基于最小二乘支持向量机的数控机床热误差建模的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实现建立支持向量机数控机床热误差模型为主要内容。在分析当前国内外机床热误差补偿建模现状的基础上,提出了用最小二乘支持向量机进行热误差建模的方法。
     全文围绕用最小二乘支持向量机进行数控机床热误差建模展开论述。首先论述了统计学习理论和支持向量机的一般理论知识,在把支持向量机引进回归估计领域的基础上,进一步提出了标准支持向量机的改进思路;然后详细论述了最小二乘支持向量机的理论内容,针对最小二乘支持向量机自身的不足之处,介绍了具有稀疏性和鲁棒性的最小二乘支持向量机,并提出了用网格法进行模型参数的选择;接下来介绍了针对CK6140CG数控机床的热误差综合实验,对实验数据进行了简要分析:最后,在Matlab平台上实现了最小二乘支持向量机热误差建模的全过程,并通过对建模数据的残差分析和最小二乘支持向量机模型与最小二乘法模型的对比,验证了最小二乘支持向量机进行热误差建模的优越性。本文的主要内容如下:
     第一章,阐述了论文研究背景和意义。在介绍国内外数控机床误差补偿建模研究现状的基础上,分析了当前热误差模型的主要类型和待解决的问题,提出了用支持向量机进行热误差建模的思路;最后概述了课题的来源和主要研究内容。
     第二章,主要介绍了统计学习理论和支持向量机。首先介绍了机器学习的基础知识;然后详细阐述了统计学习理论的基本理论,包括VC维理论、推广性的界和结构风险最小化;接下来介绍了最优超平面及其构造;然后论述了支持向量回归机以及核函数的相关知识;最后提出了标准支持向量机的改进思路。
     第三章,论述了标准支持向量机的重要变种——最小二乘支持向量机。首先给出了最小二乘支持向量机理论,分析了其特性;然后深入论述了具有稀疏性和鲁棒性的最小二乘支持向量机;最后给出了最小二乘支持向量机参数选择的方法,并提出了用网格法进行参数自动寻优。
     第四章,主要论述了数控机床热误差实验。首先介绍了实验设备,包括数控机床、温度采集系统和微位移传感器;然后论述了实验方案,并给出了实验数据。
     第五章,本章主要是在Matlab平台上,用程序实现了数控机床热误差建模的全过程。首先采用网格法解决了参数选择问题;然后实现了最小二乘支持向量机的热误差模型,包括初始模型、鲁棒性模型、稀疏性模型和最终模型;接下来进行了模型的数据分析,并通过与最小二乘法模型的对比,验证了最小二乘支持向量机热误差模型的优越性。
     第六章,对本文的研究工作和研究成果进行了总结,并对将来的研究工作做出了一定的展望。
The main content of this dissertation is the model of thermal errors for CNC machine tools via support vector machine (SVM). Based on fully understanding and deeply analyzing the current status of the research and application of the thermal error modeling and compensation technique for CNC machine tools, least square support vector machine (LS-SVM) modeling is proposed. Firstly, the principle of statistical learning theory (SLT) and support vector machine (SVM) are introduced. Secondly, the theory of LS-SVM is presented in detail. Lastly, describing the thermal error experiment of machine tools, the LS-SVM modeling is validated in Matlab.
    In chapter 1, the background and the significance of the research are stated. The research history and current situation of the thermal error modeling are also provided. After the description of the shortcoming of current thermal error modeling, the SVM modeling is advised and the main content of the dissertation is presented.
    In chapter 2, the principle of SLT and SVM is introduced. At first, basic theory of SLT including the VC dimension, the bound of extending and the principle of structural risk minimization (SRM) are presented. Then, the characteristic of support vector machine regression (SVR) and kernel are dissertated. In the end, the improving technique of SVM is discussed.
    In chapter 3, the theory of LS-SVM is introduced. The special property of LS-SVM is described firstly. The sparse LS-SVM and the robust LS-SVM are deeply analyzed. At last, the choice about parameter of LS-SVM modeling is discussed, and a new method of parameter choice based on grid search is proposed.
    In chapter 4, the experiment of temperature-thermal Errors of CNC machine tools is introduced. The experiment equipments include CNC lathe, the temperature measure system, and the laser CCD displacement sensors. The scheme and the data of this experiment are discussed in detail.
    In chapter 5, the whole process of LS-SVM thermal error modeling is described. Firstly, the optimization parameter of this modeling is selected by grid search technique. Secondly, LS-SVM thermal error modeling included initialized modeling, robust modeling and sparse modeling is established. Finally, the superiority of LS-SVM modeling is validated by the data analysis and the contrast of least square modeling.
    In chapter 6, the study contents and conclusion of the dissertation have been summarized, and the further research works have been forecasted.
引文
[1] Bryan J. International status of thermal error research[J]. Annals of the CIRP, 1990, 39(2): 645-656.
    [2] 梁允奇.机械制造中的热与热变形基础[M].北京:机械工业出版社,1982.
    [3] Weck M., Me Keown P. Reduction and compensation of thermal error in machine tools[J]. Annals of the CIRP.1995,44(2):589-598.
    [4] Ramesh R., Mannan M.A., Poo A.N. Error compensation in machine tools-a review Part Ⅱ: thermal errors[J]. International Journal of Machine Tools and Manufacture,2000,40(9): 1257-1284.
    [5] 陈兆年,陈子辰.机床热态特性学基础[M].机械工业出版社,1989.9.
    [6] 杨庆东,陈众.欧共体对机床热变形的研究[J].制造技术与机床.2000.7.
    [7] Jun Ni. CNC machine accuracy enhancement through real-time error compensation[J]. Journal of manufacturing science and engineering, 1997 (119):717-725.
    [8] Yang S,Yuan J,Ni J. Accuracy enhancement of a horizontal machining center by real-time compensation[J]. Journal of Manufacturing Systems, 1996,15(2): 113-124.
    [9] Yang J,Yuan J,Ni J. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J]. International Journal of Machine Tools and Manufacture, 1999,39(9): 1367-1381.
    [10] Yang S,Yuan J,Ni J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J].International Journal of Machine Tools and Manufacture,1996,36(4).
    [11] Hong Yang, Jun Ni. Dynamic modeling for machine tool thermal error compensation[J]. Journal of Manufacturing Science and Engineering, ASME, 2003,125: 245-254.
    [12] Hong Yang, Jun Ni. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy[J]. International Journal of Machine Tools and Manufacture, 2005,45(1): 1-11.
    [13] Hong Yang, Jun Ni. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2005,45(4-5): 455-465.
    [14] M.H.Attia, S.Fraser, M.O.M.Osman.On-line estimation of time-variant thermal load applied to machine tool structures using a s-domain inverse solution[J]. International Journal of Machine Tools and Manufacture, 1999,39:985-1000.
    [15] S.Fraser,M.H.Attia, M.O.M.Osman.Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response [J]. Journal of Manufacturing Science and Engineering,2004,126:286-298.
    [16] M.H. Attia, S.Fraser. A generalized modeling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures[J]. International Journal of Machine Tools & Manufacture, 1999,39:1001-1016.
    [17] S. Fraser, M.H. Attia, M.O.M. Osman.Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling[J]. Journal of Manufacturing Science and Engineering, 1998,120:623-631.
    [18] S. Fraser, M.H. Attia, M.O.M. Osman, Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions[J]. Journal of Manufacturing Science and Engineering,1998,120:632-639.
    [19] S. Fraser, M.H. Attia, M.O.M. Osman, Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 3: Real-Time Estimation of Heat Sources[J]. Journal of Manufacturing Science and Engineering, 1999,121:501-508.
    [20] S. Fraser, M.H. Attia, M.O.M. Osman, Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 4: A Multi-Variable Closed-Loop Control System[J]. Journal of Manufacturing Science and Engineering,1999,121:509-516.
    [21] S. Fraser, M.H. Attia, M.O.M. Osman, Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 5: Experimental Verification[J]. Journal of Manufacturing Science and Engineering, 1999,121:517-523.
    [22] C. Brecher,P.Hirsch,M.Weck. Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data[J]. Annals of the CIRP, 2004, 53(1):299-304.
    [23] Niels Wessel, Jan Konvicka, Udo Schwarz etc, Prediction thermal displacements in modular tool systems[J].Chaos,2004,14(1):23-29.
    [24] Hatamura Y,et al. Development of an intelligent machining center incorporating active compensation for thermal distortion[J]. Annals of the CIRP, 1993,42(1):549-552.
    [25] M.Mitsuishi, S. Warisawa, R. Hanayama. Development of an intelligent high-speed machining center[J]. Annals of the CIRP, 2001, 50(1):275-280.
    [26] R. Ramesh, M.A. Mannan, A.N. Poo ,Thermal error measurement and modeling in machine tools. Part I .Influence of Varying operating conditions[J]. International Journal of Machine Tools and Manufacture, 2003,43(2):391-404.
    [27] R. Ramesh, M.A. Mannan, A.N. Poo, S.S. Keerthi,Thermal error measurement and modeling in machine tools. Part II .Hybrid Bayesian Network-support vector machine model[J]. International Journal of Machine Tools and Manufacture, 2003,43(2): 405-419.
    
    [28] H.J. Pahk, S.W. Lee, Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error[J]. International Journal of Advanced Manufacturing Technology, 2002,20: 487-494.
    [29] 杜正春,杨建国,关贺,窦小龙.制造机床热误差研究现状与思考[J].制造业自动化,2002,24(10):1-4
    [30] Du,Z.C.,Yang, J.G,Yao, Z.Q., et al. Modeling approach of regression or thogonal experiment design for the thermal error compensation of a CNC turning center[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 619-623.
    [31] 杨建国,任永强等.数控机床热误差补偿模型在线修正方法研究[J].机械工程学报,2003,39(3):81-84
    [32] 盛伯浩,唐华.数控机床误差的综合动态补偿技术[J].制造技术与机床,1997,6:19-21.
    [33] 赵大泉,张伯鹏.主轴热误差的自组织补偿原理及其仿真[J].清华大学学报,2004,44(2):219-211.
    [34] 刘又午,章青,赵晓松等.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报,2002,38(1):127-130.
    [35] 张奕群,李书和,刘安伟,张国雄.基于主轴转速的机床热误差状态方程模[J].1998,19(5):460-463.
    [36] 王一丁,张国雄,臧艳芬等.数控加工中心的位置误差补偿模型[J].1995,10(3):200-205.
    [37] 刘又午,刘丽冰,赵小松,章青,王树新.数控机床误差补偿技术研究[J].中国机械工程,1998,9(12):48-52
    [38] 张奕群,李书和,张国雄.机床热误差建模中温度测点选择方法研究[J].航空精密制造技术,1996,32(6):37-39.
    [39] 陶湘保,张德贤,刘筱连,等.机床热变形的主动补偿[J].中国机械工程,1999,10(8):923-926.
    [40] 张德贤,刘筱连,师汉民,等.神经网络在数控机床热变形控制中的应用[J].制造技术与机床,1995,1:8-11.
    [31] 谭久彬.精密测量中的误差补偿技术[M].哈尔滨工业大学出版社,1995,6.
    [42] 杨庆东,Van Dan Bergh,C Venherck等.神经网络补偿机床热变形误差的机器学习技[J].机械工程学报,2000,36(1):92-95.
    [43] 傅建中.精密机械加工动态监控理论及应用研究[D].浙江大学博士学位论文,1996.
    [44] Fu Jianzhong, Chen Zichen. New Analysis Method of Thermal Deformation Multivarial Control for Precision Machine[J].机械工程学报(英文版),1997,10(2):90-94.
    [45] 傅建中,陈子辰.研究精密机械热态特性的新方法—模态分析特征系统实现法[J],浙江大学学报(特刊),1997,31(1):45-50.
    [46] 傅建中,陈子辰.奇异值分解识别精密机械热动态特性参数的研究[J].浙江大学学报,2004,38(4):474-477.
    [47] 傅建中,陈予辰.精密机械热误差校正机理及参数遗传优化[J].浙江大学学 报,2003,37(6):719-723
    [48] 傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报,2004,38(6):742-746
    [49] J.S. Chen, Fast calibration and modeling of thermally induced machine tool errors in real machining [J]. International Journal of Machine Tools and Manufacture, 1997,37(2): 159-169.
    [50] Cristianini. N. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge University Press, 2004.
    [51] Tom M.Mitchell著.曾华军,张银奎译.机器学习[M].清华大学出版社,2003.1
    [52] Vladimir N.Vapnik著 许建华,张学工译.统计学习理论[M].电子工业出版社,2004.6
    [53] Vladimir N.Vapnik著 张学工译.统计学习理论的本质[M].清华大学出版社,2000.9
    [54] 万仲平,费浦生编.优化理论与方法[M],武汉大学出版社,2004
    [55] 寇述舜编著,凸分析与凸二次规划[M],天津大学出版社,1994
    [56] Horst R., Pardalos P., Thoai N. Int roduction to global optimiztion [M]. New York: Kluwer Academic Publishers, 1995.
    [57] Walk M.,Theory of duality in mat hematical programming[M]. New York : Springer Verlag, 1989.
    [58] J.P.Mmarques de sa著,吴逸飞 译 模式识别——原理、方法及应用[M].清华大学出版社,2002,11
    [59] V. David Sanchez A. Advanced support vector machines and kernel methods[J]. Neurocomputing,2003 (55).
    [60] J.B.Gaoa. S.R.Gunnb. C.J.Harrisb. SVM regression through variational methods and its sequential implementation [J]. Neurocomputing, 2003(55).
    [61] Jinbo Bi, Kristin P. Bennett, A geometric approachto support vector regression[J]. Neurocomputing 2003 (55).
    [62] Alexander J. Smola, Learning with Kernels[M].Berlin, 1998
    [63] Bernhard S.SVM and keneral methods[M], Tubingen, Germany, 2002, available from www.learning-with-kernel.org
    [64] Mark Girolami,Mercer kernel based clustering in feature space[J],IEEETransaction on Neural Networks,2001 (2): 1-13
    [65] K. Yosida. Functional Analysis[M]. 5th Edition. Berlin: Springer-Verlag, 1978
    [66] 林成森著,数值计算方法[M].科学出版社,2005
    [67] Cortes C,Vapnik V.Support Vector Networks[J].Machine Learning, 1995,20:273-297
    [68] Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[A]. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. New York: IEEE Press, 1997.276-285.
    [69] Osuna E , Freund R , Girosi F. Training support vector machines : Application to face detection[A] . 1997 Conference on Computer Vision and Pattern Recognition[ C] . Puerto Rico: IEEE Press, 1997.
    [70] Platt J C.Fast training of SVM:Using Sequential Minimal Optimization[M].IN:Scholkph B,et al.editors.Advances in Kernal Method-Support Vector Learning.Cambridge,MA:MIT Press, 1998.185-208
    [71] Scholkoph B, Smola A J, Bartlett P L. New support vector algorithms[J]. Neural Computation, 2000,12: 1207-1245.
    [72] Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
    [73] Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002,48: 847-861.
    [74] Suykens J.A.K. Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    [75] Suykens J.A.K., De Brabanter J., Lukas L., Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 2002,48(1-4): 85-105.
    [76] Suykens J.A.K., Vandewalle J. De Moor B.Optimal control by least squares support vector machines [J].Neural Networks 2001, (14): 23-35.
    [77] Nocedal J.,Wright S.J.Numerical Optimization, Springer Verlag,1999.
    [78] Suykens J. A. K., De Brabanter J., Tony Van Gestel. Least Squares Support Vector Machines, World Scientific, 2002.
    
    [79] David H.A.,EarIy Sample measures of variability, Statistical Science,1998,13(4): 368-377.
    [80] Suykens J.A.K., Lukas L., Vandewalle J. Sparse approximation using least squarse support vector machines[C],IEEE International Symposium on Circuits and Systems (ISCAS2000), 11757-760, Geneva, Switzerland.
    [81] Suykens J.A.K., Lukas L., Vandewalle J. Sparse least squares support vector machine classifiers,in Proc[C].of the European Symposium on Atificial Neural Networks(ESANN 2000),Bruges,Belgium,2000,37-42.
    
    [82] Rousseeuw P.J.,Leroy A., Robust regression and outlier detection[M] .NewYork:Wiley,1987.
    
    [83] Hampel F.R., Rousseeuw P.J,Stahel W.A.,Robust statistic ,the Approach based on influence functions[M] .New York: John Wiley, 1986.
    [84] Jian Zhang, The sample breakdown points of tests[J].Journal of Statistical Planning and Inferernce 52 (1996) 161-181
    [85] Sergio A. Rojas and Delmiro Fernandez-Reyes. Adapting Multiple Kernel Parameters for Support Vector Machines using Genetic Algorithms [J]. Evolutionary Computation, 2005,1:626-631.
    [86] Michael W. Browne,Cross-Validation Method [J].Journal of Mathematical Psychology,2000. 44:108~132
    [87] Jae H. Min, Young-Chan Lee.Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[J]. Expert Systems with Applications, 2005 (28):603-614
    [88] 席少霖,赵凤治编著,最优化计算方法[M],上海科学技术出版社,1983.8
    [89] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, A Practical Guide to Support Vector Classification[R], Technical Report, Department of Computer Science and Information Engineering, National Taiwan University. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
    [90] 王兴玲,李占斌,基于网格搜索的支持向量机核函数参数的确定,中国海洋大学学报,2005,35(5):859-862
    [91] 钱华芳,数控机床温度传感器优化布置及新型测温系统的研究[D],浙江大学硕士学位论文,2006.
    [92] 刘建华,DSP与数字温度传感器DS18820的接口设计[J].河北省科学院学报,2004,2.
    [93] T. Hsia, Identification: Least Squares Methods[M]. Lexington Books,Lexington, MA, 1977.
    [94] 郭锡伯,徐安农编.高等数学实验课讲义[M],中国标准出版社,1998.04.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700