几种基本构件的冲击相变响应的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变对材料和结构的力学响应可造成重大影响,是固体力学和材料科学的綦本问题和重点研究领域之一。相变材料的材料性能的研究已相对成熟,然而对于结构件在动载下的力学响应的研究却十分缺乏。本文主要选取一些基本的工程结构件一杆、板和壳作为对象,从理论和数值模拟两个方面,对具有相变特性的上述结构在冲击载荷下的早期波传播过程及动力响应进行了较为系统的研究,发现了一些新现象和新规律。
     运用特征线法和有限差分数值方法,对矩形脉冲载荷下一维有限长杆中宏观相边界的传播规律进行了研究。结果表明,自由面总是对入射波起应力卸载作用,固定端的作用则与入射波的条件有关。对于可逆相变材料,载荷幅值、脉宽和端部边界条件均可能影响杆中加载相边界的传播和卸载模式,相应的影响到杆中应力拉伸区出现的位置。对于另一端为自由面的杆,脉宽较短时,应力拉伸区将首先出现在相边界消失的位置附近,当脉宽较长时,加载端附近将首先出现应力拉伸区。加载端卸载后,杆处于两端自由面共同应力卸载作用下,可能出现多重层裂的现象。对于另一端为固定端的杆,杆中应力拉伸区出现的相对较晚,靠近固定端处将可能首先达到拉伸极限发生层裂。对于不可逆相变材料杆,着重分析了端部边界条件对杆中相转变的影响,提出了通过控制应力加载脉冲的形状、幅值、长度和边界条件,制备对称型梯度材料的可能性。并应用该理论,较成功的解释了郭扬波等最近在相变Taylor杆中发现的实验新现象。
     针对最近发现的工业纯铁平板等厚对称碰撞实验和FeMnNi合金的非等厚碰撞实验中的异常层裂现象,本文运用特征线方法,通过对弹塑性波和宏观相边界传播的定量分析,对该异常层裂现象产生的机理给出了理论解释。分析表明,相变和逆相变过程会强烈地改变靶板中的冲击波波结构,各波系间复杂的相互作用将导致异常层裂。并在较大速度范围内得到了FeMnNi合金平板等厚对称碰撞层裂位置随碰撞速度的变化规律。研究表明,弹塑性材料并不会发生异常层裂现象,上述异常层裂现象的发生是相变材料特有的。
     将一种可描写冲击下各向同性材料中的“应力诱发”相变的三维动态相变本构成功地嵌入有限元软件ABAQUS中,使之可用于对SMA合金结构的数值模拟。
     对顶端受到径向冲击载荷的伪弹性相变圆柱壳中相变弯曲波的产生、传播规律进行了数值模拟研究,对壳曲率对弯曲波的影响进行了讨论。结果表明,相变弯曲波的形成总是通过弹性弯曲波的不断发展增大后产生;相变峰首先出现的位置在加载处,并稳定在该处形成一相变主峰。随着加载载荷的增大,除加载端外,壳中将形成向壳底部方向移动的移行相变峰,不同的加载强度下,相变峰移动的速度基本相同。弯曲波传播速度对曲率不敏感;曲率的变化对加载端附近幅值较大的弯矩峰有明显影响,对传播速度较快、波长较短、幅值较小的弹性弯曲波影响可忽略。对底端自由的相变壳,反射弹性弯曲波与入射弹性弯曲波早期关于反射面近似对称;对底端受到约束的壳,由于约束反力导致的附加弯矩的影响,壳中的弯曲波形更加复杂。卸载弯曲波也具有弥散和不断发展的特点,其对加载波的作用取决于两种波峰相遇时的位相差。当受到卸载波和反射波同时作用时,壳中相变区的时空演化图表现为一些互不联通的的区域。
     对PE圆柱壳在阶跃载荷和矩形脉冲载荷作用下的动力响应进行了数值研究,分析了相变铰的不同形式及演化过程。阶跃载荷作用下,壳中可能形成加载端相变铰区、中部单铰、双铰等不同的形式。高载短脉冲作用下PE圆柱壳的响应可分为四个阶段:加载时弯曲波的传播与相变铰的形成、卸载后相变铰的复杂演变、壳中部在加载端运动至最大行程过程中的大幅摆动、相变铰卸载回复后壳沿加载方向的往复振动。前三阶段所占时间不长,但耗能很高。
     对置于刚性边界上的PE圆柱壳在具有一定初速度的刚板冲击下的动力响应进行了研究,结果表明,响应过程可分为壳中相变铰的形成和移动、各驻定相变铰的发展以及各相变铰的卸载回复三个阶段。在大质量、低速度刚板冲击下,壳呈现与准静态加载相似的四相变铰模式,在小质量、高速度刚板冲击下,形成四驻定相变铰前,壳中有明显的相变铰移动过程,其间有多次板、壳及底部边界的分离和再碰撞过程。对处于三向、四向和六向约束条件下的相变壳的动力响应进行的研究表明,增加边界约束后,壳的动力响应过程与两向约束类似,但壳中将产生更多的相变铰,壳的变形和相变更呈现局部化,集中在加载面附近,加载面易发生屈曲。随着约束数量的增加,壳刚度增大,缓冲能力下降,吸能效果变化不大。
Phase transition(PT) can greatly affect the mechanical response of material and structure.It is a basic problem and major research task of solid mechanics and material science.The study of mechanical property is relatively mature,but it is very short of the study of the mechanical property of the phase transformation structures,especially the response under impact loading.In this paper,the impact response of phase transformation rod,bar and shell are systematically investigated by analytical and numerical methods, and some interesting phenomena and regularity are found.
     By characteristic method and finite difference numerical method,the rules for the propagation of macroscopic phase boundary under rectangular pulse load in a finite rod are investigated.It is found that the free surface always plays the role of stress unloading for the incident stress wave,while the fixed surface will affect the stress amplitude according the incident wave conditions.For the reversible PT materials rod,the impact amplitude,pulse width and the boundary conditions will all affect the propagation of macroscopic phase boundary and the unloading process,and the position where the tensile stress zone may appear will change correspondly.For the rod with free surface, under short pulse load,the tensile stress zone will first appear near the location where the phase boundary disappear,and when the pulse duration is longer,the tensile stress zone may first appear near the load surface.After unloading,both ends of the rod become free surface,which both play the role of stress unloading for the incident stress wave,and multiple spalls may occur.For the rod with fixed surface,the tensile stress zone will appear relatively late,and the spall may first occur near the fixed end.For the inversible PT materials rod,the effects of the boundary conditions to the phase transition are investigated.The possibility of producing symmetric distributed Functionally Graded Materials(FGMs) by controlling the shape,stress amplitude and duration of the loading pulse under different boundary conditions is proposed.By this theory,some new phenomenon,recently found in the phase transtion Taylor bar experiment can be explained successfully
     For the abnormal spall phenomena recently observed in impact experiments for symmetrical and the same thickness of pure iron plates and for the different thickness of FeMnNi alloy plates,in this article,the propagation of the elastic and plastic waves as well as the macroscopic phase boundary is studied quantitatively by characteristic line method,and the mechanism of the abnormal spall phenomena mentioned above is explained theoretically.The investigation shows that PT and reverse PT can strongly affect the profiles of the shock waves in the target,and the more complex interactions of the waves may cause abnormal spall.And for the impact of symmetrical and the same thickness of FeMnNi alloy plates,the rules of the position where the abnormal spall may occur with change of impact speed is found.Reserch shows that the abnormal phenomena will not occur for elastic-plastic materials,and it is unique for PT materials.
     A dynamic constitutive model for phase transformation which can describe the "stress-induced" phase transformation in isotropic material is succsessfully implemented in ABAQUS finite element software,thus numerical simulation study can be conduncted for Shape Memory Alloy(SMA) structures.
     The formation and propagation of phase transition flexurai wave(PTFW) in a pseudoelastic phase transition circular shell(PPTCS) which under radial impact at the top is numerically studied,and the effects of curvature on the PTFW are examined.Results show that PTFW is initiated by development and enlargement of elastic flexurai wave (EFW).PTFW always appers first at the impact point and remain there,forming a main PTFW peak.If the impact amplitude is large enough,several removing PTFW peaks may apper in the shell,which will move in the direction of the shell bottom at the same speed under different impact amplitude.Study shows that the flexural wave velocity is not sensitive to the shell curvature.For the PTFW peaks near the load point,the amplitude of bending moment is significantly affected by curvature,while for the elastic flexural wave of faster speed,shorter wavelength and small amplitude,the curvature effect can be ignored.For the shell with free bottom,the reflected flexural waves and the incident waves at the bottom of the shell are approximately symmetry,while for the shell with fixed bottom,additional PTFW will be caused by the bottom constraint,and the wave propagetion is more complex.The effect of the unloading flexural wave,which is dispersive and developing,on the loading wave is depended on the phasic difference when they meet.When the unloading wave and reflected wave from the bottom action at the same time,the spatio-temporal evolution map of the whole phase transformation zone is represented by some discrete zones.
     Numerical simulation study is conducted on the dynamic response of PPTCS under step or rectangular pulse load.Different pattern and the evolution procedure of phase transition hinge(PTH) is analysed.Under step load,different patterns such as hinge zone at the load point,single,double hinges in the shell may form.Under high but short pulse load,response of PPTCS may be divided into four stages:propagation of flexural waves and formation of PTH during loading,complex evolution of PTH after unloading, intensive whipping of the shell during the load point swinging toward the maximal displacement,and to-and-fro movement around the bottom of the shell;the first three phases occupy relatively short time but the majority of energy is dissipated.
     When the PPTCS,which is placed on a rigid boundary,is impacted by a rigid plate with an initial velocity,the dynamic response of PPTCS is investigated numerically. Results show that the dynamic response may be divided into three stages:formation and movement of PTHs,the evolution of PTHs,and the unloading of PTHs.When impacted by a rigid plate with large mass and slow velocity,the shell present a four PTHs formation and unloading process similar to quasi-static resoponse.When impacted by a plate with little mass but high velocity,there will be a siginificant PTHs removement process before the four PTHs form,during which there will been several separation and re-collision processes among the impact plate,shell and the rigid boundary.Besides,the study for response of PPTCS under three,four and six constraints condition show that when the number of constraints increases,though the dynamic response process is similar, more PTHs will apper in the shell,and the deformation and PT will occur more locally near the impact suface,as a result,buckling may occur more easily near the impact suface.With the increase in the number of constraints,shell stiffness will increase,while the energy absorption changs little.
引文
1.唐志平.冲击相变[M],科学出版社,北京,2008.
    2.Clifton R A,Appl.Mech.Rev.,1993,46:540.
    3.Shockey D A,Curran D R,DeCarli P S.Damage in Steel Plates from Hypervelocity Impact.Ⅰ.Physical Changes and Effect of Projectile Material[J].J Appl Phys,1975,46(9):3766-3775.
    4.Bertholf L D,Buxton L D,Thorne B J,et al.Damage in Steel Plates from Hypervelocity Impact.Ⅱ.Numerical Results and Spall Measurement[J].J Appl Phys,1975,46(9):3776-3783.
    5.Mescheryakov,Y I et al,Shock-induced α-ω phase transition and mechanisms of spallation in shock loaded Titanium alloys,in "SCCM-1999",ed.By M D Furnish et al,2000,AIP,P.439.
    6.Carroll M M.Foundations of solid mechanics.Appl.Mech.Rev.,1985,38(10):1301-1308.
    7.Jones N,Structural Impact,Cambridge Univ.Press,1989.
    8.王礼立、余同希、李永池编,冲击动力学进展,中国科学技术大学出版社,1992。
    9.杨桂通,塑性动力学,高等教育出版社,北京,2000。
    10.余同希,W.J.斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002.
    11.唐志平,卢艰春,张兴华.TiNi相变悬臂梁的横向冲击特性实验研究.爆炸与冲击,2007,27(4):289-295.
    12.张兴华,TiNi相变悬臂梁的冲击响应研究,中国科学技术大学搏士论文,2007.12.
    13.Bancroft D,Peterson E,Minshall S.Polymorphism of iron at high pressure[J].Journal of Applied Physics,1956,27(3):291-298.
    14.Barker L M,Hollenbach R E.Shock wave study of the α□ε phase transition in iron[J].Journal of Applied Physics,1974,45(11):4872-4887.
    15.Loree T R,Fowler C M,Zukas E G,et al.Dynamic polymorphism of some binary iron alloys[J].Journal of Applied Physics,1966,37(4):1918-1927.
    16.Loree T R,Warnes R H,Zukas E G,et al.Polymorphism of Shock Loaded Fe-Mn and Fe-Ni Alloys.Science,1966,153(3741):1277-1278.
    17.Zukas E G,Fowler C M,Minshall F S,et al.Trans.Metall.Soc.AIME (Am.Inst.Min.Metall.Pet.Eng.),1963,227:746
    18.Fowler C M,Minshall F S,Zukas E G.in Response of Meatals to High Velocity Deformation,P.G.Shewmon et al (eds.),Interscience,New York,1961,275.
    19.Wolons D,Gandhi F,Malovrh B.Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires.Journal of Intelligent Material Systems and Structures,1998,9:116-126.
    20.Liu Y,Xie Z,Humbeeck J V.Cyclic deformation of NiTi shape memory alloys.Materials Science and Engineering,1999,A273-275:673-678.
    21.Sehitoglu H,Anderson R,Karaman I,Gall K,Chumlyakov Y.Cyclic deformation behavior of single crystal NiTi.Materials Science and Engineering,2001,A314:67-74.
    22.Dolce M,Cardone D.Mechanical behavior of shape memory alloys for seismic applications 2.Austenite NiTi wires subjected to tension.International Journal of Mechanical Sciences,2001,43:2657-2677.
    23.Nemat-Nasser S,Guo W G.Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures.Mechanics of Materials,2006,38:463-474.
    24.Plietsch R,Ehrlich K.Strength differential effect in pseudoelastic NiTi shape memory alloys.Acta mater.,1997,45(6):2417-2424.
    25.Orgeas L,Favier D.Stress-induced martensitic transformation of a NiTi alloy in isothermal shear,tension and compression.Acta mater.,1998,46(15):5579-5591.
    26.Liu Y,Xie Z,Van Humbeeck J,Delaey L.Asymmetry of stress-strain curves under tension and compression for NiTi shape mamory alloys.Acta mater.,1998,46(12):4325-4338.
    27.Gall K,Sehitoglu H,Chumlyakov Y,Kireeva I,Maier H.Trans.ASME JEMT,1999,121:19-27.
    28.Gall K,Sehitoglu H,Chumlyakov Y,Kireeva I,Maier H.Trans.ASME JEMT,1999,121:28-37.
    29.Gall K,Sehitoglu H,Chumlyakov Y I,Kireeva I V.Tension-compression asymmetry of the stress-strain response in aged single crystal and poly crystal line NiTi.Acta mater.,1999,47(4):1203-1217.
    30.Huseyin Sehitoglu,Robert Anderson,Ibrahim Karaman,Ken Gall,Yuriy Chumlyakov.Cyclic deformation behavior of single crystal NiTi.Materials Science and Engineering,2001,A314:67-74.
    31.Gall K,Sehitoglu H.The role of texture in tension-compression asymmetry in polycrystalline NiTi.International Journal of Plasticity,1999,15:69-92.
    32.Gall K,Sehitoglu H,Anderson R,Karaman I,Chumlyakov Y I,Kireeva I V.On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon.Materials Science and Engineering,2001,A317:85-92.
    33.Lim T J,McDowell D L.Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy.Journal of the Mechanics and Physics of Solids,2002,50:651-676.
    34.Qidwai M A,Lagoudas D C.On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material.International Journal of Plasticity,2000,16:1309-1343.
    35.郭扬波,唐志平徐松林.一种考虑静水压力和偏应力共同作用的相变临界准则.同体力学学报,2004,25(4):417-422.
    36.Liu Y,Li Y L,Ramesh K T,Van Humbeeck J.High strain rate deformation of martensitic NiTi shape memory alloy.Scripta Materialia,1999,41(1):89-95.
    37.施绍裘,陈江瑛,董新龙等.钛镍形状记忆合金冲击变形后形状记忆效应的研究.爆炸与冲击,2001,21(3):168-172.
    38.郭扬波,唐志平,戴翔宇.TiNi合金的压缩形状记忆行为研究.爆炸与冲击,2003,23(增刊):103-104.
    39.Chen W W,Wu Q P,Kang J H,Winfree N A.Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750s-1.International Journal of Solids and Structures,2001,38:8989-8998.
    40.朱珏,张明华,董新龙,等.TiNi合金率相关的动态超弹性行为.爆炸与冲击,2003,23(增刊):81-82.
    41.郭扬波,刘方平,戴翔宇,等.TiNi合金的动态伪弹性行为和率相关相变本构模型.爆炸与冲击,2003,23(2):105-110.
    42.Thakur A M,Thadhani N N,Schwarz R B.Martensitic transformation in NiTi alloys induced by tensile stress pulses.Shock Compression of Condensed Matter-1989,ed.By S.C.Schmidt et al,Elsevier,New York,1990,139-142.
    43.Thakur A M,Thadhani N N,Schwarz R B.Shock-induced martensitic transformations in near-equiatomic NiTi alloys.Metallurgical and Materials Transactions A,1997,28:1445-1455.
    44.Escobar J C,Clifton R J,Yang S Y.Stress-wave-induced martensitic phase transformations in NiTi.Shock Compression of Condensed Matter-1999,ed.By M.D.Furnish,L.C.Chhabildas and R.S.Hixson,American Institute of Physics,Woodbury,New York,2000,267-270.
    45.Millett J C F,Bourne N K.The shock-induced mechanical response of the shape memory alloy,NiTi.Materials Science and Engineering A,2004,378:138-142.
    46.郭扬波.TiNi合金的冲击相变特性和相变本构研究[D].合肥:中国科学技术大学博士学位论文,2005:30-51.
    47.Birman V.Review of mechanics of shape memory alloy structures.Appl.Mech.Rev.,1997,50(11):629-645.
    48.Erkman J O.Smooth spalls and the polymorphism of iron[J].Journal of Applied Physics,1961,32 (5):939-944.
    49.Gray Ⅲ G T,Hayes D B,Hixson R S.Influence of shock-induced α-ε transition in Fe on its post-shock substructure evolution and mechanical behavior[J].Journal de Physique Ⅳ France,2000,10,Pr9:755-760.J.Phys.Ⅳ France,2000.10 (9):755-760
    50.Veeser L R,Gray G T,Vorthman J E,et al.High Pressure Response of a High Purity Iron [C]//Furnish M D,Chhabildas L C,Hixson R S.Shock Compression of Condensed Matter,American Institute of Physics[C].Utah:AIP Conference Proceeding,1999:73-76.
    51.Reinhart W D,Chhabildas L C,Wilson L T.Dynamic Yield Strength and Spall Strength Determination for AerMet~(?)100 Steels[C]// Furnish M D,Chhabildas L C,Hixson R S.Shock Compression of Condensed Matter,American Institute of Physics[C].Utah:AIP Conference Proceeding,1999:471-474.
    52.Christophe V,Gilles R.Study of Spalling for High Purity Iron below and above Induced α(?)β Phase Transition [C]// Furnish M D,Gupta Y M,Forbes J W.Shock Compression of Condensed Matter,American Institute of Physics[C].New York:AIP Conference Proceeding,2003:511-514.
    53.Christophe V,Francois B,Gilles R.Iron Damage and Spalling Behavior below and above induced aop Phase Transition [C]// Furnish M D,Elert M,Russell T P,White C T.Shock Compression of Condensed Matter,American Institute of Physics[C].Maryland:AIP Conference Proceeding,2005:678-681.
    54.Rejzner J,Lexcellent C,Raniecki B.Pseudoelastic behaviour of shape memory alloy beams under pure bending:experiments and modeling.International Journal of Mechanical Sciences,2002,44:665-686.
    55.Rahman M A,Qiu J,Tani J.Buckling and Postbuckling Characteristics of the Superelastic SMA Columns.International Journal of Solids and Structures,2001,38:9253-9265.
    56.Purohit PK,Bhattacharya K.On beams made of phase-transforming materials.International Journal of Solids and Structures,2002,39(13-14):3907-3929.
    57.彭刚,李黎,唐家祥.形状记忆合金受弯杆的力学性能分析.武汉大学学报,2004,37(4):59-64.
    58.Zurek A K,Hixson R S,Anderson W W,Vorthman J E,Gray Ⅲ G T,Tonks D L.J.Phys.Ⅳ,2000,10:677-682.
    59.Guo Y B,Tang Z P,Zhang X H,et al.Phase transition Taylor test.Impact Loading of Lightweight Structures.Vol.WIT Transactions on Engineering Science Volume 49,pp.241-255.2005.
    60.唐志平,卢艰春,张兴华.TiNi相变悬臂梁的横向冲击特性实验研究.爆炸与冲击,2007,27(4):289-295.
    61.张兴华,唐志平,李丹,吴会民.冲击载荷下伪弹性TiNi合金矩形悬臂梁结构响应的实验研究.实验力学,已录用
    62.Sun Q P,Li Z Q.Phase transformation in superelastic NiTi polycrystailine micro-tubes under tension and torsion—from localization to homogeneous deformation.International Journal of Solids and Structures,2002,39:3797-3809.
    63.Li Z Q,Sun Q P.The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension.International Journal of Plasticity,2002,18:1481-1498.
    64.Sun Q P,Feng P.Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force.Journal of the Mechanics and Physics of Solids,2006,54:1568-1603.
    65.Wang YF,Yue ZF,Wang J.Experimental and numerical study of the superelastic behaviour on NiTi thin-walled tube under biaxial loading.Computational Materials Science,2007,40;246-254
    66.Sia Nemat-Nasser,Jeom Yong Choi,Jon B.Isaacs.Quasi-Static and Dynamic Buckling of Thin Cylindrical Shape-Memory Shells.Journal of Applied Mechanics,SEPTEMBER 2006,Vol.73/825
    67.Mahmoud Reza Amini,Sia Nemat-Nasser.Dynamic Buckling and Recovery of Thin Cylindrical Shape Memory Shells.Smart Structures and MaterialsVol.5761 453
    68.Khan M M,Lagoudas D C,Mayes J J,Pseudoelastic SMA Spring Element for Passive Vibration Isolation:Part1-Modeling,J of Intelligent Material Systems and Structures,2004(15)415-441.
    69.Lagoudas D C,Khan M M,Mayes J J,Pseudoelastic SMA Spring Element for Passive Vibration Isolation:Partll-Simulations and Experimental Correlations,J of Intelligent Material Systems and Structures,2004(15)415-441.
    70.Lagoudas D C,Chen Y C,Ravi-Chandar K.Fabrication,Modeling and Characterization of Porous Shape Memory Alloys,2001(私人通讯)。
    71.Rivin E I,Sayal G.“Giant Superelasticity Effect”in NiTi Superelastic Materials and Its Applications.JOURNAL OF MATERIALS IN CIVIL ENGINEERING 2006/851.Journal of Material in Civil Engineering,2006,18:66,851-857
    72.Lagoudas D C,Bo Z,Qidwai M A.A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites.Mechanics of Advanced Materials and Structures,1996,3(2):153-179.
    73.Qing-Ping Sun,Zhi-Qi Li.Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion--from localization to homogeneous deformation.International Journal of Solids and Structures 39 (2002)3797-3809
    74.J.L.Ericksen,Equilibrium of bars.Journal of Elasticity,5 (1975)3-4,p.191
    75.Thomas J.Pence.On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load.Journal of Elasticity 16 (1986),3-42
    76.Abeyaratne R,Knowles JK.Kinetic Relations And The Propagation Of Phase Boundaries In Solids.Archive for Rational Mechanics and Analysis.1991,114(2),119-154
    77.Abeyaratne R,Knowles,Jk.Implications of Viscosity and Strain-Gradient Effects for the Kinetics of Propagating Phase Boundaries in Solids.Siam Journal on Applied Mathematics,1991,51(5),1205-1221
    78.Abeyaratne R,Knowles Jk.On the Propagation of Maximally Dissipative Phase Boundaries in Solids.Quarterly of Applied Mathematics,1991 50(1),149-172
    79.Abeyaratne R,Knowles Jk.A Continuum Model of a Thermoelastic Solid Capable of undergoing Phase-Transitions.Journal of the Mechanics and Physics of Solids,1993,51(3),541-571.
    80.Abeyaratne R,Knowles Jk.A One-Dimensional Continuum Model for Shape-Memory Alloys.International Journal of Solids and Structures 1993,31 (16),2229-2249.
    81.Abeyaratne R,Knowles Jk.Dynamics of Propagating Phase Boundaries-Thermoelastic Solids with Heat-Conduction.Archive for Rational Mechanics and Analysis,1994,126(3),203-230.
    82.Abeyaratne R,Knowles JK.On the Kinetics of an Austenite->Martensite Phase Transformation Induced by Impact in a Cu-Al-Ni Shape-Memory Alloy.ACTA MATERIALIA 1997,45(4),1671-1683.
    83.Abeyaratne R,Knowles JK.On a Shock-Induced Martensitic Phase Transition.Journal of Applied Physics,2000,87(3),1123-1134.
    84.Rosakis P,Knowles JK.Continuum Models for Irregular Phase Boundary Motion in Shape Memory Tensile Bars.European Journal of Mechanics A-Solid,1999,18(1),1-16
    85.Rosakis P,Knowles JK.Unstable Kinetic Relations and the Dynamics of Solid-Solid Phase Transitions.Journal of the Mechanics and Physics of Solids,1997,45(11-12),2055-2081
    86.Abeyaratne R,Kim SJ.Cyclic Effects in Shape-Memory Alloys:A One-Dimensional Continuum Model.International Journal of Solids and Structures 1997,34(25),3273-3289
    87.Vainchtein A,Healey T,Rosakis P,Truskinovsky L.The Role of the Spinodal Region in One-Dimensional Martensitic Phase Transitions.Physica D,1998,115(1-2),29-48
    88.Vainehtein Anna.Dynamics of Non-Isothermal Martensitic Phase Transitions and Hysteresis.International Journal of Solids and Structures Volume,2002,39(13-14),3387-3408
    89.Chen GQ,Ahrens TJ,Yang W,Knowles JK.Effect of Irreversible Phase Change on Shock-Wave Propagation.Journal of the Mechanics and Physics of Solids,1999,47(4),763-783
    90.Xiaoguang Zhong,Thomas Y.Hou,Philippe G.Lefloch.Computational Methods for Propagating Phase Boundaries.Journal of Computational Physics,1996,124,192-216
    91.Thomas Y Hou,Phoebus Rosakis,Philippe Lefloch.A Level-Set Approach to the Computation of Twinning and Phase-Transition Dynamics.Journal of Computational Physics,1999,150,302-331
    92.Bhattacharya K.Phase Boundary Propagation in a Heterogeneous Body.Proceedings of the Royal Society of London Series.A-Mathematical Physical and Engineering Sciences,1999,455(1982),757-766.
    93.Chen YC,Lagoudas DC.Impact Induced Phase Transformation in Shape Memory Alloys.Journal of the Mechanics and Physics of Solids,2000,48(2),275-300
    94.王文强,唐志平.冲击下宏观相边界的传播.爆炸与冲击,2000,20(1),25-31
    95.Tang,Z.P.,Gupta,Y.M.Shock Induced Phase Transition in Cadmium Sulphide Dispersed in An Elastomer.Journal of Applied Physics.1988,64(4):1827-1837.
    96.Bruno O,Vaynblat D.Two-wave structures in shock-induced martensitic phase transitions.Mathematical and Computer Modelling 2001,34(12-13),1261-1271
    97.Dai X Y,Tang Z P,et al,Propagation of macroscopic phase boundaries under impact loading,International Journal of Impact Engineering,2004,30,385-401.
    98.Morley LSD.Elastic waves in a naturally curved rod.Quart J Mech Appl Math 1961;14:155-172.
    99.Gral K F.Elastic wave propagation in a curved sonic transmission line.IEEE Trans Sonics Ultrason 1970;41:1-6.
    100.Phillips J W,Crowley Ⅲ F B.On the theory of pulse propagation in curved beams.J Sound Vib 1972;24:247-258.
    101.Crowley Ⅲ F B,Phillips J W,Taylor C E.Pulse propagation in straight and curved beams—theory and experiment.J Appl Mech 1974;41:71-76.
    102.Shim V P W,Quah S E.Solution of impact-induced flexural waves in a circular ring by the method of characteristics.J Appl Mech 1998;65:569-579.
    103.Shim V P W,Quah S E.Effects of geometrical and loading parameters on wave propagation in a circular ring.International Journal of Impact Engineering 2001;25:103-122
    104.Abrahamson G R,Dynamic Plasitic Flow Buckling of a Cylindrical Shell from Uniform Radial Impulse Procedures.Forth US.National Congress of Applied Mechanics.1962(3):939-950.
    105.Lindberg H E,Dynamic Plastic Buckling of Thin Cylindrical Shell Containing an Elastic Core.J Appl Mech.1965(1):803-812.
    106.Duffey J A,Groth of Buckling Instabilities During Radial Collapse of a Ring.J Pressure Vessel Tech.1990(3):145-151
    107.Florence A L,Dynamic Plastic Buckling of Copper Cylindrical Shells.Int J Solids Struct.1991(3):89-103.
    108.J.A.DeRuntz,P.G.Hodge,Crushing of a tube between rigid plates,Trans.ASME.J.Appl.Mech.30(1963) 391-395.
    109.Reid S R.Effect of strain hardening of the lateral compression of tubes between rigid plates.Int J Solid Structure.1978(1):213-225
    110.茹重庆等,关于冲击荷载下圆柱壳塑性屈曲的两个问题。固体力学学报。1988(1):62-66.
    111.顾王明等,有限长圆柱壳受径向冲击的塑性动力屈曲分析。应用力学学报。1995(4):87-95.
    112.Reddy T Y.Phenomena Associated with the Crushing of Metal Tubes between Rigid Plates.Int J Solid Struct.1980(3):545-562.
    113.Johnson W.The Compression of Crossed Layers of Thin Tubes.Int.J Mech.Sci.1977(2):423-437.
    114.Reid S R,Dynamic Deformation of Tube and Ring Systems.Proc Fifth Symp.on Appl of Mech.1980(1):301-304.
    115.曾守义等,多层吸能元件在冲击波作用下大变形问题的模态解。固体力学学报。1999(3):237-244.
    116.顾红军,爆炸及冲击载荷下多排圆柱壳的结构响应,南京理工大学博士论文,2003.08.
    117.Shaw J A.Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy.International Journal of Plasticity,2000,16:541-562.
    118.Li Q,Seelecke S,Kohl M,etal.Thermo-mechanical finite element analysis of a shape memory alloy cantilever beam.Smart Structures and Materials 2006:Modeling,Signal Processing,and Control,edited by Douglas K.Lindner,Proc.Of SPIE Vol.6166,61661Z,(2006)
    119.Achenbach M.and Muller I.Simulation of material behavior of alloys with shape memory,Arch Mech,1985,37:573-585.
    120.Seelecke S and Muller I,Shape memory alloy actuators in smart structures-modeling and simulation.ASME Applied Mechanics Reviews,2004,57:23-46.
    121.杜晓伟.SMA线性化模型及塑料拉伸曲线CAE计算模型研究[D].上海:上海交通大学博士学位论文,2004.
    122.Brinson L C.One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable.J.Intelligent Mat.Syst.Struct.,1993,4:229-242.
    123.Qidwai M A,Entchev P B,Lagoudas D C,etal.Modeling of the thermomechanical behavior of porous shape memory alloys.International Journal of Solids and Structures,2001,38:8653-8671.
    124.Auricchio F,Taylor R L.Shape-memory alloys:modelling and numerical simulations of the finite-strain superelastic behavior.Comput.Methods Appl.Mech.Engrg.1997,143:175-194.
    125.Auriechio F,Taylor R L,Lubliner J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior.Comput.Methods Appl.Mech.Engrg.,1997,146:281-312.
    126.孙庆平.固体相变过程中的宏细观力学问题及其研究进展.力学进展,1995,25(3):303-317.
    127.Fischer F D,Sun Q P,Tanaka K.Transformation-induced plasticity(TRIP).Appl.Mech,Rev.,1996,49(6):317-364.
    128.朱祎国.形状记忆合金及其复合材料的本构关系.大连理工大学博士论文,2002.
    129.Hayes D B.Wave propagation in a condensed medium with N transforming phases:Application to solids-Ⅰ-solid-Ⅱ-liquid bismuth.J.Appl.Phys.,1975,46(8):3438-3443.
    130.Abeyaratne R,Kim S J,Knowles J K.Continuum modeling of shape memory alloys.Mechanics of Phase Transformations and Shape Memory Alloys,Brinson L C,Moran B(eds),ASME,1994,New York,59-69.
    131.王文强,唐志平.关于相变本构关系的一个一维模型.高压物理学报,1999,13(4):272-277.
    132.HKS 2005.ABAQUS/Explicit User's Manual,Karlsson and Sorrensen.Inc.,Hibbit.
    133.唐小军,胡海波,李庆忠,等.HR2钢及几种铁基材料的冲击相变行为.爆炸与冲击,2006,26(2):115-120
    134.陈永涛,李庆忠,胡海波.低相变阈值金属高压加载下的相变层裂特性研究.爆炸与冲击,已录用。
    135.陈永涛,李庆忠,胡海波.FeMnNi合金高压相变波形测量和层裂机理分析.高能量密度物质,2008,1:8-12.
    1.Dai X Y,Tang Z P,Xu Songlin,Propagation of macroscopic phase boundaries under impact loading.International Journal of Impact Engineering 2004,30,385.
    2.Bruno O,Vaynblat D.Two-wave structures in shock-induced martensitic phase transitions.Mathematical and Computer Modelling 2001,34(12-13),1261-1271
    3.Tang Z P,Gupta Y M,Shock induced phase transition in cadmium sulphide dispersed in an elastomer.J.App.Phys.,1988,64,1827.
    4.Tang,Z P,Gupta,Y M,Phase transition in cadmium sulfide single crystals shocked along the c axis.J.App.Phys.,1997,81(Ⅱ),7203.
    5.唐志平.冲击相变,科学出版社,北京,2008。
    6.王礼立,应力波基础(第二版),国防工业出版社,2005。
    7.戴翔宇,唐志平,冲击相边界传播过程中梯度材料的形成,高压物理学报,2003,17(2),111。
    8.王文强,唐志平,冲击下宏观相边界的传播,爆炸与冲击,2000,20(2),25。
    9.Guo Y B,Tang Z P,Zhang X H,Phase Transition Taylor Test,WIT Transactions on Engineering Sciences,Vol 49,Impact Loading of Lightweight Structures,M.Alves & N.Jones(Editors),2005,pp241-255.
    10.Wilkins M L,Guinan M W,Impact of cylinders on a rigid boundary,J.Appl.Phys.,1973,44,1200.
    1.唐小军,胡海波,李庆忠,等.HR2钢及几种铁基材料的冲击相变行为.爆炸与冲击,2006,26(2):115-120
    2.张兴华,唐志平,徐薇薇,等.FeMnNi合金的冲击相变和层裂特性的实验研究.爆炸与冲击,2007,27(2):103-108
    3.Tang Z P,Gupta Y M.Shock Induced Phase Transition in Cadmium Sulphide Dispersed in an Elastomer.J Appl Phys,1988,64:1827-1837.
    4.Tang,Z P,Gupta,Y M.Phase Transition in Cadmium Sulfide Single Crystals Shocked along the c Axis.J Appl Phys,1997,81(11):7203-7212.
    5.Barker L M,Hollenbach R E.Shock wave study of the α(?)ε phase transition in iron.Journal of Applied Physics,1974,45(11),4872-4887.
    6.王礼立.应力波基础(第2版).北京:国防工业出版社,2005.
    7.陈永涛,李庆忠,胡海波.低相变阈值金属高压加载下的相变层裂特性研究.爆炸与冲击,已录用。
    8.陈永涛,李庆忠,胡海波.FeMnNi合金高压相变波形测量和层裂机理分析.高能量密度物质,2008,1:8-12.
    9.Chhabildas L C,私人通讯.
    1.ABAQUS INC.ABAQUS Version 6.5 Documentation[M]..Providence,RI,USA:HKS Inc,2004.
    2.庄茁.ABAQUS Explicit有限元软件入门[M].北京:清华大学出版社,2001.
    3.庄茁.ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    4.郭扬波.TiNi合金的冲击相变特性和相变本构研究.合肥:中国科学技术大学博士学位论文,2005.
    5.Guo Y B,Tang Z P,Zhang X H,Phase Transition Taylor Test,WIT Transactions on Engineering Sciences,Vol 49,Impact Loading of Lightweight Structures,M.Alves & N.Jones(Editors),2005:241-255.
    6.李丹,中国科学技术大学气炮实验室内部报告,2008-1
    7.王志刚,黄克智.一种描述形状记忆合金拟弹性变形行为的本构模型.力学学报,1991,23(2):201-210.
    8.Hayes D B.Wave propagation in a condensed medium with N transforming phases:Application to solids-Ⅰ-solid-Ⅱ-liquid bismuth.J.Appl.Phys.46(8),1975,3438-3443.
    9.胡增强,材料力学习题解析,中国农业机械出版社,1983。
    10.张兴华.TiNi相变悬臂梁的冲击响应研究[D].合肥:中国科学技术大学博士学位论文,2007.
    11.杜晓伟,孙国钧,陈淮.形状记忆合金简化本构模型在结构抗震中的应用.世界地震工程,2004,20(3):156-159.
    12.董杰.复杂结构在冲击和振动加载下动态响应分析[D].合肥:中国科学技术大学博士学位论文,2006.
    13.王礼立,应力波基础(第二版),国防工业出版社,2005。
    1.张兴华.TiNi相变悬臂梁的冲击响应研究[D].合肥:中国科学技术大学博士学位论文,2007.
    2.Morley LSD.Elastic waves in a.naturally curved rod.Quart J Mech Appl Math 1961;14:155-72.
    3.Graff KF.Elastic wave propagation in a curved sonic transmission line.IEEE Trans Sonics Ultrason 1970;41:1-6.
    4.Phillips JW,Crowley Ⅲ FB.On the theory of pulse propagation in curved beams.J Sound Vib 1972;24:247-58.
    5.Crowley Ⅲ FB,Phillips JW,Taylor CE.Pulse propagation in straight and curved beams—theory and experiment.J Appl Mech 1974;41:71-6.
    6.Shim V P W,Quah S E.Solution of impact-induced flexural waves in a circular ring by the method of characteristics.Journal of Applied Mechanics,1998,65:569-579.
    7.Shim V P W,Quah S E.Effects of geometrical and loading parameters on wave propagation in a circular ring.International Journal of Impact Engineering,2001,25:103-122.
    8.王礼立.应力波基础[M].北京:国防工业出版社,2005.
    9.Yu T X,Yang J L,Reid S R.Interaction between reflected elastic flexural waves and a plastic 'hinge' in the dynamic response of pulse loaded beam.International Journal of Impact Engineering,1997,19(5-6):457-475.
    10.胡增强,材料力学习题解析,中国农业机械出版社,1983。
    11.Wittrick WH.Elastic wave propagation in helical springs.Int J Mech Sci 1966;8:25-47.
    12.余同希,W.J.斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002.
    1.张兴华.TiNi相变悬臂梁的冲击响应研究[D].合肥:中国科学技术大学博士学位论文,2007.
    2.Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells.D.Karagiozova,N.Jones,Solids and Structures 38(2001) 6723-6749.
    3.Controlling stiffness of a frame spring by changing the boundary condition with an SMA actuator.Jaakko Heinonen,Ismo Vessonen,Paul Klinge,Computers and Structures 86(2008)398-406
    4.胡增强,材料力学习题解析,中国农业机械出版社,1983。
    5.顾红军,爆炸及冲击载荷下多排圆柱壳的结构响应,南京理工大学博士论文,2003.08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700