrieval system is necessary. Feature extraction algorithm is the key technology in the3D model retrieval system.3D models are generally classified into two classes:rigid3D models and non-rigid3D models. The rigid3D model databases and non-rigid3D model databases are produced, and they are used in specific fields. There are many applications needing generic3D model databases, which contain both rigid and non-rigid3D models.
     3D model retrieval mainly contains three steps:model preprocessing, feature extraction and similarity computation. This thesis mainly focuses on the feature extraction, which is carried out through three aspects:rigid3D model feature extraction, non-rigid3D model feature extraction and the generic3D model feature extraction. Our study contains three aspects:how to extract the feature of rigid3D modes with cavity, how to make the feature of non-rigid3D model invariant to scale and how to improve the retrieval accuracy of generic3D model. The main contributions of this thesis are as follows:
     (1) For rigid3D model retrieval, we propose an integration feature extraction algorithm, which is based on view and transform-based features. The view-based features are from projection images, we extract the exterior contour information of3D models by using view features. We extract the interior structure features of3D models based on transformation. Through the radial integration transformation and the spherical integration transformation, we can extract features from both radial direction and axial direction to fully represent the3D model. We can also retrieve rigid3D model with cavity correctly.
     (2) For the non-rigid3D model retrieval, we propose a multi-scale local feature extraction algorithm. First, we detect keypoints at multi-scale. In order to improve the reliability of the keypoints, we compute the multiplicity of the keypoints, and we define the final keypoints according to their multiplicity. The purpose of keypoints detection at multi-scale is to aoid skipping any keypoints. We use principal axis curvature ratio to automaticlly select the suitable scales. Then, we extract heat kernel signature features from the keypoints. The heat kernel signatures are invariant to translation and rotation, but they are sensitive to scale variation. Finally, the heat kernel signatures are put into the bag-of-features framework. In the framework, the scale problem is changed into the translation problem, we use histogram quantization technology to solve it.
     (3) For the generic3D model retrieval, we propose a hybrid feature descriptor, which combines the topological features and the view-based features. We use the multiresolution Reeb graph to represent the topological features and the Spatial Structure Circular Descriptor (SSCD) images to represent the view-based features. The multiresolution reeb graph can represent the global features, and the SSCD images can represent the local features. We render images from topological points, which can overcome the constraint condition. Furthermore, the view-based features have better descriptive power than low-dimension geometrical features, which are used by traditional3D retrieval methods.
     (4) We design and implement the3D model retrieval system to verify our method. The experimental results show that our feature extraction methods can improve the retrieval accuracy of3D model.
引文
[1]Meizhu Liu, Baba C. Vemuri, Shun I. Amari and Frank Nielsen, Shape Retrieval Using Hierarchical Total Bregman Soft Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2012, Vol.34, No.12, Page(s):2407-2419.
    [2]Johan W. H. Tangelder, Remco C. Veltkamp, A survey of content based 3D shape retrieval methods, Multimedia Tools and Applications 2008, Vol.39, No.3, Page(s): 441-471.
    [3]冷彪,三维模型检索的特征描述和相关性反馈算法的研究.[博士学位论文].清华大学,2009.
    [4]王家乐,基于内容的三维模型检索关键技术研究.[博士学位论文].上海交通大学,2008.
    [5]Boon-Seng Chew, Lap-Pui Chau, Ying He, Dayong Wang, and Steven C. H. Hoi, Spectral Geometry Image:Image Based 3D Models for Digital Broadcasting Applications, IEEE Transactions on Broadcasting 2011, Vol.57, No.3, Page(s): 636-645.
    [6]M. Yu, I. Atmosukarto, W.K. Leow, Z. Huang, R. Xu,3D model retrieval with mo-rphing-based geometric and topological feature maps, IEEE Conference on Computer Vision and Pattern Recognition (CVPR2003), Page(s):656-658.
    [7]权胜赫,基于形状特征三维模型检索的一些关键技术实现研究.[博士学位论文].吉林大学,2007.
    [8]S.Vyshali, M.V.Subramanyam, Dr.K.Soundara Rajan, Topology coding in spectral domain for effective medical image retrieval, International Journal of Engineering Science and Technology 2011, Vol.3, No.11, Page(s):7884-7890.
    [9]Y. Gao, J. Tang, H. Li, Q. Dai, View-based 3D model retrieval with probabilistic graph model, Neurocomputing 2010, Vol.73, No.10-12, Page(s):1900-1905.
    [10]崔晨肠,三维模型检索中关键技术的研究.[博士学位论文].浙江大学,2007.
    [11]R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape distributions, ACM Transa-ctions on Graphic 2002, Vol.21, No.4, Page(s):807-832.
    [12]Yong Tang, Xuefan Zhang,3D model retrieval based on integer medial axis skeleton, Journal of Image and Graphics 2008, Vol.13, No.2, Page(s):302-306.
    [13]D.Y. Chen, X.P. Tian, Y.T. Shen, M. Ouhyoung, On visual similarity based 3d model retrieval, Computer Graphics Forum 2003, Vol.22, No.3, Page(s):223-232.
    [14]E. Paquet, M. Rioux, Nefertiti:A Query by Content Software for Three-Dimensional Models Databases Management, IEEE International Conference Recent Advances in 3D Digital Imaging and Modeling 1997, Page(s):345-352.
    [15]Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser, A Benchmark for 3D Mesh Segmentation, ACM Transactions on Graphics 2009, Vol.28, No.3, Page(s):307-316.
    [16]Susumu Endo, Takayuki Baba, Shuichi Shiitani, Yusuke Uehara, Daiki Masumoto, Shigemi Nagata, Shape based 3D model retrieval without query. ACM International Conference on Image and Video Retrieval (CIVR 2007), Page(s):218-225.
    [17]D. V. Vranic:Content-based classification of 3D-models by capturing spatial charact-eristics. http://merkur01.inf.uni-konstanz.de/CCCC/.
    [18]P. Shilane, T. Funkhouser, Distinctive regions of 3d surfaces. ACM Transactions on Graphics 2007, Vol.26, No.2, Page(s):103-112.
    [19]A. D. Bimbo, P. Pala, Content-based retrieval of 3D models. ACM Transactions on Multimedia Computing, Communications and Applications 2006, Vol.2, No.1, Page(s):1-24.
    [20]C.B. Akgul, B. Sankur, Y. Yemez, F. Schmitt,3D Model Retrieval Using Probability Density-Based Shape Descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence 2009, Vol.31, No.6, Page(s):1117-1133.
    [21]Yue Gao, Qionghai Dai, Naiyao Zhang,3D model comparison using spatial structure circular descriptor. Pattern Recognition 2010, Vol.43, No.3, Page(s):1142-1151.
    [22]K. Sfikas, I. Pratikakis, T. Theoharis, ConTopo:Non-Rigid 3D Object Retrieval using Topological Information guided by Conformal Factors, ACM SIGGRAPH Symposium Proceedings Workshop on 3D object retrieval 2011, Page(s):25-32.
    [23]Z,Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoue, H.V. Nguyen, R. Ohbuchi, Y. Ohkita, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, D. Vandermeulen, SHREC'11 Track:Shape Retrieval on Non-rigid 3D Watertight Meshes. Eurographics Workshop on 3D Object Retrieval 2011, Page(s):79-88.
    [24]Z. Lian, A. Godil, A feature-preserved canonical form for non-rigid 3D mesh, IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT 2011), Page(s):116-123.
    [25]A. M. Bronstein, M. M. Bronstein, M. Ovsjanikov, L. J. Guibas, Shape Google: geometric words and expressions for invariant shape retrieval, ACM Trans. Graphics (TOG 2011), Vol.30, No.1,Page(s):1-20.
    [26]J.M. Saavedra, B. Bustos, T. Schreck et al, Sketch-based 3D model retrieval using keyshapes for global and local representation, Eurographics Workshop on 3D Object Retrieval 2012, Page(s):1-4.
    [27]Y. Liu, H. Zha, and H. Qin, The generalized shape distributions for shape matching and analysis, IEEE International Conference on Shape Modeling and Applications 2006, Page(s):96-107.
    [28]T. Zaharia and F. Prteux, Shape-Based Retrieval of 3D Mesh Models, IEEE International Conference on Multimedia and Expo (ICME2002), Page(s):207-110.
    [29]M. Ankerst, G. Kastenmuller, H. P. Kriegel, and T. Seidl,3D Shape Histograms for Similarity Search and Classification in Spatial Databases, IEEE Symposium on Advances in Spatial Databases 1999, Page(s):207-226.
    [30]B.K.P. Horn, Extended gaussian images, Proceedings of the IEEE 1984, Vol.72, Page(s):1671-1686.
    [31]Y. Kim, S. Hwang: A Content-Based 3D Graphic Information Retrieval System. Asia Information Retrieval Symposium (AIRS 2006), Page(s):567-573.
    [32]J.L. Shih, C.H. Lee, J.T. Wang, A new 3D model retrieval approach based on the elevation descriptor, Pattern Recognition 2007,Vol.40, Page(s):283-295.
    [33]P. Daras, D. Zarpalas, D. Tzovaras, M. G. Strintzis, Efficient 3D model search and retrieval using generalized 3D radon transforms, IEEE Transactions on Multimedia 2006, Vol.8, No.1,Page(s):101-114.
    [34]H. Laga, H. Takahashi, M. Nakajima, Spherical wavelet descriptor for content based 3D model retrieval, IEEE International Conference on Shape Modeling and Applications 2006, Page(s):15-25.
    [35]D.V. Vranic, Desire:a composite 3d-shape descriptor, IEEE International Conference on Multimedia and Expo (ICME 2005), Page(s):962-965.
    [36]J.L. Shih, H.Y. Chen, A 3D model retrieval approach using the interior and exterior 3D shape information. Multimedia Tools Applications 2009, Vol.43, Page(s):45-62.
    [37]M. Hilaga, Y. Shinagawa, T. Kohmura, Topology matching for fully automatic simi-larity estimation of 3D shapes. ACM SIGGRAPH 2001, Page(s):203-212.
    [38]Gary K. L. Tam, Rynson W. H. Lau, Deformable model retrieval based on topological and geometric signatures, IEEE Transactions on Visualization and Computer Graphics 2007, Vol.13, No.3, Page(s):470-482.
    [39]A. Grigor'yan, Heat Kernel and Analysis on Manifolds, a monograph, AMS/IP Studies in Advanced Mathematics,47,2009. Page(s):1-498.
    [40]J. Sun, M. Ovsjanikov, L. J. Guibas, A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Computer Graphics Forum 2009, Vol.28, No.5, Page(s):1383-1392.
    [41]R. Gal, A. Shamir, D. Cohen, Pose Oblivious Shape Signature, IEEE Transactions on Visualization and Computer Graphics 2007, Vol.13, Page(s):261-271.
    [42]M. Ovsjanikov, Alexander. M. Bronstein, Michael. M. Bronstein, Leonidas J. Guibas, Shape google:a computer vision approach to invariant shape retrieval, IEEE International Conference on Computer Vision Workshops (ICCV Workshops 2009).
    [43]H.Y. Wu, H. Zha, T. Luo, X.-L. Wang, S. Ma, Global and local isometry-invariant descriptor for 3D shape comparison and partial matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR2010), Page(s):438-445.
    [44]M. Reuter, F. E. Wolter, N. Peinecke, Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Computer-Aided Design 2006, Vol.38, No.4, Page(s):342-366.
    [45]Raif M. Rustamov, Laplace-beltrami eigenfunctions for deformation invariant shape representation, Eurographics Symposium on Geometry Processing 2007, Page(s): 225-233.
    [46]T.F. Ansary, M. Daoudi, J.P. Vandeborre, A bayesian 3-d search engine using adaptive views clustering. IEEE Transaction on Multimedia 2007, Vol.9, No.1 Page(s):78-88.
    [47]R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local visual features for shape-based 3D model retrieval. IEEE international Conference on Shape Modeling and Applications (SMI 2008), Page(s):93-102.
    [48]P. Papadakis, I. Pratikakis, T. Theoharis, S. Perantonis, PANORAMA:a 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. International Journal of Computer Vision (IJCV2009), Vol.89, Page(s):177-192.
    [49]D. Aouada, D.W. Dreisigmeyer, H. Krim, Geometric modeling of rigid and non-rigid 3D shapes using the global geodesic function, IEEE International Conference on Computer Vision and Pattern Recognition Workshops 2008, page(s):1-8.
    [50]A. Mademlis, P. Daras, A. Axenopoulos, D. Tzovaras, Michael, Combining topological and geometrical features for global and partial 3D shape retrieval, IEEE Transactions on Multimedia 2008, Vol.10, No.5, Page(s):819-831.
    [51]T. Theoharis,3D object retrieval inter-class vs intra-class, Artificial Intelligence Techniques for Computer Graphics 2008, Vol.159, Page(s):55-66.
    [52]P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The princeton shape benchmark, IEEE International Conference on Shape Modeling and Applications 2004, Page(s): 167-178.
    [53]MingKuei Hu, Visual pattern recognition by moment invariants, IRE Transactions on Information Theory 2002, Vol.8, No.1, Page(s):179-187.
    [54]杨育彬,林挥,朱庆,基于内容的三维模型检索综述,计算机学报,2004,Vol.27,No.10,Page(s):1297-1310.
    [55]Pengjie Li, Huadong Ma, Anlong Ming,3D Model Retrieval Using 2D View and Transform-based Features, The Pacific-Rim Conference on Multimedia (PCM 2010), Page(s):449-460.
    [56]A.P. Witkin, Scale-space filtering. In International Joint Conference on Artificial Intelligence, Karlsruhe, Germany 1983, Page(s):1019-1022.
    [57]Yuetian Xu, R. Madison, Robust object recognition using a cascade of geometric consistency filters. IEEE Applied Imagery Pattern Recognition Workshop (AIPRW 2009), Page(s):1-8.
    [58]D.G. Lowe, Object recognition from-local scale-invariant features. IEEE International Conference on Computer Vision (ICCV 1999), Page(s):1150-1157.
    [59]D. G. Lowe. Distinctive image features from scale-invariant key-points, International Journal of Computer Vision (IJCV 2004), Vol.2, No.60, Page(s):91-110.
    [60]J.J. Koenderink, The structure of images. Biological Cybernetics 1984, Vol.50, Page(s):363-396.
    [61]T. Lindeberg, Scale-space theory:A basic tool for analysing structures at different scales. Journal of Applied Statistics 1994, Vol.21, No.2, Page(s):224-270.
    [62]Xiaoming Liu, Ting Yu, Gradient feature selection for online boosting, IEEE International Conference on Computer Vision (ICCV 2007), Page(s):1-8.
    [63]P. Moreels, P. Perona, Evaluation of features detectors and descriptors based on 3D objects, IEEE International Conference on Computer Vision 2005, Vol.1, Page(s):1-8.
    [64]P. Azad, T. Asfour, R. Dillmann, Combining harris interest points and the SIFT descriptor for fast scale-invariant object recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), Page(s):1-6.
    [65]K. Mikolajczyk, and C. Schmid, An affine invariant interest point detector. In European Conference on Computer Vision (ECCV 2002), Page(s):128-142.
    [66]Christopher M. Bishop, Exact calculation of the hessian matrix for the multi-layer perceptron, Neural Computation 1992, Vol.4, No.4, Page(s):494-501.
    [67]V. Blanz, T. Vetter, Face recognation based on fitting a 3D morphable model, IEEE Transactions on Pattern Analysis and Machine Intelligence 2003, Vol.25, No.9, Page(s):1063-1074.
    [68]M. Brown and D.G. Lowe, Invariant features from interest point groups. In British Machine Vision Conference, Cardiff, Wales,2002, Page(s):656-665.
    [69]C. Schmid, and R. Mohr, Local grayvalue invariants for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 1997, Vol.19, No.5 Page(s):530-534.
    [70]Irina M. Harris, Paul E. Dux, Orientation-invariant object recognition:evidence from repetition blindness, Cognition,2005, Vol.95, No.1, Page(s):73-93.
    [71]P. Toft, The Radon Transform:Theory and Implementation. Techn. Univ. Denmark, Lyngby,1996.
    [72]C. Zhang, T. Chen, Efficient feature extraction for 2D/3D objects in mesh representation. IEEE International Conference on Image Processing (ICIP 2009), Vol. 3, No.7-10, Page(s):935-938.
    [73]F. Noo, R. Clack, and M. Defrise, Cone-beam reconstruction from general discete vertex sets using Radon rebinning algorithms, IEEE Transactions on Nuclear Science, 1997, Vol.44, No.3, Page(s):1-20.
    [74]P. Daras, D. Zarpalas, D. Tzovaras, Michael G. Strintzis, Shape matching using the 3D radon transform, IEEE International symposium on 3D Data Processing, Visualization, and Transmission (3DPTV 2004), Page(s):1-8.
    [75]S. Jayanti, Y. Kalyanaraman, K. Ramani, Shape-based clustering for 3D CAD objects: a comparative study of effectiveness, Computer Aided Design 2009, Vol.41, Page(s): 999-1007.
    [76]H. Muller, W. Muller, D. M.G. Squire, S.M. Maillet, T. Pun, Performance evaluation in content-based image retrieval:overview and proposals, Pattern Recognition Letters, Vol.22, No.5, Page(s):593-601.
    [77]H. Laga, M. Nakajima, Supervised learning of salient 2D views of 3D models, The Journal of the Society of Art and Science, Vol.7, No.4, Page(s):124-131.
    [78]M.T. Suzuki, Y. Yaginuma, H. Kodama, A similarity retrieval technique for textured 3D models, IEEE International Conference on Information Retrieval and Knowledge Management 2010, Page(s):131-137.
    [79]H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, Skeleton Based Shape Matching and Retrieval, IEEE International Conference on Shape Modeling 2003.
    [80]N.D. Cornea, D. Silver, X. Yuan, R. Balasubramanian, Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 2005, Vol.21, Page(s):945-955.
    [81]A. Mian, M. Bennamoun, R. Owens. On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. International Journal of Computer Vision (IJCV 2010), Vol.89, No.2-3, Page(s):348-361.
    [82]A. Mian, M. Bennamoun and R. Owens, Keypoint detection and local feature matching for textured 3D face recognition, International Journal of Computer Vision, 2008, Vol.79, No.1, Page(s):1-12.
    [83]M. Toews, Detecting and localizing 3D object classes using viewpoint invariant reference frames, IEEE International Conference on Computer Vision 2007, Page(s): 1-8.
    [84]M. Hunkrajok, W. Skulpakdee, Piecewise surface fitting for 3D image extraction, Proceedings of the World Congress on Engineering and Computer Science (WCECS 2008), Page(s):1153-1156.
    [85]J. Erickson, Finite-resolution hidden surface removal, ACM/SIAM Symposium on Discrete Algorithms 2000, Page(s):901-901.
    [86]P. Eriksson, C. Jimenez, S. Bvhler, D. Murtagh, A hotelling transformation approach for rapid inversion of atmospheric spectra, Journal of Quantitative Spectroscopy and Radiative Transfer 2002, Vol.73, Page(s):529-543.
    [87]Z. Jing, F. Shaowei, C. Hanguo, Optimized nurbs curve and surface fitting using simulated annealing, International Symposium on Computational Intelligence and Design 2009, Page(s):324-329.
    [88]J.D. Erico, Surface fitting using gridfit, Matlab Central File Exchange,2008.
    [89]M.M. Bronstein, I. Kokkinos, Scale-invariant heat kernel signature for non-rigid shape recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010),Page(s):1-8.
    [90]Pengjie Li, Huadong Ma, Anlong Ming, Non-rigid 3D Model Retrieval Using Multi-Scale Local Features. ACM Multimedia 2011, Page(s):1425-1428.
    [91]Alexander M. Bronstein, Michael M. Bronstein, Spatially-Sensitive Affine-Invariant Image Descriptors, European Conference on Computer Vision 2010, Page(s):197-208.
    [92]J. Zhang, R. Kaplow, R. Chen, K. Siddiqi, The McGill Shape Benchmark 2005.
    [93]A. M. Bronstein, M. M. Bronstein, and R. Kimmel, Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing 2006, Vol. 28, No.5, Page(s):1812-1836.
    [94]I. Atmosukarto, Linda G. Shapiro,3D object retrieval using salient views, Multimedia Information Retrieval 2010, Page(s):73-82.
    [95]T. Tung, F. Schmitt, The Augmented Multiresolution Reeb Graph Approach for Content-based Retrieval of 3D Shapes. International Journal of Shape Modeling 2005, Vol.11, No.1,Page(s):91-120.
    [96]M. Chaouch, A. Verroust-Blondet, A novel method for alignment of 3D models. IEEE International Conference on Shape Modeling and Applications 2008, Page(s):187-195.
    [97]W. Ma, F. Wu, M. Ouhyoung, Skeleton extraction of 3D objects with radial basis functions. IEEE International Conference on Shape Modeling 2003, Page(s):207-215.
    [98]Pengjie Li, Huadong Ma, Anlong Ming, Combining Topological and View-based Features for 3D Model Retrieval, Multimedia Tools and Applications 2012.
    [99]P. Daras, A. Axenopoulos, A compact multi-view descriptor for 3D object retrieval. IEEE International Workshop on Content-Based Multimedia Indexing 2009, Page(s): 115-119.
    [100]P. Daras, A. Axenopoulos, A 3d shape retrieval framework supporting multimodal queries. International Journal of Computer Vision (IJCV2010), Vol.89, No.2, Page(s): 229-247.
    [101]G. Aujay, F. Hetroy, F. Lazarus, C. Depraz, Harmonic Skeleton for Realistic Character Animation. ACM SIGGRAPH Symposium on Computer Animation 2007, Page(s):151-160.
    [102]Pengjie Li, Huadong Ma, Anlong Ming, View-based 3D model retrieval with topological structure, IEEE International Conference on Multimedia and Expo (ICME 2011), Page(s):1-6.
    [103]A. Vedaldi, SIFT++:a lightweight C++implementation of SIFT, http://vision.ucla. edu/-vedaldi/code/siftpp/siftpp.html
    [104]Y. Liu, H. Zha, H. Qin. Shape Topics:A Compact Representation and New Algorithms for 3D Partial Shape Retrieval. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2006), Page(s):2025-2032.
    [105]Zhong Wu, Qifa Ke, Jian Sun, Heung-Yeung Shum, A multi-sample multi-tree approach to bag-of-words image representation for image retrieval, IEEE International Conference on Computer Vision 2009, Page(s):1992-1999.
    [106]Pengjie Li, Huadong Ma, Anlong Ming, View-based 3D model retrieval using two-level spatial structure. IEEE International Conference on Image Processing (ICIP 2011), Page(s):3657-3660.
    [107]Y. Cao, C. Wang, Z. Li, L. zhang, Spatial-Bag-of-Features. In:IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), Page(s):3352-3359.
    [108]F. Odone, A. Barla, A. Verri. Building kernels frombinary strings for image matching. IEEE Transactions on Image Processing 2005, Vol,14 No.2, Page(s):169-180.
    [109]H. Ling, K. Okada. An efficient earth movers distance algorithm for robust histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2006), Vol 29, No 5, Page(s):840-853.
    [110]Y. Rubner, C. Tomasi, L. Guibas, The earth mover's distance as a metric for image retrieval, International Conference Shape Modeling and Application 2004.
    [111]N. Frank, P. Paolo, B. Michel, Bregman vantage point trees for efficient nearest neighbor queries, IEEE International Conference on Multimedia and Expo (ICME 2009), Page(s):878-881.
    [112]T.P. Vanamali, A. Godil, H. Dutagaci, In:M. Daoudi, T. Schreck, M. Spagnuolo, I. Pratikakis (eds.), SHREC'10 Track:Generic 3D Warehouse, ACM SIGGRAPH Symposium on 3D Object Retrieval 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700