基于特征思想的高分辨率格式的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为数值求解依赖时间的偏微分方程提出两类基于特征思想的高分辨率格式。从而我们主要考虑两部分内容。首先基于CIP方法和高阶紧致方法,我们提出一种新型特征插值高阶紧致差分方法,并将其运用于数值模拟非线性波动方程。然后我们对守恒型双曲方程提出一种基于特征思想的有限体积方法,并应用于数值求解Eulelr方程组和浅水方程组。
     论文的第一大部分,我们对非线性波动方程提出一种非守恒Semi-Lagrangian方法。这种格式的主要构造思想如下:根据两相邻节点的节点值和导数值构造三次多项式,然后运用Semi-Lagrangian的方法求解节点沿特征线移动的位置,由此三次多项式和节点位置得到时间上的推进。不同于传统的CIP格式,我们利用最初由Lele提出的高阶紧致格式直接利用节点值求解一阶导数值。最后我们将这种格式运用于数值模拟Burgers方程和KdV方程验证格式的高分辨率的性质。通过一系列的数值试验验证格式的有效性。最后将这种格式推广到一维的Euler方程组。
     论文的第二大部分,我们对双曲守恒方程组构造有限体积格式,由于Euler方程组在空气动力学中的的重要性,我们主要基于Euler方程组构造格式。这种格式的空间导数通过有限体积离散,时间上采用Simpson公式离散。其中有限体积格式中的通量值通过单元边界点的值得到,而该单元边界点的值是通过中心加权重构得到。求解此节点值的主要思想如下:首先运用三阶或四阶Runge-Kutta方法求解特征方程,从而得到节点沿特征线的位置。然后采用CWENO重构得到多项式,我们分别构造三阶和五阶CWENO格式构造多项式,最后利用节点位置和此多项式得到节点值。这种高分辨率的有限体积格式结合特征思想和中心加权格式的优点。然后我们将这种基于特征思想的有限体积格式应用于一维的标量和Euler守恒方程,通过经典的算例验证格式的高分率和收敛的性质。
     最后将这种基于特征思想的高阶有限体积格式应用于一些浅水问题,从而验证格式,如一维溃坝问题,临界左稀疏波问题,两稀疏波中间几乎为干底问题,干溃坝问题,生成干溃坝问题等。另外,我们同时将这种格式按照分裂方法推广到二维守恒律情形。并通过对二维的溃坝问题的应用验证格式的有效性,通过与WAF格式以及其它高阶数值格式相比较可以看到该格式得到非常好的数值结果。
This dissertation introduces two types of characteristic-based high order numerical methods for solutions of time-dependent nonlinear partial differential equations, and thus it is composed of two main parts.First,a new finite difference method,which combines Constrained Interpolation Profile(CIP) method and the High-order compact (HOC) method,is proposed to numerically solve the wave propagation problems of nonlinear evolution equations.Second,we discuss a characteristic-based finite volume method for hyperbolic conservation laws,in particular we use it to solve the Euler equations and shallow water equations.
     In the first part of dissertation,a non-conservative semi-Lagrangian scheme,the CIP-HOC coupling method,is presented for solving some nonlinear waves equations. The main idea of the proposed scheme is as follows.A third-order polynomial is constructed through interpolating the points and derivative values at two adjacent grid points.Unlike to the traditional CIP method,the derivative used in the presented scheme is obtained by using a high-order compact scheme originally proposed by Lele. The position of grid point along the characteristic curves can be obtained by using the semi-Lagrangian method.The evolution of the point value at the next time step is defined by using the obtained polynomial at the position of the grid point.To test the high accurate property of the scheme,we applied to solve the Burger's and KdV equations. A series of numerical experiments are given,and numerical results also verify the effectiveness of the new scheme.In the end,this scheme is also extended to solve one dimensional Euler equations.
     In the second part,we discuss a characteristic-based finite volume method for hyperbolic conservation laws.We focus on the Euler system due to its importance in gas dynamics.In the scheme,the spatial derivatives are discritized by a finite volume method,while in time,the Simpson's quadrature rule is used.The point values at the cell boundaries are obtained by using the Central WENO reconstruction.The method is composed of the following steps:the position of the grid points along the characteristic curves are computed by using the third or fourth order Runge-Kutta method,while the polynomial is obtained by using the third order or fifth order CWENO reconstruction. Then,we obtain the grid point values by using the polynomial function at the point position.Finally,the numerical flux in the new finite volume scheme is obtained based on the point value.The new high resolution finite volume method is combined with the high resolution property of the characteristic method and the non-oscillatory property of the CWENO method.Some classical tests for both scalar and Euler conservations laws in one dimension are performed to verify he accuracy and convergence of the present scheme.
     In the end,some benchmark tests of shallow wave equations are also adopted to verify the presented finite volume scheme,such as 1D dam-break with large depth difference,left critical rarefaction,two rarefactions and nearly dry bed,dam-break problem with dry bed and the generation of dry bed in the middle.Furthermore,we also extend the scheme to 2D conservation laws by using the dimensional splitting approach.For the 2D dam-break problems,the performance of the present scheme has been compared with the WAF scheme and other high-order schemes.
引文
[1]A.Bermudez and M.E.Vazquez.Upwind methods for hyperbolic conservation laws with source terms.Computers &fluids,23(8):1049-1071,1994.
    [2]A.Bermudez,A.Dervieux,et al.Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes.Computer methods in applied mechanics and engineering,155(1-2):49-72,1998.
    [3]A.Chertock and D.Levy.A Particle Method for the KdV Equation.Journal of Scientific Computing,17(1-4):491-499,2002.
    [4]A.Harten.High resolution schemes for conservation laws.Journal of Computational Physics,49(1):357-393,1983.
    [5]A.Harten,B.Engquist,S.Osher and SR Chakravarthy.Uniformly high order accurate essentially non-oscillatory schemes,Ⅲ.Journal of Computational Physics,131(1):3-47,1997.
    [6]A.I.Delis and T.Katsaounis.Relaxation schemes for the shallow water equations.International Journal for Numerical Methods in Fluids,41(7):695-719,2003.
    [7]A.I.Delis and T.Katsaounis.Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods.Applied Mathematical Modelling,29(8):754-783,2005.
    [8]A.Jameson.Artificial diffusion,upwind biasing,limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows,AIAA 93-3359.
    [9]A.Kurganov and D.Levy.A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations.Siam Journal on Scientific Computing,22(4):1461-1488,2000.
    [10]A.Kurganov and D.Levy.Central-upwind schemes for the Saint-Venant system.Mathematical Modelling and Numerical Analysis,36(3):397-425,2002.
    [11]A.Kurganov and G.Petrova.Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws.Numerical Methods for Partial Differential Equations,21(3):536-552,2005.
    [12]A.Kurganov and C.T.Lin.On the reduction of numerical dissipation in central-upwind schemes.Communications in Computational Physics,2(1):141-163,2007.
    [13]A.Mohammadian and DY Le Roux.Conservative semi-implicit semi-Lagrangian scheme for simulation of shallow flows.Computer Physics Communications,174(2):99-108,2006.
    [14]A.Mohammadian and DY Le Roux.A conservative extension of the method of characteristics for 1-D shallow flows.Applied Mathematical Modelling,31(2):332-348,2007.
    [15]A.Robert.A stable numerical integration scheme for the primitive meteorological equation.atmos.Ocean,19:35-46,1981.
    [16]B.Van Leer.Towards the ultimate conservative difference scheme I:The quest for monotonicity.Lecture notes in physics,18:163-168,1973.
    [17]B.Van Leer.Towards the ultimate conservative difference scheme Ⅱ:Monotonicity and conservation combined in a second-order scheme.Journal of Computational Physics,14:361-370,1974.
    [18]B.Van Leer.Towards the ultimate conservative difference scheme Ⅲ:Upstream-centered finite difference schemes for ideal compressible flow.Journal of Computational Physics,23:263-275,1977.
    [19]B.Van Leer.Towards the ultimate conservative difference scheme Ⅳ:A new approach to numerical convection.Journal of Computational Physics,23:276-299,1977.
    [20]B.Van Leer.Towards the ultimate conservative difference scheme Ⅴ:A second-order sequel to Godunov's method.Journal of Computational Physics,32:101-136,1979.
    [21]B.Van Leer.On the relation between the upwind-differencing schemes of Godunov,Engquist-Osher and Roe.SIAM Journal on Scientific and Statistical Computing,5(1):1-20,1985.
    [22]C.Chen and F.Xiao.Shallow water model on cubed-sphere by multi-moment finite volume method.Journal of Computational Physics,227(10):5019-5044,2008.
    [23]C.Hu and C.W.Shu.Weighted essentially non-oscillatory schemes on triangular meshes.Journal of Computational Physics,150(1):97-127,1999.
    [24]C.Lacor et al.A finite volume formulation of compact central schemes on arbitrary structured grids.Journal of Computational Physics,198(2):535-566,2004.
    [25]C.N.Lu,J.X.Qiu and R.Y.Wang.Weighted essential non-oscillatory schemes for tidal bore on unstructured meshes.International Journal for Numerical Methods in Fluids,59(6):611-630,2009.
    [26]C.W.Shu。TVB uniformly high order schemes for conservation laws.Math.Comput.,49:105-121,1987.
    [27]C.W.Shu and S.Osher.Efficient implementation of essentially non-oscillatory shockcapturing schemes.Journal of Computational Physics,77(2):439-471,1988.
    [28]C.W.Shu and S.Osher.Efficient implementation of essentially non-oscillatory shock capturing schemes.Ⅱ.Journal of Computational Physics,83(1):32-78,1989.
    [29]C.W.Shu.High-order finite difference and finite volume WENO schemes and discontinuous galerkin methods for CFD.International Journal of Computational Fluid Dynamics,17(2):107-118,2003.
    [30]D.J.Korteveg and G.de Vries.On the change of form of long waves advancing in a rectangular channel and a new type of long stationary waves.Philos.Mag.,5(39):422-443,1895.
    [31]D.Levy,G.Pupo and G.Russo.Central WENO schemes for hyperbolic systems of conservation laws.Mathematical Modelling and Numerical Analysis,33(3):547-571,1999.
    [32]D.Levy,G.Pupo and G.Russo.Compact central WENO schemes for multidimensional conservation laws.Siam Journal on Scientific Computing,22(2):656-672,2000.
    [33]D.Levy,G.Puppo and G.Russo.A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws.Siam Journal on Scientific Computing,24(2):480-506,2002.
    [34]D.Levy,S.Nayak,C.W.Shu and Y.T.Zhang.Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.Siam Journal on Scientific Computing,28(6):2229-9247,2006.
    [35]D.V.Gaitonde and J.S.Shang.Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena.Journal of Computational Physics,138(2):617-643,1997.
    [36]D.V.Gaitonde and M.R.Visbal.High-order schemes for Navier-Stokes equations:algorithms and implementation into FDL3DI.Technical Report AFRL-VA-WPTR-1998-3060,Air Force Research Laboratory,Wright-Patterson AFB,Ohio.1998.
    [37]E.Audusse,F.Bouchut,et al.A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows.Siam Journal on Scientific Computing,35(6):2050-2065,2004.
    [38]E.F.Toro.Riemann Problems and the WAF Method for Solving the Two-Dimensional Shallow Water Equations.Philosophical Transactions of the Royal Society:Physical and Engineering Sciences(1990-1995),338(1649):43-68,1992.
    [39]E.F.Toro.The Weighted Average Flux Method Applied to the Euler Equations.Philosoph- ical Transactions of the Royal Society:Physical and Engineering Sciences(1990-1995),341:499-530,1992.
    [40]E.F.Toro,M.Spruce and W.Spears.Restoration of the contact surface in the HLL-Riemann solver,Shock Waves,4(1):1432-2153,1994.
    [41]E.F.Toro.Riemann problems and the WAF method for solving the two-dimensional shallow water equations.Philosophical Transactions:Physical Sciences and Engineering,338(1649):43-68,1992.
    [42]E.F.Toro.Pdemann solvers and numerical methods for fluid dynamics:A practical introduction,Springer-Verlag,Second Edition.June 1999.
    [43]E.F.Toro.Shock-Capturing methods for free-surface shallow flows.Wiley and Sons Ltd.2001.
    [44]E.L.Miller.Predictor-corrector studies of Burgers' model of turbulent flow.M.S.Thesis,University of Delaware,Newark,DE,1966.
    [45]E.N.Aksan and A.(O|¨)zdes.Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method.Applied Mathematics and Computation 175(2):1256-1265,2006.
    [46]E.Tadmor.Approximate solutions of nonlinear conservation las.CIME Lecture notes,1997,UCLA CAM Report 97-51.
    [47]F.Alcrudo and P.Garcia-Navarro.A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations,International Journal for Numerical Methods in Fluids,16(6):489-505,2005.
    [48]F.Bianco,G.Puppo and G.Russo.High-order central schemes for hyperbolic systems of conservation laws.Siam Journal on Scientific Computing,21(1):294-322,1999.
    [49]F.Xiao and T.Yabe.Completely Conservative and Oscillationless Semi-Lagrangian Schemes for Advection Transportation.Journal of Computational Physics,170(2):498-522,2001.
    [50]F.Xiao and A.Ikebata.An efficient method for capturing flee boundary in multi-fluid simulations.International Journal for Numerical Methods in Fluids,42(2):187-210,2003.
    [51]F.Xiao.Unified formulation for compressible and incompressible flows by using multiintegrated moments I:one-dimensional inviscid compressible flow.Journal of Computational Physics,195(2):629-654,2004.
    [52]F.Xiao,A.Ikebata and T.Hasegawa.Numerical simulations of free-interface fluids by a multi integrated moment method.Comput.Struct.,83(6-7):409-423,2005.
    [53]F.Xiao,R.Akoh and S.Li.Unified formulation for compressible and incompressible flows by using multi-integrated moments Ⅱ:Multi-dimensional version for compressible and incompressible flows.Journal of Computational Physics,213(1):31-56,2006.
    [54]G.Capdeville.A Hermite upwind WENO scheme for solving hyperbolic conservation laws.Journal of Computational Physics,227(4):2430-2454,2008.
    [55]G.Capdeville.A central WENO scheme for solving hyperbolic conservation laws on nonuniform meshes.Journal of Computational Physics,227(5):2977-3014,2008.
    [56]G.Gottardi and M.Venutelli.Central scheme for two-dimensional dam-break flow simulation.(?)dvances in Water Resources,37(3):259-268,2004.
    [57]G.Lin,L.Grinberg and G.E.Karniadakis.Numerical studies of the stochastic Kortewegde Vries equation.Journal of Computational Physics,213(2):676-703,2006.
    [58]G.Sod.A survey of several finite difference methods for systems of non-linear conservation laws.Journal of Computational Physics,27(1):1-31,1978.
    [59]G.S.Jiang and C.W.Shu.Efficient implementation of weighted ENO schemes.Journal of Computational Physics,126(I):202-228,1996.
    [60]G.S.Jiang and E.Tadmor.Nonoscillatory central schemes for multidimensional hyperbolic conservation laws,Siam Journal on Scientific Computing,19(6):1892-1917,1998.
    [61]G.S.Jiang and D.P.Peng.Weighted ENO schemes for Hamilton-Jacobi equations.Siam Journal on Scientific Computing,21(6):2126-2143,2000.
    [62]G.Vignoli,V.A.Titarev and E.F.Toro.ADER schemes for the shallow water equations in channel with irregular bottom elevation.Journal of Computational Physics,227(4):2463-2480,2008.
    [63]H.C.Yee,N.D.Sandham and M.J.Djomehri.Low-dissipative high-order shock-capturing methods using characteristic-based filters.Journal of Computational Physics,151(1):199-238,1999.
    [64]H.H.Feng,L.Cai and W.X.Xie.CWENO-type central-upwind schemes for multidimensional Saint-Venant system of shallow water equations.Applied Numerical Mathematics,56(7):1001-1017,2006.
    [65]H.Luo and J.D.Baum.A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids.Journal of Computational Physics,225(1):686-713,2007.
    [66]H.Nessyahu and E.Tadmor.Non-oscillatory Central Differencing for Hyperbolic Conservation Laws.Journal of Computational Physics,87(2):408-463,1990.
    [67]H.Takewaki.A.Nishiguchi and T.Yabe.Cubic interpolated pseudo particle method(CIP)for solving hyperbolic type equations.Journal of Computational Physics,61(2):261-268,1985.
    [68]H.Takewaki and T.Yabe.The cubic-interpolated pseudo particle(CIP) method:Application to nonlinear and multi-dimensional hyperbolic equations.Journal of Computational Physics,70(2):355-372,1987.
    [69](?)dris Da(?) and Yilmaz Dereli.Numerical solutions of KdV equation using radial basis functions,Applied Mathematical Modelling,32(4):535-546,2008.
    [70]J.B.Goodman and R.J.LeVeque.A geometric approach to high resolution TVD schemes.SIAM J.Numer.Anal.,25(2):268-284,1988.
    [71]J.G.Zhou,D.M.Causon,C.G.Mingham,and D.M.Ingram.The Surface Gradient Method for the Treatment of Source Terms in the Shallow-Water Equations.Journal of Computational Physics,168(1):1-25,2001.
    [72]J.G.Zhou,D.M.Causon,D.M.Ingram and C.G.Mingham.Numerical solutions of the shallow water equations with discontinuous bed topography.International Journal for Numerical Methods in Fluids,38(8):769-788,2002.
    [73]J.L and Miguel R.Visbal.High-order Compact Schemes for Nonlinear Dispersive Waves.Journal of Scientific Computing,26(1):1-23,2006.
    [74]J.M.Gallardo,C.Pares and M.Castro.On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas.Journal of Computational Physics,227(I):574-601,2007.
    [75]J.Qiu and C.W.Shu.Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:onedimensional case.Journal of Computational Physics,193(1):115-135,2004.
    [76]J.Qiu and C.W.Shu.Runge-Kutta discontinuous Galerkin method using WENO limiters.SIAM Journal on Scientific Computing,26(3):907-929,2005.
    [77]J.Shi,C.Q.Hu and C.W.Shu.A technique of treating negative weights in WENO schemes.Journal of Computational Physics,175(1):108-127,2002.
    [78]J.W.Wang and R.X.Liu.Combined finite volume-finite element method for shallow water equations,Computers & Fluids,34(10):1199-1222,2005.
    [79]J.YAN and C.W.SHU.A local discontinuous Galerkin method for KdV type equations.SLAM JOURNAL ON NUMERICAL ANALYSIS,40(2):769-791,2002.
    [80]K.,Anastasioua and C.T.Chan.Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes.International Journal for Numerical Methods in Fluids,24(11):1225-1245,1997.
    [81]K.Miller and R.N.Miller.Moving finite elements.I.SIAM JOURNAL ON NUMERICAL ANALYSIS,18(6):1017-1032,1981.
    [82]K.Miller.Moving finite elements.Ⅱ.SLAM JOURNAL ON NUMERICAL ANALYSIS,18(6):1032-1057,1981.
    [83]K.S.Erduran,V.Kutija and C.J.M.Hewett.Performance of finite volume solutions to the shallow water equations with shock-capturing schemes.International Journal for Numerical Methods in Fluids,40(10):1237-1273,2002.
    [84]K.O.Friedrichs and P.D.Lax.Systems of Conservation Equations with a Convex Extension.Proc.Nat.Acad.Sci.USA,68(8):1686-1688,1971.
    [85]L.Fraccarollo and E.F.Toro.Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems.Journal of Hydraulic Research,33(6):843-864,1995.
    [86]L.Jiang,H..Shah and C Liu.Weighted Compact Scheme for shock capturing,International Journal of Computational Fluid Dymamics,15(2):147-155,2001.
    [87]M.A.Helal and M.S.Mehanna.A comparative study between two different methods for solving the general Korteweg-de Vries equation(GKdV).Chaos,Solitons and Fractals,33:725-739,2007.
    [88]M.Banda and M.Seaid.Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws.Numerical Methods for Partial Differential Equations,23(5):1211-1234,2007.
    [89]M.Dehghan and Ali Shokri.A numerical method for KdV equation using collocation and radial basis functions.Nonlinear Dyn,50(1-2):111-120,2007.
    [90]M.Dumbser,M.Kaser,V.A.Titarev and E.F.Toro.Quadrature-flee non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems.Journal of Computational Physics,226(1):204-243,2007.
    [91]M.Dumbser,C.Enaux,E.F.Toro.Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws.Journal of Computational Physics,227(8):3971-4001,2008.
    [92]Mustafa G(u|¨)lsu,Turgut(O|¨)zis.Numerical solution of Burgers' equation with restrictive Taylor approximation.Appl.Math.Comput.,171(2):1192-1200,2005.
    [93]M.H.Carpenter,D.Gottlieb and S.Abarbanel.The stability of numerical boundary treatments for compact high-order finite-difference schemes.Journal of Computational Physics ,108(2):272-295,1993.
    [94]M.J.Berger and R.J.LeVeque.Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems.Siam Journal on Numerical Analysis,35:(6):2298-2316,1998.
    [95]M.M.Hassan.Exact solitary wave solutions for a generalized KdV-Burgers equation.Chaos,Solitons and Fractals,19(5):1201-1206,2004.
    [96]M.Piller and E.Stalio.Finite-volume compact schemes on staggered grids.Journal of Computational Physics,197(1):299-340,2004.
    [97]M.Seaid.Non-oscillatory relaxation methods for the shallow-water equations in one and two space dimensions.International Journal for Numerical Methods in Fluids,46(5):457-484,2004.
    [98]M.E.Vazquez-Cendon.Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry.Journal of Computational Physics,148(2):497-526,1999.
    [99]M.R.Visbal and D.V.Gaitonde.High-order-accurate methods for complex unsteady subsonic flows.AIAA journal,37(10):1231-1239,1999.
    [100]M.R.Visbal and D.V.Gaitonde.On the use of higher-order finite-difference schemes on curvilinear and deforming meshes.Journal of Computational Physics,181(1):155-185,2002.
    [101]M.Zennaro.Natural continuous extensions of Runge-Kutta methods.Mathematics of Computation,46:119-133,1986.
    [102]N.A.Adams and K.Shariff.A high-resolution hybrid compact-ENO scheme for shockturbulence interaction problems.Journal of Computational Physics,127(1):27-51,1996.
    [103]N.A.Hassan Ismail,Kamal R.Raslan and Ghada S.E.Salem.Solitary wave solutions for the general KDV equation by Adomian decomposition method.Applied Mathematics and Computation,154(1):17-29,2004.
    [104]N.A.Hassan Ismail.Comparison study between restrictive Taylor,restrictive P(?)Ae approximations and Adomian decomposition method for the solitary wave solution of the General KdV equation.Applied Mathematics and Computation,167(2):849-869,2005.
    [105]N.Crnjaric-Zic,S.Vukovic and L.Sopta.Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations.Journal of Computational Physics,200(2):512-548,2004.
    [106]P.Colella.Direct Eulerian MUSCL scheme for gas dynamics.SIAM Journal on Scientific and Statistical Computing,6:104-117,1985.
    [107]P.D.Lax.Weak solutions of nonlinear hyperbolic equations and their numerical computation.Commun.Pure Appl.Math.,7(1):159-193,1954.
    [108]P.D.Lax and B.Wendroff.Systems of conservation laws.Commun.Pure Appl.Math.,13:217-237,1960.
    [109]P.Garcia-Navarro,M.E.Vazquez-Cendon.On numerical treatment of the source terms in the shallow water equations.Computers & Fluids,29(8):951-979,2000.
    [110]P.K.Sweby.High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM J.Numer.Anal.,21:995-1011,1984.
    [111]R.Courant,K.Friedrichs and H.Lewy.On Partial Difference Equations of Mathematics Physics.Math..Ann.,100,32-74,1928.
    [112]R.Akoh,S.Li and F.Xiao.A CIP/multi-moment finite volume method for shallow water equations with source terms.International Journal for Numerical Methods in Fluids,56(12):2245-2270,2007.
    [113]R.Bernetti,V.A.Titarev,E.F.Toro.Exact solution of the Pdemann problem for the shallow water equations with discontinuous bottom geometry.Journal of Computational Physics,227(6):3212-3243,2008.
    [114]R.F.Warming and R.W.Beam.Upwind second order difference schemes with applications in aerodynamic flows.AIAA Journal,24:1241-1249,1976.
    [115]R.Hixon.Prefactored small-stencil compact schemes,Journal of Computational Physics,165(2):522-541,2000.
    [116]R.J.LeVeque.Numerical methods for conservation laws,Lectures in Mathematics.Birkhauser Verlag,Basel,1992.
    [117]R.J.LeVeque.Wave propagation algorithms for multidimensional hyperbolic systems.Journal of Computational Physics,131(2):327-353,1997.
    [118]R.J.LeVeque.Finite volume methods for hyperbolic problems.
    [119]R.J.LeVeque.Balancing source terms and flux gradients in high-resolution Godunov methods:The quasi-steady wave-propagation algorithm.Journal of Computational Physics,146(1):346-365,1998.
    [120]R.Tanaka,T.Nakamura and T.Yabe.Constructing exactly conservative scheme in a nonconservative form.Comput.Phys.Commun.,126(3):232-243,2000.
    [121]R.X.Liu and L.L.Wu.Small-stencil Pade schemes to solve non-linear evolution equations.Applied Mathematics and Mechanics,26(7):72-881,2005.
    [122]S.R.Chakravarthy,A.Harten,S.Osher.Essentially nonoscillatory shock capturing schemes of arbitrarily high accuracy.AIAA-86-0339
    [123]S.Andrew.Semi-Lagrangian Integration Schemes for Atmospheric Models-A Review.Monthly Weather Review,119:2206-2223,1991.
    [124]S.Bryson and D.Levy.Balanced central schemes for the shallow water equations on unstructured grids.Siam Journal on Scientific Computing,27(2):532-552,2005.
    [125]S.Chippada,C.N.Dawson,ML.Martinez,MF.Wheeler.A Godunov-type finite volume method for the system of shallow water equations.Computer Methods in Applied Mechanics and Engineering,151(1-2):105-129:1998.
    [126]S.F.Bradfor and B.F.Sanders.Finite-volume model for shallow-water flooding of arbitrary topography.Journal of Hydraulic Engineering,128(3):289-298,2002.
    [127]S.Jin and Z.Xin.The relaxation schemes for systems of conservation laws in arbitrary space dimensions.Communications on Pure and Applied Mathematics,48(3):235-278,1995.
    [128]S.K.Godunov.A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics.Mat.Sb.,47:357-393,1959.
    [129]S.K.Lele.Compact finite difference schemes with spectral-like resolution.Journal of Computational Physics,103:16-42,1992.
    [130]S.Li,and F.Xiao.CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation.Journal of Computational Physics,222(2):849-871,2007.
    [131]S.Li,and F.Xiao.High order Multi-Moment Constrained Finite Volume Method.Part Ⅰ:Basic Formulation.Journal of Computational Physics,accept,2009.
    [132]S.Nagarajan,S.K.Lele and J.H.Ferziger.A robust high-order compact method for large eddy simulation.Journal of Computational Physics,191(2):392-419,2003.
    [133]S.Noelle,N.Pankratz,G.Puppo and J.R.Natvig.Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows.Journal of Computational Physics,213(2):474-499,2006.
    [134]S.Noelle,Y.Xing and C.W.Shu.High-order well-balanced finite volume WENO schemes for shallow water equation with moving water.Journal of Computational Physics,226(1):29-58,2007.
    [135]S.Pirozzoli.Conservative hybrid compact-WENOschemes for shock-turbulence interaction.Journal of Computational Physics,178(1):81-117,2002.
    [136]S.Vukovic and L.Sopta.ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations.Journal of Computational Physics,179(2):593-621,2002.
    [137]S.Zhang,S.Jiang and C.W.Shu.Development of nonlinear weighted compact schemes with increasingly higher order accuracy.Journal of Computational Physics,227(15):7294-7321,2008.
    [138]Turabi Geyikli and Do(?)an Kaya.Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation.Applied Mathemntics and Computation,169(1):146-156,2005.
    [139]T.GaIlouet,J.M.Herard and N.Seguin.Some approximate Godunov schemes to compute shallow-water equations with topography.Computers&Fluids,32(4):479-513,2003.
    [140]T.Nakamura,R.Tanaka,T.Yabe,and K.Takizawai.Exactly conservative semi-Lagrangian scheme for multi-dimensional Hyperbolic equations with directianl splitting technique.Journal of Computational Physics,174(1):171-207,2001.
    [141]T.Yabe and T.Aoki.A universal solver for hyperbolic equations by cubic-polynomial interpolation.I,One-dimensional solver.Computer physics communications,66(2-3):219-232,1991.
    [142]T.Yabe,T.Ishikawa,P.Y.Wang,and T.Aoki.A universal solver for hyperbolic equations by cubic-polynomial interpolation Ⅱ.Two-and three-dimensional solvers.Computer physics communications,66(2-3):233-242,1991.
    [143]T.Yabe and F.Xiao.Description of complex and sharp interface during shock wave interaction with liquid drop.J.Phys.Soc.Japan,62(8):2537-2540,1993.
    [144]T.Yabe and F.Xiao.Description of complex and sharp interface with fixed grids in incompressible and compressible fluid.Comput.Math.Appl.,29(1):15-25,1995
    [145]T.Yabe and F.Xiao.The Constrained Interpolation Profile Method for Multiphase Analysis. Journal of Computational Physics,169(2):556-593,2001.
    [146]T.Yabe,R.Tanaka,T.Nakamura and F.Xiao.An Exactly Conservative Semi-Lagrangian Scheme(CIP-CSL) in One Dimension,Monthly Weather Review,129(2):332-344,2001.
    [147]T.Yabe,R.Tanaka,Y.Ogata,K.Takizawa,T Kawai and A Segawa.The next generation CIP as a conservative semi-Lagrangian solver for solid,liquid and gas.Journal of Computational and Applied Mathematics,149(1):267-277,2002.
    [148]T.Yabe,K.Takizawa,M.Chino,M.Imai and C.C.Chu.Challenge of CIP as a universal solver for solid,liquid and gas.International Journal for Numerical Methods in Fluids,47(6-7):655-676,2005.
    [149]V.Caleffi,A.Valiani and A.Bernini.Fourth-order balanced source term treatment in central WENO schemes for shallow water equations.Journal of Computational Physics,208(1):228-245,2006.
    [150]V.Caselles,R.Donat and G.Haro.Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes.Computers & Fluids,38(1):16-36,2009.
    [151]W.D.Guo,J.S.Lai and G.F.Lin.Finite-volume multi-stage schemes for shallow-water flow simulations.International Journal for Numerical Methods in Fluids,57(2):177-204,2008.
    [152]W.F.Spotz and G.F.Carey.High-Order Compact Scheme for the Steady Stream-Function Vorticity Equations.International Journal for Numerical Methods in Engineering,38(20):3497-3512,1995.
    [153]W.F.Spotz and G.F.Carey.Extension of high-order compact schemes to time-dependent problems.Numerical Methods for Partial Differential Equations,17(6):657-672,2001.
    [154]X.D.Liu,S.Osher and T.Chan.Weighted essentially non-oscillatory schemes.Journal of Computational Physics,115(1):200-212,1994.
    [155]X.D.Liu and E.Tadmor.Third order nonoscillatory central scheme for hyperbolic conservation laws.Numer.Math.,79:397-425,1998.
    [156]X.Shu-sen.Numerical Solution of One-dimensional Burgers' Equation Using Reproducing Kernel Function.Journal of Computational and Applied Mathematics,214(2):417-434,2008.
    [157]Y.Q.Shen and G.W.Yang.Hybrid finite compact-WENO schemes for shock calculation.nternational Journal for Numerical Methods in Fluids,53(4):531-560,2007.
    [158]Y.Xing and C.W.Shu.High order finite difference WENO schemes with the exact conservation property for the shallow water equations.Journal of Computational Physics, 208(1):206-227,2005.
    [159]Y.Xing and C.W.Shu.High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms.Journal of Computational Physics,214(2):567-598,2006.
    [160]Y.Y.Wu and K.F.Cheung.Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations.International Journal for Numerical Methods in Fluids,57(11):1649-1668,2008.
    [161]Z.F.Tian and Y.B.Ge.A fourth-order compact finite difference scheme for the steady stream function-vorticity formulation of the Navier-Stokes/Boussinesq equations.International Journal for Numerical Methods in Fluids,41(5):495-516,2008.
    [162]Z.L.Xu and R.X.Liu.Numerical simulation for solitary waves of RLW equation.J.Hydrodynamics Ser.B,16(2):130-135,2004.
    [163]Z.L.Xu and R.X.Liu.A high-order Pade scheme of Korteweg-de Vries equation.J.Hydrodynamics Ser.B,17(6):654-659,2005.
    [164]Z.P.Wang and G.P.Huang.An essentially nonoscillatory high-order Pade-Type(ENO-Type)schemes.Journal of Computational Physics,177(1):37-58,2002.
    [165]汪继文,有限体积法与浅水方程的求解.博士学位论文.中国科学技术大学.2001.
    [166]李宏,非标准有限元.博士学位论文.中国科学技术大学.2001.
    [167]马东军,可压/不可压压缩流体交界面高精度数值方法的研究.博士学位论文.中国科学技术大学.2002.
    [168]郑华盛,流体力学高精度数值方法研究.博士学位论文.南京航空航天大学.200.
    [169]张瑞,Semi-Lagrange方法的研究和数值试验,硕士学位论文.中国科学技术大学.2004.
    [170]刘儒勋,舒期望.计算流体力学的若干新方法.北京:科学出版社,2003.
    [171]刘儒勋,王志峰.数值模拟方法和运动界面追踪.中国科学技术大学出版社,2001.
    [172]忻孝康,刘儒勋,蒋伯诚.计算流体动力学.国防科技大学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700