沂蒙山区典型小流域土壤侵蚀与土地适宜性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地处沂蒙山区的九仙山小流域为研究区域,高分辨率航片影像为主要信息源,以水土保持理论和土地适宜性原理为指导,采用人机交互解译与野外调查验证的方法,对流域环境因子、土壤侵蚀现状及其主要环境影响因子和土地适宜性等进行了系统分析与评价,主要成果如下:
     1.查清了流域环境因子特征
     九仙山小流域呈向南倾斜的簸箕形,高程在96.2m~548.2m之间,流域长度为4.12km,流域宽度为2.19km,流域完整系数为0.53。流域沟壑总长度33.84km,沟壑密度3.75km/km2,沟底平均比降3.40%;地貌以低山丘陵为主;坡度级别以平缓坡和陡坡为主。流域内土壤以棕壤为主,土层厚度、土壤物理特征、土壤化学特征空间变异性较大,土层厚度在10cm~150cm之间,土壤容重为1.26~1.67g/cm3,总孔隙度为30.89%~46.78%,非毛管孔隙度为8.36%~17.32%,土壤有机质在0.93~3.20g/kg之间,氮含量在0.02%~0.04%之间,全磷含量在0.26~1.14g/kg之间,钾含量为81.08~263.53μg/g。流域内高等植物种类66种,优势植物种类有11种,主要植被类型可划分为森林、灌草和作物3个植被型组和7个植物群系。小流域植被覆盖度以中覆盖度为主,比例占流域总面积的45.03%。土地利用类型以林地和耕地为主,分别占流域面积的58.86%、20.87%。
     2.掌握了流域土壤侵蚀特征及其与主要环境因子的关系
     小流域的土壤侵蚀面积为432.20hm2,占总土地面积的47.91%。土壤侵蚀以水力侵蚀为主,侵蚀强度以轻度侵蚀、中度侵蚀为主,局部有强烈和极强烈侵蚀的水土流失特征。土壤侵蚀在空间分布上呈现一定的规律性,轻度侵蚀主要分布在山间斜平地与丘陵区的交界处;中度侵蚀主要集中在流域北侧和西南坡面;强烈侵蚀和极强烈主要分布海拔较高、坡度较大的坡面上,呈现零星分布。
     土壤侵蚀与土地利用、坡度、植被盖度关系密切。在坡度等环境因子相似的情况下,灌木林地、荒草地的土壤侵蚀情况比防护林的土壤侵蚀情况严重,而整修的旱梯田要好于水浇地、用材林等土地利用类型;从坡度因子看,15~25°坡度等级区域,土壤侵蚀面积最大。在植被盖度方面,整体表现为土壤侵蚀强度随植被覆盖度的增加而减少。
     3.评价了小流域的土地适宜性
     小流域土地以中等适宜级土地和勉强适宜级土地为主,面积分别为397.34hm2、282.95hm2 ,多分布于防护林这种土地利用类型,有少量的高度适宜级土地(70.77hm2),大多分布在水浇地区域,而不适宜级土地最少(55.34hm2),主要分布在裸岩石砾地。通过土壤侵蚀对土地适宜性的影响分析,受土壤侵蚀影响较大的土地为中等适宜级土地及勉强适宜级土地中的极强烈侵蚀区域,应当重视这些区域的土壤侵蚀防治工作。
     4.实现了小流域三维模拟
     在目前的流域水土流失监测及土地适宜性评价的研究中,大多以缺乏空间位置立体感的平面专题图形式进行展示。本文以小流域数字高程模型、航空像片和土壤侵蚀与土地适宜性等相关图层为数据源,对小流域进行了三维模拟,更加直观展示小流域地形、土壤侵蚀和土地适宜性特征,为小流域水土流失监测、治理以及流域规划提供更为直观的依据。
     通过对流域环境因子、土壤侵蚀及土地适宜性特征的调查,分析了小流域存在的问题,建议适当调整土地利用结构,结合气候特点及地形条件,增加灌木林地和荒草地的植被覆盖度,适当种植风景观赏类树种,丰富小流域整体色彩度,整修流域内谷坊和低标准梯田,部分坡面进行坡改梯,并进一步优化下垫面配置。
This research has chosen Jiu Xian Shan watershed in the Yi Meng mountainous area as the study region. 0.25m high resolution images is the main information sources. Use the theory of soil and water conservation, the principle of land suitability as guidance, through the methods of man-machine interaction interpretation and investigation in the open air, environmental factors of watershed, soil erosion situation, the relationship between the environmental factors and soil erosion, land suitability have been analyzed and evaluated. And the main results are as follows:
     1. The environmental features of watershed is expounded.
     The watershed is like a dustpan form north to southward, the elevation of watershed is between 96.2m and 548.2m, watershed length is 4.12km, and the width is 2.19km, integrity coefficient of watershed is 0.53. The total length of the gully in watershed is 33.84km, gully density is 3.75km/km2, the average ditch slope is 3.40%; landscape is mainly in hilly, the landforms is mainly gentle and steep slope gradient level. Brown soil is the main soil,soil depth, soil physical characteristics and soil chemical characteristics is spatial variability.Soil layer thickness is between 10cm and 150cm, the soil bulk density is between 1.26 and 1.67g/cm3, total porosity is between 30.89% and 46.78%, non-capillary porosity is between 8.36% and 17.32%, soil organic matter is between 0.93 and 3.20g/kg, nitrogen content is between 0.02% and 0.04%, phosphorus content is between 0.26 and 1.14g/kg, potassium content is between 81.08 and 263.53μg/g. There are 66 species of higher plant in the watershed, 11 species is the dominant plant species, vegetation types can be divided into forest, shrub and grass.Vegetation coverage is main middle coverage, the proportion is 45.03% of the total area. Forest and arable land is the main land use, accounting for 58.86%, 20.87%.
     2. The situation characteristics of soil erosion and its impact factorare is grasped.
     The area of soil erosion in wastershed is 432.20hm2, accounting for 47.91% of total land area. The watershed is water-eroded in the soil erosion primarily, mild erosion and moderate erosion are is the main soil erosion intensity, intense and extremely strong erosion are in Local area. The spatial distribution of soil erosion shows some regularity, slight erosion mainly in the junction of plains and hilly mountain slope area; moderate erosion mainly in the north and south basin slope; strong and very strong erosion mainly in the higher elevations.
     Soil erosion is close to the land use, slope and vegetation cover.In circumstances similar slope factors, Shelter is better than shrub land and grassland, the refurbishment of the drought better than the irrigated terraces, timber and other land use types; under the influence of variety offactors,15-25 slope rating region is the largest area of soil erosion. For vegetation cover, the intensity of soil erosion will reduce with the vegetation cover increases.
     3. The land suitability of watershed is evaluated.
     The land of watershed is mainly medium appropriate level land and barely suitable level land, the area are 397.34hm2 and 282.95hm2, mainly distributed in shelter, and it have a small amount of highly appropriate level land(70.77hm2), mostly in irrigated areas, not suitable level land is the least, the area is 55.34hm2, mainly in the barren lands. Through soil suitability analysis, influenced by soil erosion the most is the middle class and the very strong level of land erosion in marginally suitable land area. And we should pay attention to soil erosion control work of these areas.
     4. The three-dimensional simulation of small watershed has been come ture. In the current study of soil Erosion monitoring and evaluation of land suitability, often use thematic maps, but lack of three-dimensional spatial.Use the digital elevation model, aerial photographs, soil erosion and land suitability rank correlation as the data source layer, does the three-dimensional simulation for the wateshed, and more intuitive display of characteristics about the small watershed topography, soil erosion and land suitability.
     After the survey of watershed nvironmental factors, soil erosion and land suitability, and analyzes the problems of watershed, propose to adjust land use structure, combined with climate and terrain conditions, increased vegetation coverage of shrub land and grassland, appropriate increase landscape ornamental plant species, rich color degrees of the whole watershed, repair the watershed Gufang and low standards of terraces, change part of the terraced slope, and further optimize the land surface configuration.
引文
白淑英,张树文,宝音阿拉坦图雅.遥感和GIS在土地适宜性评价研究中的应用—以呼和
    浩特武川县为例[J].水土保持学报,2003,17(6):15-26
    卜兆宏,唐万龙,杨林章等.水土流失定量遥感方法新进展及其在太湖流域的应用[J].土壤学报,2003,40(1):1-9
    蔡建勤.从生态经济学角度谈小流域综合治理规划.中国水土保持,1991,4:40-43
    陈百明著.土地资源学概论,中国环境科学出版社,1999,75-76
    陈光伟等摘译,西欧土地评价,自然资源译丛,1984,(2)
    陈庆男,魏成阶"礼炮"号遥感图像在于桥水库流域土壤侵蚀调查及治理规划中的应用[J]环境遥感,1993,8(1):45-53
    陈述彭,鲁学军,周成虎.地理信息系统导论.北京:科学出版社,1999:104
    陈松林.刘强.余珊等.福州市晋安区土地适宜性评价.地球信息科学,2002(3):l61-163
    陈育峰.气候变化对森林植被的可能影响—GIS支持下的方法研究.[J].地理学报,1995,50:85-94
    陈志彪,林其东,陈逢珍.适用于县级土地利用总体规划的土地适宜性评价.福建师范大学学报,1999,15(4):99-104
    崔青春.为数字农业服务的土地评价方法研究(硕士学位论文).南京师范大学,2003.
    戴旭.农业土地评价的理论与方法[M].北京:科学出版社,1995.
    单胜道,龙建新.模糊综合评估法及其在农地价格评估中的应用[J].同济大学学报(自然科学版),2002,30(8):1010-1013
    党安荣,王晓栋,陈晓峰等.ERDAS IMAGINE遥感图象处理方法[M].北京:清华大学出版社,2005
    杜红悦,李京.土地农业适宜性评价方法研究与系统实现-以攀枝花为例.资源科学,2001,5
    冯尚友.水资源持续利用与管理导论.北京:科学出版社,2000
    傅伯杰.土地评价的理论与实践[M].北京:科学技术出版社,1991,3-14.
    高杨,吕宁,薛重生,邓玉娇.不同区域土地利用与土壤侵蚀空间关系研究[J].中国水土保持.2006(11):21-23
    高玉山,桑琰云,徐刚,李月灵. GIS在区域土壤侵蚀研究中的应用探讨[J].阜阳师范学院学报(自然科学版). 2004,21(1):51-53
    葛雄灿.宗地估价的模糊综合评估法[J].浙江大学学报(农业与生命科学版),2001,27,(3):345-348
    宫鹏,史培军,等.对地观测技术与地球系统科学[M].科学出版社,1996.08.
    关君蔚,李中魁.持续发展是小流域治理的主旨.水土保持通报,1994,14(2):42-47
    郭学军,郭立民.应用不同时期的航片分析土壤侵蚀量的动态变化[J].中国水土保持,1994,2:40-42国家环境保护总局.生态功能区划暂行规程(2002)[EB/OL]
    何春阳,陈晋,陈云浩等.土地利用/覆盖变化混合动态监测方法研究[J].自然资源学报,2001,16(3):255-262
    何兴元,胡志斌,李月辉,等.GIS支持下岷江上游土壤侵蚀动态研究[J].应用生态学报,2005,16(12):2271-2278
    洪双族,高兆蔚.利用森林资源连续清查体系进行水土流失动态监测的探讨[J].福建水土保持仁,1994(3):24-25
    胡德勇.基于组件式GIS的耕地地力评价信息系统研究(硕士学位论文).湖南农业大学,2004.
    胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究[J].土壤学报,2001,38(2):167-175
    黄显勇,毛明海.运用层次分析法对水利旅游资源进行定量评价[J].浙江大学学报,2001,31(3):327-333
    黄跃进,唐锦春,孙柄楠.基于Gsl的农用土地适宜性评价模型的建立[J].浙江林学院学报,1999,16(4):406-407
    姜德文.小流域生态经济系统优化模式研究.[J]中国水土保持,1990,2:23-25
    李孝芳.评价的基本原理和方法[M].长沙:湖南科学技术出版社,1989.7.
    林敬兰,杨学震,陈明华等.福建省土壤侵蚀遥感调查的方法和特点[J].福建水土保持,2001(4):56-60
    刘昌明,何希吾.中国21世纪水问题方略.北京:科学出版社,1998
    刘纪元.中国资源环境遥感宏观调控动态研究[M].北京.中国科学技术出版社,1996
    刘黎明.土地资源学[M].北京:中国农业大学出版社,2001:110-259.
    刘权,王忠静,刘湘南.GIS支持下辽河中下游土壤侵蚀遥感动态分析[J].水土保持通报,2005,25(1):64-67
    刘霞,姚孝友,袁利,等.鲁中山区不同水土保持生态修复措施对土壤侵蚀的影响[J].中国水土保持科学,2008,6(5):27-31
    刘艳锋.岷江上游土壤侵蚀与土地利用的耦合关系研究[J].西北林学院学报2009, 24(5): 161-165
    刘德忠.基于GIS的耕地适宜性评价和耕地优化配置研究-以山东省无棣县为例(硕士论文).山东师范大学,1999
    卢瑛、龚子同.土地适宜性评价的研究进展[A].中国大地出版.1998,9:63-66
    马传栋.生态经济学[M]济南:山东人民出版社,1986
    马克伟.土地大辞典[M].长春:长春出版社,1991,838-839
    倪绍样,陈传康.我国土地评价研究的近今进展.地理学报,1993,48(1):758
    潘剑君,赵其国,张桃林.江西省兴国县、余江县土壤侵蚀时空变化研究[J].土壤学报,2002,39(1):58-64
    潘贤章,梁音,李德成.基于3S集成技术的土壤侵蚀图野外校核[J].土壤学报,2007,39(6):948-952
    彭华.土壤侵蚀临界坡度研究进展[J].水土保持科技情报,2004(2): 30-32
    沈云良,邱沛炯等.利用TM图像监测水土流失变化及对策分析[J].中国水土保持,1993,(04):45-49
    盛建东,文启凯.棉花土地适宜性评价指标体系研究与应用[J].干旱地区农业研究,1998,16(2):19-25
    师守祥,张智全,李旺绎.小流域可持续发展论.北京:科学出版社,2001
    石承苍等.川西南山地区土地资源、土壤侵蚀遥感调查及土壤侵蚀定量评价.西南农业学报,1995,8(4):53-56
    史德明,韦启幡.中国南方侵蚀土壤退化指标体系研究[J].水土保持学报,2000,14(3):2-11
    史清华,姚建民.农用土地适宜性评价方法及其实践[J].资源开发与市场,1996,10(6):249~252
    史清华,姚建民.农用地适宜性评价方法及其应用[J].资源开发与市场.1994.10(6)
    孙亚东等.河流生态修复技术和实践.水利水电技术,2006,37(12):4-7
    王安明,章孝灿,黄智才.浙江省水土流失遥感普查有关技术问题的研究[J].中国水土保持,1999,(7):19-21
    王葆芳,刘星晨,王君厚,丁国栋.沙质荒漠化土地评价指标体系研究干旱区资源与环境,2004,4
    王礼先.水土保持学[M].北京:中国林业出版社,1995.435-473
    王令超,王国强,王国灵.农用土地定级的总分值计算模型研究[J].地域研究与开发,2001,20(3):10-12
    王瑞燕,赵庚星,李涛,岳玉德.GIS支持下的耕地地力等级评价[J].农业工程学报,2004,(01):308-311.
    王思远,王光谦,陈志祥.黄河流域土地利用与土壤侵蚀的耦合关系[J].自然灾害学报,2005,14(1): 32-37
    王志意,张永江.浅论水土保持生态建设中的生态自然修复[J].中国水土保持,2003,9:15-17
    吴亚宁,张虎林,杨丽萍.黄河流域甘肃片土壤侵蚀遥感普查的初步分析[J].遥感技术与应用,2002,17(6):398-401
    吴雨才.区域土地资源评价及数据库建立(硕士学位论文)河南农业大学,2004
    席有.坡度影响土壤侵蚀的研究[J].中国水土保持, 1993(4): 19-21.
    夏敏.农地适宜性评价专家系统研究[D]南京农业大学.2000.
    徐文辉,陈文瑞.土地适宜性评价关键问题探讨[J].莆田高等专科学校学报,2000,7(1):13~21
    燕乃玲,生态功能区划与生态系统管理:理论与实证,上海社会科学院出版社,上海,48.
    姚华荣,崔保山.澜沧江流域云南段土地利用及其变化对土壤侵蚀的影响[J].环境科学学报,2006,26(8): 1362-1371.
    喻权刚.陕北黄土丘陵区土壤侵蚀遥感研究[J].水土保持学报,1997,(3):46-51
    袁希平,雷廷武.水土保持措施及其减水减沙效益分析.农业工程学报,2004,2:296-300
    张兵,王向军,童庆禧.一种黄土区土壤侵蚀强度遥感调查新方法[J].国土资源遥感,1996(4):36-39
    张登荣等.基于卫星遥感和GIS技术的水土流失动态监测体系研究[J].浙江大学学报,2001,28(5):577-582
    张树文,王文娟,李颖.近50年来三江平原土壤侵蚀动态分析[J].资源科学,2008,30(6):843-849
    张有全,宫辉力,赵文吉.基于GIS和USLE的密云县土壤侵蚀评价及空间特征研究[J].水土保持研究,2007,14(3):358-364
    张兆福,王新怀.丘陵地区土地适宜性评价的理论与实践[J].四川师范学院学报,1996,17(2):60~65
    赵善伦,尹民,张伟. GIS支持下的山东省土壤侵蚀空间特征分析[J].地理科学,2002,22(6):694-699
    赵晓光,吴发启,刘秉正.再论土壤侵蚀的坡度界限[J].水土保持研究,1999,16(6):42-46.
    中华人民共和国水利部标准.水土保持综合治理-规划通则(GB/T15772-1995).北京:水利电力出版社,1995
    中华人民共和国水利部标准.土壤侵蚀分类分级标准(SL19O-96).北京水利电力出版社,19
    周春芳.北京市后备土地资源宜耕评价指标体系研究(硕士学位论文).中国农业大学,2004
    朱德海.土地管理信息系统.北京:中国农业大学出版社,2000:17-19.
    朱德举.土地评价.北京:中国大地出版社,1996:25-29
    A.A.Klingebiel and P.H Montgomery, Land Capability Classification USDA handbook 210,1961,1-21
    Al-Kayssi.A.W., Spatial variability of soil temperature under greenhouse conditions[J]. Renewable Energy. 2002, 27: 453-462
    Andrew A. Mill ward,Janet E.Mersey. Adapting the RULSE to model soil erosion potential in a mountainous tropical watershed[J].CATENA:1999,109-129
    Andrew.W.W, Cunter.B,Rodger.B.Gv. Geostatistical characterization of soil moisture patterns in Tarrawarra catchment [J]. Journal of Hydrology, 1998, 205:20-37
    Anita Veihe., The spatial variability of credibility and its relation to soil types: a study from northern Ghana [J].Geoderma. 2002,106: 101~120
    Austrian Standards NORMM 6232.1997.Guidelines for the ecological survey and evaluation of flowing surface waters [S]. Vienna Austrian Standards Institute, 38
    Awasthi K D, Sitaula B K, Singh B R, et al Land-use change in two Nepalese watersheds: GIS and geomorphomtic analysis[J].Land Degradation and Development,2002,136:495-513
    Bartoli F ,Burtin G, Royer J J, et al., Spatial Variability of Topsoil Characteristics Within One Silty Soil Type. Effects on Clay Migration [J].Geoderma.1995, 68: 279-300
    Bedford B L.1996.The need to define hydrologic equivalence at the landscape scale forfreshwater wetland mitigation [J]. Ecological Applications,6(1): 57-68
    Boggs G, Devonport C, Evans K, Puig P.GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia[J].Land Degradation and Development,2001,12(5):417-434
    Committee of Natural Regionalization of the Chinese Academy of Sciences.1959. Synthetical natural regionalization of China [M].Beijing: Science Press, 80-95 (in Chinese) Erie F.Lambin.Modelling and Monitoring Lang-cover Change processes in Tropical Regions[J].Progress in Physical Geography,1997,21(3):375-393
    FAO:A Framework for Land Evaluation. 5011 Bullettin No.32, pp.92.FAO, Rome,Italy,1976.
    Frissell C A, Liss W J,Warren C E, etal.1986.A hierarchical framework for stream classification: viewing streams in a watershed context[J]. Environmental Management, 10: 199-214
    Gannon RW, Osmond D L, Humenik F J, etal. 1996. Goal-oriented agricultural water quality legislation [J]. WaterResourcesBulletin,32(3) : 437-457
    HarperD, Smith C,Barham P,etal.1995.The ecological basis for the management of the natural river environment [A].//HarperD M,Ferguson A JD (eds). The ecological basis for river management[C].Chichester Wiley Press, 210-238
    Herbst .M, Diekkrijger. B., Modelling the spatial variability of soil moisture in a micro-scale catchment and comparison with field data using geostatistics[J].Physics and Chemistry of the Earth,2003,28 ( 7 ): 239-245
    Hughes R M, Larsen D P, Omemik J M.1986.Regional reference sites: a method for assessing stream potentials [J]. Environmental Management, 10(5): 629-635
    Klingebiel,A.A, and Montgomery.LCC-Land Capability Classifieation.P.H. 1961. PaulF. wendt. Real Estate Appraisal: Reviewand Outlook. Athens: University of Georgia Press,1974.P.17.
    Mellerowiez K T, Rees H w, Chow T L, Chanem I. Soil conservation planning and the watershed level using the Universal soil Loss Equation with GIS and microcomputer technologies: A case study[J].soil and Water Cons,1994,49,2:194-200
    Meyer L D, Evaluation of the universal soil loss equation[J].Journal of Soil and Water Conservation,1984,39:99-104
    Omernik J M.1987.Ecoregions of the conterminous United States (Map Supplement) [J]. Annals of the Association of American Geographers, 77(1): 118-125
    Richard.K, Bacchio.S.S. Hydraulic variability in space and time in a dark red latosol of the tropics[J].Geoderma,1993,60:159-168
    States Geologieal Survey Journal of Researeh.1977,5(2):143~153.
    WrightL.E.etal. LESA-Ageultural land evaluationan dsiteassessment. Journal of 5011 and Water Conservation, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700