外循环耗散式气波制冷机理分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气处理、输运过程中常采用节流制冷工艺,这会导致压力能的巨大浪费。国内油、气田的生产实践表明,基于振荡流动过程的高效气波技术装备,如气波制冷机,在天然气制冷、深冷工艺中具有优越性。但在高压、大膨胀比场合效率降低,设备积液导致制冷失效,气流脉动诱发振荡管强烈震动。原因在于,其振荡管一端封闭,滞留气中的凝液难以排出;用于散热的振荡管较长,刚性低,易震动。两端开口振荡管结构能将管内大部分滞留气排出,可提高带液操作能力,减轻设备震动问题。目前,这种双开口结构仅见于气波增压技术,如何利用其进行制冷是一个全新的课题。
     本文对双开口管转子内气流的非定常流动行为和热效应进行研究,探讨其实现膨胀制冷的机理及应用技术,对丰富和完善气波制冷技术资料有重要意义。论文通过气动力学研究、宏观热力分析和实验研究三种手段,对以该转子为主要部件的气波制冷机的实现技术进行了如下几方面的工作:
     (1)系统研究了理想气体和高压真实气体在转子通道内的非定常流动,及所形成气体波的运行特性,揭示了双开口振荡管实现的热分离效应规律。鉴于气波机械多用于天然气及高压气处理,本文实现了复合AGA8、BWRS等状态方程的多维流体计算技术,能够对近气液平衡线的多组分气体流动问题进行分析。在此基础上,研究了理想和真实气体的非定常流动,探讨了真实气体产生的各种波的发生、反射、透射等运行规律,得到了真实气体效应对工作点偏离的影响规律,精确确定了实现连续冷热分离的工作波图。利用特征线方法,给出了该制冷机的结构参数(如管长和端口布置)匹配条件;考虑真实气体效应,完成了决定制冷机生产能力的高压端口喷嘴的设计。
     在上述研究基础上,提出一种外循环耗散式的气波制冷机(Aggregated Thermal Dissipation Gas Wave Refrigerator, AWR),并获国家发明专利(CN200810011257.1)。
     (2)在深入研究转子通道内气流的非定常流动行为和热分离原理基础上,将制冷机内部工作过程,分为驱动气流的膨胀过程和循环气流的压缩过程两部分,两股气流通过体积功交换能量,提出了完整的制冷机热力学模型。从宏观角度,对制冷性能进行预测,获得了影响制冷机内部过程的热力效率的主要因素。分析后发现,压比小于10时,激波本身的非等熵性对绝热效率影响微小,而进、出端口的非均匀混合、泄漏的影响较大。
     (3)对气体流动控制方程的时间、空间离散格式进行了对比评价,表明用AUSM系列格式加限制器离散对流项、用中心差分离散扩散项,以及用双时间步格式离散非稳态项,可适用于求解转子通道内部任意气体的全速流动。通过建立单通道和多通道多周期气动分析数值模型,并施加合适的初边条件,对转子通道内流场和端口匹配进行了数值分析。研究了接触面扭曲的产生原因及影响,发现缩短通道开启时间、拓宽高压端口宽度,可增加压缩气流的做功能力,降低接触面前后流体的能量损失。实验测试也证明,膨胀制冷效率能相对提高5%。
     (4)建立了处理量3×104Nm3/d的压缩空气制冷实验系统,干空气实验膨胀比可达10,带液实验膨胀比可达3。通过对高压端口温度和压力、低温端口压力等的调节,研究了AWR制冷机各端口的热力状态、设备能量交换性能、增压性能、制冷性能以及循环流率比的关系,对制冷样机的结构参数和操作参数的进行了优化匹配研究。研究发现,过程效率的降低主要受驱动、被驱气流的掺混和泄漏,以及受质量交换引起的能量损失、通道与端口连通或关闭过程造成的流动不均损失等影响。高温端口开启时刻对设备制冷性能具有重要影响,用于制冷时,应避免反射激波返回驱动气流中。
     通过实验,使制冷机的等熵效率已达69%。带液运行实验发现,在过饱和含液量7%重量浓度下,机器的运行性能并未明显降低。
There is a huge waste of pressure energy in natural gas processing and transport area by using throttling refrigeration process. Based on the unsteady flow theory, high efficiency wave equipments such as gas wave machines have huge advance in such processes. Many practical applications of gas wave machines in domestic oilfield show that when operating under high pressure and large expansion ratio conditions these machines have the problems of vibration induced by pulsing gases and refrigeration performance reduction by liquid accumulation, which adversely affect the operation stability and reliability. The main reason is that the rest gases in the unilateral closed pulse tubes cannot empty intirely, and the long pulse tubes vibrate with small stiffness. Bilateral opened pulse tube rotors used for superchargers and gas engines formerly has double sided open structures, which has no problem of vibration or liquid accumulation. At the time being, how to use wave rotor in expansion refrigeration area is a novel project.
     A study on the flows and refrigeration principles of bilateral opened pulse tube has made in this dissertation. It is of great importance for enrichment and improvement of gaswave refrigeration theory. This research has presented a detailed implementation of technology of gaswave refrigeration from aspects of gas dynamics analysis, thermodynamic analysis and experimental evaluation and validation.
     (1) The unsteady flow and gasdynamic wave's propergation properties has studied in detail. In addition, the thermal separation effects in rotor passages have explored. Used for processing of high-pressure natural gases, wave refrigerators often operate in the nonideal thermodynamic regions. A real gas dynamic computational fluid dynamic (CFD) model coupled with equations of state like AGA8, BWRS, etc has established for discussing the flow patterns of of unsteady flows, which can calculate the flow of low heat capacity natural gases located in vicinites of gas-liquid equilibrium line. Based on this, the origination, reflection and refraction rules of various arbitrary gasdynamic waves in rotor passages have explored. The influence of real gas effect on offset-design of the refrigerators has acquired. A corrected wave diagram based on real gas models has ascertained which has laid a theoretical foundation of performance assessments and designs of wave rotor refrigerator.
     Based on the above studies, a novel novel refrigerator named Aggregated Thermal Dissipation Gas Wave Refrigerator (AWR) has proposed. The AWR now has the Chinese Patent (CN200810011257.1). Design scheme based on method of characteristics for key structure parameters matching condition like port timing layout has worked out.Taking real gas effect into account, area design method of high-pressure port has realized.
     (2) A novel thermodynamic analytical model for AWR has established based on the following assumptions:there is no mass transfer across contact face, which separates the inner whole process into expansion process of driving gases with compression one of driven gases; the two streams directly exchanger energy though volume work. This performance assessment model shows the main contributing factors of inner thermal processes. Studies on main factors of expansion and compression processes have indicates that when expansion ratio bellows 10, the inner non-isentropic characteristics of shockwaves are nonsignificant while other factors such as non-uniform mixing in ports and leakages (including mass transfers of driving and driven streams) are of concernment.
     (3)Comparison evaluations of numerical discrete schemes for control equations show that the density based model with AUSM series schemes and appropriate limiters to discrete advection items, center difference schemes to discrete vicious items and dual-time step scheme to discrete unsteady items is applicable to full speed interior flows of real gases in wave rotors. Mono-pipe and multi-pipe numerical model and initial-boundary conditions have been set up to simulate the flows and port timing analysis of AWR. Particular reasons and solutions of shockwave and contact face distortions has indicated that short opening time and wide high pressure port will get higher refrigeration performance. Moreover, experimental results have verified that wide high-pressure (HP) port and appropriate incidence angle can improve about five percents of expansion efficiency relatively, with higher compression efficiency at the same time.
     (4)A dry-air refrigeration test rig of AWR with expansion ratio less than 10 and a fluidic test rig less than 3 have built. A number of experiments on axial-flow AWR prototypes by adjusting temperature and pressure of high temperature (HT) port and pressure of low temperature (LT) port has performed to get thermal states of other ports. Relations of exchanging work, supercharging and refrigerating performances and circulation flux ratio show that expansion efficiency are affected by mass transfer (mainly gas mixing and leakages) and energy exchange (losses from mass transfer and non-uniformity flows in ports) between driving and driven flows. The following conclusions from laboratory studies are fruitful: location of HT port has important influence on the refrigeration performance, and a reflected shockwave compression process may not feasible for rotors used for refrigeration.
     In lab, the isentropic efficiency of AWR now can get 69%. Actual liquid experiments show that AWRs have excellent fluidic operation performance:the refrigeration properity remains almost unchanged even if AWR operates with 7% liquid ratio.
引文
1. Pezhman Akbari,etc. Utilizing wave rotor technology to enhance the turbo compression in power and refrigeration cycles [C]. IMECE 2003-44222.
    2. Cotterlaz-Rennaz, M. Wellhead gas refrigerator fieldstrips condensate [J]. World Oil, Nov., 1971:60-61
    3. Sibulkin M, Vrebalovich T. Some experiments with a resonance tube in a supersonic wind tunnel [J] J. Aero.Sci.1958,25:465-466.
    4. T. Vrebalovich, Resonance Tube in Supersonic Flow [J]. Bull.Am. Phys Soc.1958,3:291-292.
    5. Temkin S., Nonlinear gas oscillation in a resonant tube [J]. The Physics of Fluids,1968, 11(5):960-963.
    6. J. J. Keller, Resonant Oscillations in Closed Tubes:the Solution of Chester's Equation [J].J. Fluid Mech.1976,77:279-304.
    7. E. Brocher, C. Maresca and M. H. Bournay. Fluid dynamics of the resonance tube [J]. Journal of Fluid Mechanics,1970,43:369-384.
    8. Cotterlaz-Rennaz, M. New French gas cooler recovers 120 bpd gasoline [J]. World Oil,1973,177 (2):57.
    9. 代玉强,胡大鹏.含复合阻尼结构压力波制冷机振荡管内流动分析[J],低温与特气,2003,21(2):23-24.
    10 G. E. Welch. Wave engine topping cycle assessment [C]. AIAA Paper 97-0707.
    11. Knauff, R.Converting Pressures of Liberated Gas Energy into Mechanical Work.British,2818 [P], 1906.
    12. Burghard, H. Aerodynamic wave machine. German,485386[P],1929.
    13. Seippel, C. Pressure exchanger, Swiss,229280[P],1942 and 225426[P],1940.
    14. Azoury, P. H. An Introduction to the Dynamic Pressure Exchanger [J]. Proceedings of the Institution of Mechanical Engineers,1965-66,180 (18):451-480.
    15. Guzzella L., Wenger U.and Martin R. IC Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy[C]. SAE Paper 2000-01-1019.
    16. Zumdiek, J. F., Vaidyanathan, T. S., Klosterman, E. L., et al. The fluid dynamic aspects of an efficient point design energy exchanger[C]. Proceeding of the 12th International Symposium on Shock Tubes and Waves, Jerusalem,1979.
    17. Thayer, W. J. The MSNW Energy Exchanger Research Program[C]. Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop, Report NPS-67-85-008:85-116, Monterey,1985.
    18. Eidelman, S., Mathur, A., Shreeve, R. P., et al. Application of Riemann Problem Solvers to Wave Machine Design [J]. AIAA Journal,1984,22(7):1010-1012.
    19. Eidelman, S. The Problem of Gradual Opening in Wave Rotor Passages [J]. Journal of Propulsion and Power,1985,1 (1):22-28.
    20.吴文,黄晓,卓文渝等.气波增压器的研究[J].内燃机学报,13(2),1995:163-172.
    21.吴文,陈铭铮.研制气波增压器的-些理论分析计算和实验研究结果[J].工程热物理学报,3(1),1982:30-37.
    22.李俊城,张有才,叶霭云等.车用气波增压柴油机,北京工业大学学报,1997,23(2):56-64.
    23.雷艳,周大森.气波增压柴油机性能的影响因素分析.内燃机工程,2007,28(5):56-58.
    24. Taussig, R. T., Hertzberg, A. Wave Rotors for Turbomachinery[C]. Winter Annual Meeting of the ASME, Machinery for Direct Fluid-Fluid Energy Exchange,1984.
    25. Nour Eldin, H. A., Oberhem, H., and Schuster, U.The Variable Grid-Method for Accurate Animation of Fast Gas Dynamics and Shock-Tube like Problems[C].Proceeding of the IMACS/IFAC International Symposium on Modeling and Simulation of Distributed Parameter Systems, Japan, 1987:433-440.
    26. Oberhem, H., Nour Eldin, H. A. A Variable Grid for Accurate Animation of the Nonstationary Compressible Flow in the Pressure Wave Machine [C].7th International Conference on Numerical Methods in Laminar and Turbulent Flow, US,1991.
    27. Piechna, J. Comparison of Different Methods of Solution of Euler Equations in Application to Simulation of the Unsteady Processes in Wave Supercharger [J]. The Archive of Mechanical Engineering,1998,45(2):87-106.
    28. Pekkan, K., Nalim, M. R. Control of Fuel and Hot-Gas Leakage in a Stratified Internal Combustion Wave Rotor[C]. AIAA Paper 2002-4067.
    29. Okamoto, K., Nagashima, T., Yamaguchi, K. Rotor-Wall Clearance Effects upon Wave Rotor Passage Flow[C].15th International Symposium on Airbreathing Engines,2001,Paper ISABE-2001-1222.
    30. Pezhman Akbari,etc. A review of wave rotor technology and applications[C]. IMECE 2004-60082.
    31. Kentfield, J. A. C., and Barnes, J. A., The Pressure Divider:A Device for Reducing Gas-Pipeline-Pumping-Energy Requirements[C], SAE Paper 769112,1976.
    32. M. Razi Nalim. Longitudinally Stratified Combustion in Wave Rotors [J]. Jounal of Propulsion and power,2000,vl6(6):1060-1068.
    33. D. Baronia, M. R. Nalim, P. Akbari. Numerical Study of Wave Rotor Ignition and Flame Propagation in a Single-Channel Rig[C].43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati,2007. Also AIAA 2007-5054-299.
    34. P. Akbari. Gas dynamic design analysis of charging zone for revserse-flow pressure wave chargers[C]. ICES2003-690.
    35. Gerard E. Welch. Macroscopic balance model for wave rotors, AIAA Paper 96-0243.
    36. P.Akbari, Norbert Mueller. Performance improvement of recuperated and unrecuperated micro turbines using wave rotor machine[C]. CIMAC Congress 2004, Kyoto. Paper No.218.
    37. P.Akbari. Wave Rotor Research Program at Michigan State University[C], AIAA 2005-3844.
    38. Paxson, D.E. Comparison between numerically modeled and experimentally measured Wave Rotor Loss Mechanisms [J]. Journal of Propulsion and Power,1995,11 (5):908-914.
    39. M. Frackowiak, etc, Numerical simulation for unsteady-flow process in wave rotors[C]. IMECE 2004-60973.
    40. P. Akbari, E. Szpynda, M. R. Nalim. Recent Developments in Wave Rotor Combustion Technology and Future Perspectives:A Progress Review[C]. AIAA 2007-5055.
    41. Wilson, J.An Experimental Determination of Losses in a 3-Port Wave Rotor. J. Eng. for Gas Turbines and Power,120 (4),1998:833-842.
    42. A. Fatsis, A. Lafond, Y. Ribaud.Preliminary analysis of the flow inside a three-port wave rotor by means of a numerical model [J]. Aerospace Science and Technology,1998,5:289-300.
    43. Daniel E. Paxson, M. Razi Nalim.A Modified Through-Flow Wave-Rotor Cycle with Combustor-Bypass Ducts. Journal of Propulsion and Power,1999,15(3):462-467. Also AIAA-1997-3140-996.
    44. P. Akbari, N. Muller. Wave Rotor Research Program at Michigan State University [C]. AIAA 2005-3844.
    45. Jack Wilson. The Effect of Area Variation on Wave Rotor Elements[R]. NASA Contractor Report 202352.
    46. L. M. Larosiliere. Wave Rotor Charging Process:Effects of Gradual Opening and Rotation [J]. Journal of Propulsion and Power,1995,11(1):178-184.
    47. Louis M. Larosiliere. Three-Dimensional Numerical Simulation of Gradual Opening in a Wave Rotor Passage [C]. AIAA93-2526.
    48. S. A. Khalid, A. Banerjee, P. Akbari, M. R. Nalim. Two-Dimensional Numerical Modeling of Mixture Inflow in a Combustion Wave Rotor[C].4th International Energy Conversion Engineering Conference and Exhibit (IECEC),2006, California. Also AIAA 2006-4125.
    49. Pezhman Akbari, Norbert Muller. Gas Dynamic Design Analysis of Charging Zone for Reverse-flow Pressure wave Chargers [C]. Proceedings of ICES2003. Technical Conference of the ASME Internal Combustion Engine Division Salzburg,2003. ICES2003-690.
    50. A. Mathur. R. P. Shreeve. Calculation of Unsteady Flow Processes in Wave Rotors[C]. AIAA 25th Aerospace Sciences Meeting,1987, Reno, Nevada. AlAA-1987-0011.
    51. M. Razi Nalim. Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors [C]. NASA Technical Memorandum 107000.AIAA-1995-2801.
    52. Jonsson Jonsson, V. K. Matthews, L. Spalding D. B. Numerical Solution Procedure for Calculating the Unsteady One-Dimensional Flow of Compressible Fluid[C].ASME Paper 73-FE-30,1973.
    53. Matthews, L. An Algorithm for Unsteady Compressible One-Dimensional Fluid Flow [D]. London: M.S. Thesis, University of London,1969.
    54. Azim, A. An Investigation into thePerformance and Design of Pressure Exchangers [D]. London:. Ph.D.Thesis, University of London,1974.
    55. Azoury, P. H., Hai, S. M. ComputerizedAnalysis of Dynamic Pressure Exchanger Scavenge Processes[J].Proceedings of the Institution of Mechanical Engineers,1975,189:149-158.
    56. Paxson. D. E. A General Numerical Mwlel for Wave Rotor Analysis[R/C]. NASA TM 105740,1992.
    57. Daniel E. Paxson, Jack Wilson. An Improved numerical model for wave rotor design and analysis[R/C], NASA Technical Memorandum 105915.1993, AIAA-93-0482
    58. D.E. Paxson. A Numerical Model for Dynamic Wave Rotor Analysis [R/C]. NASA Technical Memorandum 1069-97. AIAA-95-2800.
    59. Daniel E. Paxson. Numerical Simulation of Dynamic Wave Rotor Performance [J]. Journal of Propulsion and Power,1996,12, No.5:949-957.
    60. Daniel E. Paxson. An Incidence Loss Model for Wave Rotors With Axially Aligned Passages[R/C]. NASA/TM-1998-207923,AIAA-98-3251.
    61. Paxson D. E., Wilson, J. Recent improvements to and validation of the one dimensional NASA wave rotor model [R]. NASA TM-106913,1995.
    62. Paxson, D. E. Numerical Simulation of Dynamic Wave Rotor Performance [J]. Journal of Propulsion and Power,1996,12, No.5:949-957.
    63. Paxson, D. E., Lindau, J. W. Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation [R/C]. AIAA Paper 1997-3142. Also NASA TM-107490.
    64. Paxson, D. E. A Numerical Investigation of the Startup Transient in a Wave Rotor [J]. Journal of Engineering for Gas Turbines and Powe,1997,119, No.3:676-682.
    65. Welch, G E., Paxson, D. E., Wilson, J., and Snyder, P. H. Wave Rotor-Enhanced Gas Turbine Engine Demonstrator [R]. NASA TM-209459,1999.
    66. Fatsis, A., Ribaud, Y. Numerical Analysis of the Unsteady Flow Inside Wave Rotors Applied to Air Breathing Engines [C].13th International Symposium on Air breathing Engines,1997, Paper ISABE-97-7214.
    67. Daniel E. Paxson. A Comparison Betweenentally Measured Loss Mechanisms in Wave Rotors [C]. AIAA-93-2522.
    68. Nour Eldin, H. A., Oberhem, H., and Schuster, U.,1987.The Variable Grid-Method for Accurate Animation of Fast Gas Dynamics and Shock-Tube like Problems. Proceeding of the IMACS/IFAC International Symposium on Modeling and Simulation of Distributed Parameter Systems:433-440, Japan.
    69. Eidelman, S. Gradual Opening of Skewed Passages in Wave Rotors [J]. Journal of Propulsion and Power,1996,2, No.4:379-381.
    70. Mathur, A. Wave Rotor Research:A Computer Code for Preliminary Design of Wave Diagrams [R]. Report NPS67-85-006CR, Monterey, CA,1985.
    71. Mathur, A. Code Development for Turbofan Engine Cycle Performance with and Without a Wave Rotor Component [R]. Report NPS67-86-006CR, Naval Postgraduate School, Monterey, CA,1986.
    72. Mathur, A. Estimation of Turbofan Engine Cycle Performance with and Without a Wave Rotor Component [R]. Report NPS67-86-008CR, Naval Postgraduate School, Monterey, CA,1986.
    73. Roberts, J. W. Further Calculations of the Performance of Turbofan Engines Incorporating a Wave Rotor [D]. M.S. Thesis, Naval Postgraduate School, CA,1990.
    74.刘火星,姜冬玲,邹正平.波转子技术对涡轴发动机性能的影响[J].燃气涡轮试验与研究,19(2),2006:22-25.
    75. E. Dempsey, N. Muller, P. Akbari,et al. Performance Optimization of Gas Turbines Utilizing Four-Port Wave Rotors [C].4th International Energy Conversion Engineering Conference and Exhibit (IECEC) 26-29 June 2006, San Diego, California. AIAA 2006-4152-320.
    76. Mathur, A., Shreeve, R. P., and Eidelman, S. Numerical Techniques for Wave Rotor Cycle Analysis.American Society of Mechanical Engineers[C]. Fluids Engineering Division,1984. Presented at the 1984 Winter Annual Meeting of the American Society of Mechanical Engineers, US.
    77. Shreeve, R., Mathur, A., Eidelman, S., and Erwin, J.Wave Rotor Technology Status and Research Progress Report[R]. Report NPS-67-82-014PR, Naval Post-Graduate School, Monterey, CA,1982.
    78. Piechna, J., Numerical Simulation of the Comprex Type of Supercharger:Comparison of Two Models of Boundary Conditions [J]. The Archive of Mechanical Engineering,45, No.3,1998:233-250.
    79. Elloye, K. J., Piechna, J., Influence of the Heat Transfer on the Operation of the Pressure Wave Supercharger [J]. The Archive of Mechanical Engineering,46, No.4,1999:297-309.
    80. Piechna, J., A Two-Dimensional Model of the Pressure Wave Supercharger [J]. The Archive of Mechanical Engineering,46, No.4,1999:331-348.
    81. Piechna, J..Autonomous Pressure Wave Compressor Device.2003 International Gas Turbine Congress[C], ASME Paper IGTC03-FR-305, Japan.2003,
    82. Welch, G. E., Chima, and R. V. Two-Dimensional CFD Modeling of Wave Rotor Flow Dynamics[C]. AIAA-93-3318. Also NASA TM-106261,1993.
    83. Welch, G. E. Two-Dimensional Numerical Study of Wave-Rotor Flow Dynamics[J].1993,AIAA Paper 93-2525.
    84. Larosiliere, L. M., Mawid, M.Analysis of Unsteady Wave Processes in a Rotating Channel [J/C]. International Journal of Numerical Methods in Fluids,21:467-488. Also AIAA Paper 93-2527, and NASA CR-191154.
    85. Lear, W. E., Candler, G.Direct Boundary Value Solution of Wave Rotor Flow Fields[C]. AIAA Paper 93-0483.
    86. Wilson J., Fronek, D.Initial Results from the NASA-Lewis Wave Rotor Experiment[C]. AIAA Paper 93-2521.Also NASA TM-106148.1993.
    87. William E. Lear, Jr., Graham V. Candler. Direct Boundary Value Solution of Wave Rotor Flow Fields[C]. AIAA 93-0483:1-10.
    88. Van Leer, B.; Lee, W.T.; Roe, P.L:Characteristic Time-Stepping or Local Preconditioning of the Euler Equations[C]. AIAA Paper 91-1552,1991.
    89. Choi, Y.H.; Merkle, C.L.:The Application of Preconditioning in Viscous Flows[J]. J. Computational Physics,1993,105:207-223.
    90. Lee, D.; van Leer, B. Progress in Local Preconditioning of the Euler and Navier-Stokes Equations [C]. AIAA Paper 93-3328,1993.
    91. Lee, D.; van Leer, B.; Lynn, J.F.:A Local Nuvier-Stokes Preconditioner for All Mach and Cell Reynolds Numbers [C]. AIAA Paper 97-2024,1997.
    92. Turkel, E. Preconditioning Techniques in Computational Fluid Dynamics [J]. Annu. Rev. Fluid Mech., 1999,31:385-416.
    93. S. A. Pandya, S. Venkateswaran, and T. H. Pulliam.Implementation of dual-time procedures in overflow[C]. Technical Report AIAA-2003-0072, American Institute of Aeronautics and Astronautics, 2003.
    94. Weiss, J.M., Maruszewski, J.P.; Smith, W.A.:Implicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid [J]. AIAA Journal,1999,37:29-36.
    95. Blazek, J. Computational fluid dynamics:Principles and applications [M].Amsterdam:Elsevier,2005.
    96. Osher, S.; Solomon, F.:Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws [J]. Math. Comp.1982,38:339-374.
    97. Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes [J]. J. Computational Physics,1981,43:357-372.
    98. Yee, H.C.; Harten, A.:Implicit TVD Schemes for Hyperbolic Conserration Laws in Curvilinear Coordinates [J]. AIAA Journal,1987,25:266-274.
    99. Yee, H.C. Construction of Implicit and Explicit Symmetric TVD Schemes and Their Applications[J]. J. Computational Physics,1987,68:151-179.
    100. Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.:Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III [J/C]. J. Computational Physics,1987,71:231-303; also ICASE Report No.86-22,1986.
    101. Casper J., Atkins H.L. A Finite-Volume High-Order ENO Scheme for Two-Dimensional Hyperbolic Systems [J]. J. Computational Physics,1993,106:62-76.
    102. Stanescu, D.; Habashi, W.G.:Essentially Nonoscillatory Euler Solutionson Unstructured Meshes Using Extrapolation [J]. AIAA Journal,1998,36:1413-1416.
    103. Steger J.L.; Warming, R.F.:Flux Vector Splitting of the Inviscid Gasdynamic Equations with Application to Finite Difference Methods [J]. J. Computational Physics,1981,40:263-293.
    104. Van Leer, B.:Flux Vector Splitting for the Euler Equations [C/R]. Proc.8th Int. Conf. on Numerical Methods in Fluid Dynamics, Springer Verlag,1982:507-512; also ICASE Report 82-30,1982.
    105. Liou, M.-S.; Steffen, C.J. Jr. A New Flux Splitting Scheme [J/R]. NASA TM-104404,1991; also J. Computational Physics,107 (1993):23-39.
    106. Liou, M.-S.:A Sequel to A USM:AUSM+. J. Computational Physics,129 (1996):364-382.
    107. Yasuhiro Wada, Meng-Sing Liou. An accurate and robust flux splitting scheme for shock and contact discontinuities [J]. Siam J. Sci. Comput.,1997,18(3):633-657.
    108. Engquist B, Osher S. One-Sided Difference Approximations for Nonlinear Conservation Laws [J]. Math of Comp,1981,36:321-352.
    109. Scott J N. Comparison of limiters in flux-split algorithms for the N-S equations [C]. AIAA paper 93-0068,1993.
    110. Zhou, G. Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers [D]. PhD Thesis, Sweden:Chalmers Univ. of Tech.
    111. Gaskell, P H, A K C Lau. Curvature-compensated convective transport:SMART, a new boundedness-preserving transport algorithm. [J] Int. J. Num. Meth. Fluids,1988,8:617.
    112. Waterson, N P and H Deconinck. A unified approach to the design and application of bounded higher-order convection schemes [R], VKI Preprint 1995-21.
    113. Sweby, P K. High resolution schemes using flux-limiters for hyperbolic conservation laws [J]. SIAM J. Num. Anal.,1984,21:995-1011.
    114. Koren, B. A robust upwind discretisation method for advection, diffusion and source terms, Numerical Methods for Advection-Diffusion Problems [R], Ed. C.B.Vreugdenhil & B.Koren, Vieweg, Braunschweig:117.
    115. Lien, F S, M. A. Leschziner. Upstream monotonic interpolation for scalar transport with application to complex turbulent flows [J]. Int. J. Num. Meth. Fluids,1994,19:527.
    116. Roe, P L. Characteristic-based schemes for the Euler equations [J]. Ann. Rev. Fluid Mech.,1986,18: 337.
    117. Van Albada, G D, B. Van Leer and W. W. Roberts. A comparative study of computational methods in cosmic gas dynamics [J]. Astron. Astrophysics,1982,108:76.
    118. Van Leer, B. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow [J]. J. Comp. Phys.,23,1977:263-75.
    119. Kermani, M. J., Gerber, A. G., and Stockie, J. M. Thermodynamically Based Moisture Prediction Using Roe's Scheme[C].4th Conference of Iranian AeroSpace Society, Amir Kabir University of Technology, Tehran, Iran, January,2003.
    120. Chakravarthy, S R and Osher, S. High resolution applications of the Osher upwind scheme for the Euler equations[C]. AIAA Paper 83-1943, Proc. AIAA 6th Computational Fluid Dynamics Conference: 363-73,1983.
    121. Van Leer, B. Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme [J]. J. Comp. Phys.,1974,14:361-70.
    122.吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001:163.
    123. Richtmyer, R.D., Morton, K.W. Difference Methods for Initial Value Problems (2nd edition) [M]. London:Wiley-Interscience,1967.
    124. Beam R M, Warming R F. An implicit finite-difference algorithm for hyperbolic system in conservation law form [J]. Journal of Computational Physics,1976,22:87-109.
    125. A. Lerat. Difference schemes for nonlinear hyperbolic systems-A general framework [J]. Lecture Notes in Math.,1989,1402:12-29.
    126. Rosenfeld, M., Yassour, Y.The Alternating Direction Multi-Zone Implicit Method [J]. J. Computational Physics,1994,110:212-220.
    127. Yoon, S.; Jameson, A. Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations[C/R]. AIAA Paper 86-0105; also AIAA Journal,1987,7:929-935.
    128. Slack, D.C.; Whitaker, D.L.Walters, R.W. Time Integration Algorithms for the Two-Dimensional Euler Equations on Unstructured Meshes. AIAA Journal,1994,32:1158-1166.
    129. Tomaro, R.F., Strang, W.Z., Sankar, L.N. An Implicit Algorithm for Solving Time Dependent Flows on Unstructured Grids[C]. AIAA Paper 1997-0333.
    130. Saad, Y.; Schulz, M.H.:GMRES:A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Scientific and Statistical Computing,7 (1986):856-869.
    131. Van der Vorst, H.A. BiCGSTab:A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems [J]. SIAM J. Scientific and Statistical Computing,1992,13:631-644.
    132. Freund, R.W.A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems [J]. SIAM J. Scientific Computing,1993,14:470-482.
    133. OpenFOAM[OL/CP].http://www.opencfd.co.uk/openfoam/doc/index.html.
    134. Meijerink, J.A.,Van der Vorst, H.A. Guidelines for Usage of Incomplete Decompositions in Solving Sets of Linear Equations as they occur in Practical Problems[J]. J. Computational Physics,1981, 44:134-155.
    135. Jameson Antony. Time dependant calculations using multigrid with application to unsteady flows past airfoils and wings[C]. AIAA-1991-1596.
    136. Dubuc, L., Cantariti F., Woodgate, M.Gribben, B. Solution of the Unsteady Euler Equations Using an Implicit Dual-Time Method. AIAA Journal,1998,36:1417-1424.
    137. Brady P. Brown, Brian M. Argrow. Nonclassical Dense Gas Flows for Simple Geometries [J]. AIAA Journal,1998,36(10).
    138. Gianfranco Angelino, Costante Invemizzi. Real Gas Effects in Stirling Engines[C].ALAA-2000-281.
    139. D.Y. Peng and D.B. Robinson. A New Two-Constant Equation of state [J]. Ind. Eng. Chem. Fundam., Vol.15,1976:59-64.
    140. Benedict M., Webb G.B. and Rubin L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures-1. Methane, Ethane, Propane, and n-Butane; II. Mixtures of Methane, Ethane, Propane and n-Butane [J]. J. Chem.Phys.1940,8(4):334-345; 1942,10(12):747-758.
    141. Benedict M., Webb G.B. and Rubin L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures-Ⅲ.Constants for Twelve Hydrocarbons;IV.Fugacities and Liquid-Vapor Equilibria [J]. Chem. Eng. Progr.,1951,47(8):419-422;1951,47(9):449-454
    142. Martin J.J. and Hou Y.C. Correlations and Equations Used in Calculating Thermodynamic Properties [J].AIChE.J.,1955,1:142.
    143. ISO/DIS12213-Natural Gas-calculation of Compression Factor [S],1997.
    144.中华人民共和国国家标准.GB/T17747.1-3天然气压缩因子的计算[S],1999.
    145. M.J.Huron, J.Vidal, New Mixing Rules in Simple Equations of state forrepresenting Vapour-Liquid Equilibria of Strongly Non-ideal Mixtures [J]. Fluid Phase Eq.,1979,3:255-271.
    146. Orbey, S.I. Sandler, and D.S. Wong, Accurate equation of state predictions at high temperatures and pressures using the existing UNIFAC model [J]. Fluid Phase Eq.,1993,Vol.85:41-54.
    147. Prausnitz, J. M. Some new frontiers in chemical engineering thermodynamics [J]. Fluid Phase Equilib.,1995,104:1-20.
    148. Drikakis D, Tsangaris S. Real gas effects for compressible nozzle flows [J].Journal of Fluids Engineering,1993,115:115-120.
    149. Ding Li, Guoping Xia and Charles L. Merkle. Analysis of Real Fluid Flows in Converging Nozzles[C]. 33rd AIAA Fluid Dynamics Conference and Exhibit,2003, Orlando, Florida. AIAA 2003-4132.
    150. Ding Li, etc. A Unified Computational Formulation for Multi-Component and Multi-Phase Flows[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit 10-13 January 2005, Reno, Nevada:AIAA 2005-1391.
    151. Paola Cinnella and Pietro M. Congedo. A Numerical Solver for Dense Gas Flows[J/C]..AIAA Journal, 200543(11):2458-2461.also AIAA 2004-2137.
    152. Paola Cinnella. Roe-type schemes for dense gas flow computations [J]. Computers & Fluids,35, 2006:1264-1281.
    153. R. H. Aungier. A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications[J]. Journal of Fluids Engineering,1995,117:277-281.
    154. P. Colonna, S. Rebay. Numerica simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver [J]. Int. J. Numer. Meth. Fluids,2004,46:735-765.
    155. C. B. Laney. Computational Gasdynamics [M], Cambridge:Cambridge University Press.1998:38.
    156. Philp A. Thompson. A fundamental derivative in gas dynamics [J].The Physics of Fluids,1971,14(9): 1843-1849.
    157. Philp A. Thompson. Compressible-Fluid Dynamics.McGRAW-HILL,1972.
    158.张连玉,汪令羽,苗瑞生等.爆炸气体动力学基础[M].北京;北京工业学院出版社,1987:241.
    159. Yunus A. Cengel, Michael A. Boles. Thermodynamics:An Engineering Approach (5th edition) [M]. Boston:McGraw-Hill,2002.
    160. Piero Colonna, Paolo Silva. Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations [J]. Journal of Fluids Engineering,125,2003:414-427.
    161. Brady P. Brown.Two-dimensional dense gas dynamics [D].Doctoral thesis.1997:26.
    162. Ivan Maric, Antun Galovi'c, Tomislav Smuc. Calculation of natural gas isentropic exponent [J]. Flow Measurement and Instrumentation 2005,16:13-20.
    163. Kenneth C. Cornelius, Kartik Srinivas. Isentropic Compressible Flow for Non-Ideal Gas Models for a Venturi [J]. Journal of Fluids Engineering,2004,126:238-244.
    164. Ross Taylor. Automatic derivation of thermodynamic property functions using computer algebra [J]. Fluid Phase Equilibrial997,129:37-47.
    165. S. H. Fergason, T. L. Ho, B. M. Argrow, et al. Theory for producing a single-phase rarefaction shock wave in a shock tube [J]. J. Fluid Mech.,2001,445:37-54.
    166. Starling, K. E., editor, Compressibility and super compressibility for natural gas and other hydrocarbon gases [R], AGA Transmission Measurements Committee Report No.8.December,1985.
    167. Gas Processors Suppliers Association. Calculation of Gas Properties-GPSA Engineering Data Book-SI Units-12th Edition. GPSA Press,2004.
    168. Sivaraman, A. and B. E. Gammon.Speed-of-Sound Measurements in Natural Gas Fluids [R]. Gas Research Institute Report 86-0043,1986.
    169. B. A. Younglove 1 and N. V. Frederick. Acoustic sensor for determining combustion properties of natural gas [J]. International Journal of Thermophysics, Vol.11, No.5,1990:897-910.
    170. D. A. Kouremenos and K. A. Antonopoulos.Real Gas Normal Shock Waves with the Redlich-Kwong Equation of State [J]. Acta bfechaniea 76, (1989):223-283.
    171. Abdalla Obeidat, Jin-Song Li, and Gerald Wilemski. Nucleation rates of water and heavy water using equations of state [J]. Journal of chemical physics,2004,121(19):9510-9516.
    172. R. C. Miller, R. J. Anderson, J. L. Kassner, et al. Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate [J]. J. Chern. Phys.1983,78(6), 1.15:3204-3211.
    173.Dimo Kashchieva.Analysis of experimental data for the nucleation rate of water droplets [J].The Journal of Chemical Physics,2006,125:1-7.
    174.代玉强,胡大鹏.改进的Dillmann-Meier自发凝结模型探讨[J].化学工程,2009(12):64-69.
    175. A. Dillmann and G. E. A. Meier, Homogeneous nucleation of supersaturated vapors [J].Chemical Physics Letters,160(1),1989:71-74.
    176. V. I. Kalikmanov, M. E. H. Van Dongen. Semiphenomeno-logical theory of homogeneous vapor-liquid nucleation [J]. J. Chem. Phys.103(10),1995:4250.
    177. DAI Yuqiang, HU Dapeng, ZOU Jiupeng, ZHAO Jiaquan. Real Gas Flows in Unilateral Opening Pulse Tubes.Chinese Journal of Chemical Engineering [J],2009,17 (6):914-918.
    178. Takahiro Ikimi, Komaki; Tsuneharu Taltetomi, et al.Method of maching ceramic rotor for pressure wave type supercharger:US,4924637 [P], May,1990.
    179. Norbert Muller, Pezhman Akbarl, Janusz Plechna, et al. Wave rotor apparatus:US,0130478A1 [P]. Jun. 22,2006.
    180. Daniel E. Paxson. System and Method for Cancelling Expansion Waves in a Wave rotor:US, 0052674-32A [P], Dec.7,1993.
    181. Rolf Althaus, Jakob Keller, Rotor of a Compression-Wave Engine:US,4973228[P], Nov.27,1990.
    182. Rolf Althaus, Yau-Pin Chyou, Erwin Zauner, Rotor of a Compression Wave Engine:US,0054583A [P], Oct.13,1992.
    183. Philip H. Snyder. Forced Purge Wave Rotor:US,005916125A [P], Jun.29,1999. and 20010015058A1[P],Aug.23,2001.
    184. Philip Harold Snyder. Pulsed Detonation Engine Wave Roror:US,006449939 B1 [P], Sep.17,2002.
    185. Mohamed Razi Nalim, Wave Roror Detonation Engine:US,006460342B1[P],Oct.8,2002.
    186. P. Colonna,J. Harinck, S. Rebay, A. Guardone. Real Gas Effects in Organic Rankine Cycle Turbine Nozzles [J]. Journal of Propulsion and Power,2008,Vol.24, No.2:282-294.
    187. Dai Yuqiang, Liu Wenwei, Wang Shaomin and Hu Dapeng. HYSYS automation and its application on evaluation of plate heat exchanger[J]. China Petroleum Processing and Petrochemical Technology, No.3,2008:55-59.
    188. E. von Lavante and D. Zeitz. Numerical Simulation of Flow in Critical Venturi Nozzles Considering Real Gas Effects[C]. AIAA 2003-1143.
    189. Florin Iancu, Pezhman Akbari and Norbert Muller. Feasibility Study of Integrating Four-Port Wave Rotors into Ultra-Micro Gas Turbines [C].40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 11-14 July 2004, Fort Lauderdale, Florida. AIAA 2004-3581-654.
    190. Taussig, R. T. Wave Rotor Turbofan Engines for Aircraft [J]. Mechanical Engineering, Nov. 1984:60-66.
    191. Moritz, R. Rolls-Royce Study of Wave Rotors 1965-1970[R]. ONR/NAVAIR Wave Rotor Research and Technology Workshop, Naval Postgraduate School,1985.
    192. Kollbrunner, T. A. Comprex Supercharging for Passenger Diesel Car Engines[C], SAE,1981.
    193. Robert D. Zucker Oscar Biblarz.Fundamentals of Gas Dynamics(Second Edition)[M].California:John WILEY & Sons, INC,2002:95.
    194. Keller, J. J. Some Fundamentals of the Supercharger Comprex[C]. Machinery for Direct Fluid-Fluid Energy Exchange,AD-07, The American Society of Mechanical Engineers, New York, USA, Dec., 1984:47-54.
    195. V. F. McNeill, C. K. Colton. Theory for Performance of the Flat Plate Heat Exchanger [R/C]. http://heatex.mit.edu.
    196. Michael C.Georgiadis, Sandro Macchietto. Dynamic modeling and simulation of plate heat exchangers under milk fouling. Chemical Engineering Science,55 (2000):1605-1619
    197. Colella. P. Glimm's Method for Gasdynamics [J]. SIAM Journal for Scientific Statistical Computations, 1982,3(1).
    198. Weiss, J.; Smith, W.A.:Preconditioning Applied to Variable and Constant Density Flows [J]. AIAA Journal,1995,33:2050-2057.
    199. Yuqiang DAI, Dapeng HU, Meixia DING. Study on wave rotor refrigerators [J]. Front. Chem. Eng. China,2009,3(1).
    200. S. S. Hoxie Jr., W. E. Lear, G. J. Micklow. A CFD Study of Wave Rotor Losses due to the Gradual Opening of Rotor Passage Inlets[C]. AIAA-1998-3253-993.
    201.Pieter Wesseling. Principles of Computational Fluid Dynamics. New York:Springer-Verlag Berlin Heidelberg,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700