基于实物模型的浮雕数字化设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮雕在产品包装、外形装饰、纪念币生产等行业有着广泛的应用和大量的市场需求。基于2D图形、图像的浮雕设计方式建模过程复杂、模型表示直观性差,难以胜任具有丰富细节的浮雕设计。近年来,随着3D数字化测量技术与数字几何处理技术的不断发展,使得利用3D实物数字化模型进行浮雕设计成为CAD领域的研究热点。本文以离散微分几何理论和数字几何处理技术为基础,对基于实物模型的浮雕数字化设计理论和方法进行了深入的研究,分别从浮雕的结构形态和设计制作过程的角度,提出了适合以3D实物数字化模型为设计起点的浮雕数字化定义,并据此展开了对平面浅浮雕、曲面浅浮雕、线刻浮雕及浮雕重用设计的研究。
     本文的主要内容和创新点总结如下:
     1、针对平面浅浮雕的生成,在几何信号的空域上提出了两种方法:基于形状特征分解的方法和基于微分坐标变形的方法。前者利用Laplace-Beltrami算子和低通滤波将源几何形状分解为模型大样和两个尺度上的细节,通过在各尺度上实施有针对性的压缩实现浮雕生成,算法效率高且生成的浮雕有很好的细节。后者利用微分坐标这一曲面局部形状度量,将目标浮雕隐式地表达为满足边界约束条件的Poisson方程的最优解。这两种方法克服了已有从3D数字化模型设计浮雕需要重采样的缺点,实验表明在网格顶点数量相同的条件下,本文方法产生的浮雕效果优于应用重采样方法得到的浮雕。
     2、首次在频域上展开了对平面浅浮雕生成方法的研究,分别提出了基于曲面流形调和变换和基于Fourier变换的方法。前者以曲面流形调和变换的特征函数为一组正交基,将源模型由空域变换到频域,利用提出的几何频谱分割方法获得低频和高频信号,通过对各频段信号的压缩和流形调和逆变换实现浮雕生成。该方法对细节较少或网格分辨率较低的模型同样可以得到较好的浮雕效果。后者通过Fourier变换和高通滤波在频域实现形状压缩,利用所提出的绝对变差函数进一步检测形状的不连续位置并压缩其深度,最终生成浮雕。该方法具有较高的时间效率,对具有较强边缘特征的源模型生成的浮雕效果尤为突出。
     3、提出了一种保持细节的曲面浅浮雕设计方法。该方法将曲面浮雕的生成转化为目标浮雕曲面与背景曲面满足一阶几何连续性约束的最小二乘问题,在梯度域中对模型依次采用Canny算子、双边滤波算子和非锐化掩模方法保持浮雕细节,并通过约束条件的松弛因子控制浮雕在曲面上的立体感。该方法解决了浮雕在背景曲面上的光滑过渡问题,得到的曲面浅浮雕不但很好地保持了源模型的细节,且在算法给定的控制参数下具有很好的形状可控性。
     4、提出了一种线刻风格的浮雕设计方法。该方法包括视觉相关的初始特征点提取、基于分离-连接度的骨架提取算子的特征点优化,给定线宽参数的特征线提取、深度压缩等步骤,生成的线刻浮雕很好地表达了源模型的形状信息,有较好的视觉效果。
     5、针对浮雕设计过程中存在重复性设计的问题,研究并提出基于法矢调整的浮雕黏贴方法。以原浮雕模型与目标背景曲面作为输入,通过参数域对齐、浮雕映射、法矢调整等过程实现新浮雕模型的快速设计。该方法能有效减小浮雕在黏贴过程中产生的变形。
Bas-Relief is widely used in packaging, shapes decoration, coinage industry. Digital bas-reliefdesign based on2D images and sketches is not proper for high-detailed bas-relief, due to thecomplicated processes and abstract representation of model. In recent years, with the development of3D measurement technology and digital geometry processing technology, digital bas-relief designfrom3D model is becoming to a hot research spot in the field of CAD. In this paper, an intensivestudy based on the discrete differential geometry and digital geometry processing technology iscarried out on the theory and methods of digital bas-relief design from3D object models, Definitionsof digital bas-relief are proposed in view of the bas-relief structure and the design process respectively,which are suitable for bas-relief design from3D digital models. Afterwards, four contents arethoroughly studied including planar bas-relief design, curved surface bas-relief design, line-basedbas-relief design and bas-relief reapplication.
     The main contents and innovations are summarized as follows:
     Two algorithms for planar bas-relief design are proposed in spatial domain of geometry signal. Oneis based on shape features decomposition, the other is based on differential coordinate deformation.For the first one, a shape is decomposed into one base part and two detailed parts at different scalesusing low-pass filtering and Laplace-Beltrima operator, subsequently, a detail-preserving bas-relief isachieved efficiently by applying different compression manner to those parts accordingly. For thesecond one, the object bas-relief is expressed to the optimum solution of a Poisson equation with thefixed boundary condition implicitly by using differential coordinate which measured the localgeometry shape. These two methods solved the resample disadvantage of the existing bas-reliefgeneration algorithm. The experiments show that relief generated by methods in this paper is betterthan the relief obtain by resample method if they have the same number of vertices.
     The first try to design the plane bas-relief in frequency domain is made in this paper, twoalgorithms are provided including an algorithm based on manifold harmonic transforming and analgorithm based on Fourier transforming. For the first one, the geometry signal is transformed fromspatial domain to frequency domain by using the eigenfunctions of manifold harmonic transformingas a set of orthogonal basis. And then the signal is divided into high frequency and low frequency bygeometry frequency cutting method raised in this paper. By compressing the two bands respectivelyand using the inverse manifold harmonic transform, a bas-relief is obtained. Even for the modelwithout too much detail feature or mesh with low resolution, the algorithm can still support a good result. For the second one, shape is compressed by high-pass filter on the frequency domain after FFT.After that, discontinuity in shape is further detected based on proposed absolute variation function andthen eliminated. By the process, a bas-relief is finally generated. The second method is quite efficient,and has a better result for the model with strong edge feature.
     A detail preserving curved surface bas-relief algorithm is provided in this paper. In this method, thegeneration of curved surface bas-relief is converted to a constrained least squares equation whichguaranteed surfaces of object relief has the first order geometry continuity at the boundary where itintersection with the background surface. Canny operator, bilateral filter, unsharp masking are actingon the gradient domain of source model in order to fulfill the aim of detail preserving. Thestereoscopic impression of relief can be toned by the relaxation factor of the constrain condition. Thealgorithm properly solved the smooth blending problem, the generated relief has a fine detail, andfurthermore, it has a well control of the relief’s shape feature under the system parameters.
     A line-style bas-relief generation method is proposed by this paper. The main procedure includes:vision-dependent feature point extraction, separate-and-connect-based skeleton extraction operatorbased feature point optimize, feature line extraction with a user selected line width and depth rangecompression. The relief generated by this algorithm has a good visual effect and properly conveyedthe shape of source model.
     A relief paste algorithm based on normal adjustment is proposed to handle the repeated work inbas-relief design. The algorithm’s input includes an original relief model and a target model, and theoutput is a new relief composed from them. The main process includes parametric corresponding,relief mapping and normal-adjustment. This algorithm decreases the deformation during the reliefpasting process, and supports a new solution for rapid relief design based on the existed relief model.
引文
[1]房中明.浮雕课堂教程[M].天津:天津人民美术出版社.2007:1~40.
    [2]秦远富.计算机浮雕设计CAD/CAM系统的研究和开发,[硕士学位论文].成都:电子科技大学,2001.
    [3]马毅.三维浮雕CAD/CAM软件系统开发研究,[硕士学位论文].成都:电子科技大学,2003.
    [4]贾彤明.浮雕CAD/CAM技术研究与软件开发,[硕士学位论文].南京:南京航空航天大学,2007.
    [5]王玉国.数控雕刻加工关键技术研究,[博士学位论文].南京:南京航空航天大学,2007.
    [6] Kolomenkin M., Leifman G., Shimshoni I., et al.. Reconstruction of relief objects from linedrawings [C].//In Proceedings of the2011IEEE Conference on Computer Vision and PatternRecongnition (CVPR),2011,993~1000.
    [7] Cook M. T., Agah A.. A survey of sketch-based3-D modeling techniques [J]. Interacting withComptuers,2009,21(3):201-211.
    [8] Li Z. W., Wang S., Yu J. H., et al.. Restoration of Brick and Stone Relief from Single RubbingImages [J]. IEEE Transcations on Visualization and Computer Graphics,2012,18(2):177~187.
    [9] Zhang R., Tsai P. S., Cryer J. E., et al.. Shape from Shading: a survey [J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1999,21(8):690~706.
    [10] Durou J. D., Falcone M., Sagona M.. Numerical Methods for Shape-from-shading: A newsurvey with benchmarks [J]. Computer Vision and Image Understanding,2008,109(1):22~43.
    [11]谢明红.基于径向基函数网络的图像三维恢复技术在雕刻加工中的应用[J].光学精密工程,2007,15(1):117~123.
    [12] Hassner T., Basri R.. Example based3D reconstruction from single2D images.//In BeyondPatches Workshop at IEEE Conference on Computer Vision and Pattern Recognition,2006,IEEE Computer Society, NO.15.
    [13] Alexa M., Matusik W.. Reliefs as images [J]. ACM Transactions on Graphics,2010,29(4):Article No.60.
    [14] Liu S. L., Martin R., Langbein, F., et al.. Segmenting reliefs on triangle meshes [C].//InPorceedings of ACM Symposiam on Solid and Physical Modeling, NewYork, ACMSIGGRAPH’06,2006:7~16.
    [15] Liu, S., Martin, R., Langbein, F., et al.. Background surface estimation for reverse engineeringof reliefs [J]. International Journal of CAD/CAM.2007,7(4):1~17.
    [16] Liu S., Martin R., Langbein F., et al. Segmenting geometric reliefs from textured backgroundsurfaces [J]. Computer-Aided Design and Applications,2007,4(5):565~583.
    [17] Liu S., Martin R., Langbein F., et al.. Segmenting periodic reliefs on triangle meshes [C].//InMath. of Surfaces XII,2007:290~306.
    [18] Zatzarinni, R., Tal, A., Shamir, A.. Relief analysis and extraction [J]. ACM Transactions onGraphics,2009,28(5):136~145.
    [19] Chen Y, Cheng Z. Q, Li J, et al.. Relief Extraction and Editing [J]. Computer-Aided Design,2011,43(12):1674~1682.
    [20]郑盈盈.基于点模型的浮雕提取与数据处理,[硕士学位论文].南京:南京航空航天大学,2010.
    [21]陈寅.基于泊松方程的浮雕处理技术研究,[硕士学位论文].长沙:国防科学技术大学,2010.
    [22] Cignoni P, Montain C, Scopicno R.. Automatic generation of bas-and high-reliefs [J]. Journalof Graphics Tools,1997,2(3):15~28.
    [23] Luft T., Colditz C., Deussen O.. Image enhancement by unsharp masking the depth buffer [J].ACM Transactions on Graphics,2006,25(3):1206~1213.
    [24] Ritschel T., Smith K., Ihrke M..3D unsharp masking for scene coherent enhancement [J]. ACMTransactions on Graphics,2008,27(3): Article No.90.
    [25] Song W, Belyaev A, Seibel H. P.. Automatic generation of bas-reliefs from3D shapes [C]//InProceedings of the IEEE International Conference on Shape Modeling and Applications, Lyon,2007:211~214.
    [26] Lee C. H., Varshney A., Jacobs D. W. Mesh saliency [J]. ACM Transactions on Graphics,2005,4(3):659~666.
    [27] Weyrich T., Deng J., Barnes C., et al.. Digital bas-relief from3D scenes [J]. ACM Transactionson Graphics,2007,26(3): Article No.32.
    [28] Fattal R., Lischinski D., Werman M. Gradient domain high dynamic range compression [J].ACM Transactions on Graphics,2002,21(3):249~256.
    [29] Kerber J., Belyaev A., Seibel H. P.. Feature preserving depth compression of range images [C]//In Proceedings of the23rd Spring Conference on Computer Graphics, Budmerice,2007:110~114.
    [30] Kerber J, Tevs A, Belyaev A, and et al. Feature sensitive bas-relief generation [C]//InProceedings of IEEE International Conference on Shape Modeling and Applications, Beijing,2009:149~154.
    [31] Kerber J., Tevs A., Belyaev A., et al.. Real-time generation of digital bas-reliefs [J]. ComputerAided Design&Applications.2010,7(4):465~478.
    [32]周世哲,刘利刚.实时数字浮雕建模[J].计算机辅助设计与图形学报,2010,22(3):434~439.
    [33]赵鹏,边哲.曲面浮雕生成算法[J].计算机辅助设计与图形学报,2010,22(7):1126~1131.
    [34]何会珍,杨勋年.曲面浮雕生成[J].计算机辅助设计与图形学报,2010,22(7):1132~1137.
    [35] Bian Z., Hu S. M.. Preserving detailed features in digital bas-relief making [J]. Computer AidedGeometric Design,2011,28(4):245~256.
    [36] Wang M. L., Chang J., Kerber J., et al.. A framework for digital sunken relief generation basedon3D geometric models [J]. Visual Computer,2012,28(11):1127~1137.
    [37] Sun X. F., Rosin P. L., Martin R. R., et al.. Bas-relief generation using adaptive histogramequalization [J]. IEEE Transactions on Visualization and Computer Graphics,2009,15(4):642~653.
    [38] Coquillart S.. Extended free-form deformation: a sculpturing tool for3D geometric modeling
    [C].//In Proceedings of the17th Annual Conference on Computer Graphics and InteractiveTechniques, ACM New York,1990:187~196.
    [39] Wang S. W., Kaufman A. E.. Volume sculpting [C].//In Proceedings of the1995Symposiumon Interactive3D Graphics, ACM,1995:151-ff.
    [40] Perry R. N., Frisken S. F.. Kizamu: a system for sculpting digital characters [C].//InProceedings of the28th Annual Conference on Computer Graphics and Interactive Techiques,ACM New York,2001:47~56.
    [41] Frisken S. F., Perry R. N., Rockwood A. P., et al.. Adaptively sampled distance fields: a generalrepresentation of shape for computer graphics [C].//In Proceedings of27th Annual Conferenceon Computer Graphics and Interactive Techniques, ACM New York,2000:249~254.
    [42] Surin A.. Functionally based virtual computer art [C].//In Proceedings of the2001Symposiumon Interactive3D Graphics, ACM New York,2001:77~84.
    [43] Surin A.. Functionally based virtual embossing [J]. The Visual Computer,2001,17(4):258~271.
    [44] Kerber J., Wang M., Chang J., et al.. Computer assisted relief generation–a survey [J].Computer Graphics Forum,2012,31(8):2363-2377.
    [45] Sweldens W., Schroder P.. Digital geometric signal processing [C].//In Proceedings ofSIGGRAPH’01,2001, Course Notes:50.
    [46]周昆.数字几何处理:理论与应用,[博士学位论文].杭州,浙江大学,2002.
    [47]张三元,查红彬,鲍虎军,等.数字几何处理及其应用的最新进展[J].计算机辅助设计与图形学学报,2005,17(6):1129~1138.
    [48]毛志红.数字几何处理的若干问题研究,[博士学位论文].上海,上海交通大学,2006.
    [49] Liu X. G., Bao H. J., Peng Q. S.. Digital differential geometry processing [J]. Journal ofcomputer science and technology,2006,21(5):847~860.
    [50]王仁芳.点模型数字几何处理若干技术研究,[博士学位论文].杭州,浙江大学,2007.
    [51]胡建平.数字几何处理中球面参数化和重新网格化研究,[博士学位论文].大连,大连理工大学,2009.
    [52]胡事民,杨永亮,来煜坤.数字几何处理研究进展[J].计算机学报,2009,32(8):1~18.
    [53]王军.数字几何处理若干关键技术研究,[博士学位论文].合肥,中国科学技术大学,2011.
    [54]苏春.数字化设计与制造[M].北京:机械工业出版社.2009.
    [55] Varady T., Martin R. R., Cox J.. Geometric models–an introduction [J]. Computer-aideddesign,1997,29(4):255~268.
    [56]张丽艳.逆向工程中模型重建关键技术研究,[博士学位论文].南京,南京航空航天大学,2001.
    [57]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究,[博士学位论文].南京,南京航空航天大学,2004.
    [58]张辉.基于随机光照的双目立体测量关键技术及其系统研究,[博士学位论文].南京,南京航空航天大学,2009.
    [59]韦虎.三维外形测量系统中的数据处理关键技术研究,[博士学位论文].南京,南京航空航天大学,2011.
    [60]叶南.基于机器视觉的板料成形性能分析关键技术及系统实现,[博士学位论文].南京,南京航空航天大学,2011.
    [61]石春琴.随机光照双目立体测量系统中的若干关键问题研究,[博士学位论文].南京,南京航空航天大学,2011.
    [62]肖春霞.三维点采样模型的数字几何处理技术研究.[博士学位论文].杭州,浙江大学,2006.
    [63] Floater M., Hormann K.. Surface parameterization: A tutorial and survey [C].//In Advances inMultiresolution for Geometric Modelling, Mathematics and Visualization. Berlin: Springer,2005:157~186.
    [64] Levy B.. Constrained texture mapping for polygonal meshes [C].//In Proceedings of ACMSIGGRAPH’01,2001:417~424.
    [65] Sheffer A., Levy B., Mogilnitsky M., et al.. ABF++: fast and robust angle based flattening [J].ACM Transactions on Graphics,2005,24(2):311~330.
    [66] Biermann H., Martin I., Bernardini F., et al.. Cut-and-Paste editing of multiresolution surfaces[J]. ACM Transcations on Graphics,2002,21(3):312~321.
    [67] Lee A., Dobkin D., Sweldens W., et al.. Multiresolution mesh morphing [C].//In Proceedingsof ACM SIGGRAPH’99,1999:343~350.
    [68] Lévy B.. Dual domain extrapolation [J]. ACM Transactions on Graphics,2003,22(3):364~369.
    [69] Praun E., Hoppe H.. Spherical parameterization and remeshing [C].//In Proceedings of ACMSIGGRAPH’03,2003:340~350.
    [70] Li W. C., Ray N., Lévy B.. Automatic and interactive mesh to T-spline conversion [C].//InProceedings of the4th Eurographics Symposium on Geometry Processing, EurographicsAssociation,2006:191~200.
    [71] Sheffer A., Sturler de E.. Parameterization of faceted surfaces for meshing using angle basedflattening [J]. Engineering with computers,2001,17(3):326~337.
    [72] Floater M.. Parameterization and smooth approximation of surface triangulations [J]. ComputerAided Geometric Design.1997,14(3):231~250.
    [73] Floater M. S.. Mean value coordinates [J]. CAGD,20(1):19~27,2003.
    [74] Hormann K., Greiner G.. MIPS: An efficient global parameterization method [J]. Curve andSurface Design,2000,153~162.
    [75] Sander P., Snyder J. Gortler S., et al.. Texture mapping progressive meshes [C].//InProceedings of ACM SIGGRAPH’01,2001:409~416.
    [76] Desbrun M., Meyer M., Alliez P.. Intrinsic parameterization of surface meshes [J]. ComputerGraphics Forum,2002,21(3):209~218.
    [77] Guskov I., Vidimce K., Sweldens W., et al.. Normal meshes [C].//In Proceedings of ACMSIGGRAPH’00,2000:95~102.
    [78] Kraevoy V., Sheffer A.. Cross-parameterization and compatible remeshing of3D models [J].ACM Transactions on Graphics,2004,23(3):861~869.
    [79] Gotsman C., Gu X., Sheffer A.. Fundamentals of spherical parameterization for3D meshes [C].//In Proceedings of ACM SIGGRAPH’03,2003:358~364.
    [80]夏述高.三角曲面参数化若干问题研究,[博士学位论文].大连:大连理工大学,2011.
    [81] Sheffer A., Praun E., Rose K.. Mesh parameterization methods and their applications [J].Computer Graphics and Vision,2006,2(2):105~171.
    [82] Hildebrandt K. Polthier K.. Anisotropic filtering of non-linear surface features [J]. ComputerGraphics Forum,2004,23(3):391~400.
    [83] Fleishman S., Drori I., Cohen-Or D.. Bilateral mesh denoising [J]. ACM Transcations onGraphics,2003,22(3):950~953.
    [84] Jones T. R., Durand F., Desbrun M.. Non-iterative, feature-preserving mesh smoothing [J].ACM Transcations on Graphics,2003,22(3):943~949.
    [85] Desbrun M., Meyer M., Schroder P., et al.. Implicit fairing of irregular meshes using diffusionand curvature flow [C].//Proceedings of ACM SIGGRAPH99,1999,317~324.
    [86] Schneider R., Kobbelt L.. Geometric fairing of irregular meshes for free-form surface design[J]. Computer Aided Geometric Design,2001,18(4):359~379.
    [87] Kobbelt, L., Campaqna S., Vorsatz J., and et al.. Interactive multi-resolution modeling onarbitrary meshes [C].//In Proceedings of the25th Annual Conference on Computer Graphicsand Interactive Techniques, ACM NewYork,1998:105~114.
    [88] Nehab D., Rusinkiewicz S., Davis J., et al.. Efficiently combining positions and normals forprecise3D geometry [J]. ACM Transactions on Graphics,2005,24(3):536~543.
    [89] Diebel J. R., Thrun S., Brunig M.. A bayesian method for probable surface reconstruction anddecimation [J]. ACM Transactions on Graphics,2006,25(1):39~59.
    [90] Botsch M., Pauly M., Rossl C., et al.. Geometric modeling based on triangle meshes [R]//InProceedings of Eurographics2006.
    [91] Sederberg T. W., Parry S. R.. Free-form deformation of solid geometric models [J]. ComputerGraphics,1986,20(4):151~160.
    [92] Hsu W., Hughes J. Direct manipulations of free-form deformations [J]. Computer Graphics,1992,26(2):177~184.
    [93] Eck M., DeRose T., Duchamp T., et al.. Multiresolution analysis of arbitrary meshes [C].//InProceedings of SIGGRAPH’95,1995:173~182.
    [94] Zorin D., Schroder P., Sweldens W.. Interactive multiresolution mesh editing [C].//InProceedings of ACM SIGGRAPH97,1997:259~268.
    [95] Guskov I., Sweldens W., Schr der P.. Multiresolution signal processing for meshes [C].//InProceedings of the26th Annual Conference on Computer Graphics and Interactive Techniques,1999:325~334.
    [96] Lee S.. Interactive multiresolution editing of arbitrary meshes [J]. Computer Graphics Forum,1999,18(3):73~82.
    [97] Shi L., Yu Y. Z., Bell N., et al.. A fast multigrid algorithm for mesh deformation [J]. ACMTranscations on Graphics,2006,25(3):1108~1117.
    [98] Huang J., Shi X. H., Liu X. G., et al.. Subspace gradient domain mesh deformation [J]. ACMTranscations on Graphics,2006,25(3):1126~1134.
    [99] Au O. K., Tai C. L., Liu L. G., et al.. Dual Laplacian editing for meshes [J]. IEEE Transcationson Visualization and Computer Graphics,2006,12(3):386~395.
    [100] Yu Y. Z., Zhou K., Xu D., et al.. Mesh editing with Poisson-based gradient field manipulation[J]. ACM Transcations on Graphics,2004,23(3):644~651.
    [101] Zayer R., Rossl C., Karni Z., et al.. Harmonic guidance for surface deformation [J]. ComputerGraphics Forum,2005,24(3):601~609.
    [102] Alexa M.. Differential coordinates for local mesh morphing and deformation [J]. The VisualComputer,2003,19(2~3):105~114.
    [103] LipmanY.. Differential coordinates for interactive mesh editing [C].//In Proceedings of theShape Modeling International2004, IEEE Computer Society Washington,2004:181~190.
    [104] Sorkine O., Cohen-or D., Lipman Y., et al.. Laplacian surface editing [C].//In Proceedings ofthe2004Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,2004:175~184.
    [105] Welch W., Witkin A.. Variational surface modeling [J]. Computer Graphics,1992,26(2):157~166.
    [106] Sorkine O.. Differential Representations for Mesh Processing [J]. Computer Graphics Forum,2006,25(4):789~807.
    [107] Botsch M., Sorkine O.. On linear variational surface deformation methods [J]. IEEETranscations on Visualization and Computer Graphics,2008,14(1):213~230.
    [108] Rong G. D., Cao Y., Guo X. H.. Spectral mesh deformation [J]. Visual Computer,2008,24:787~796.
    [109] Bechmann D.. Space deformation models survey [J]. Computer&Graphics,1994,18(4):571~586.
    [110] Milliron T., Jensen R. J, Barzel R., et al.. A framework for geometric wraps and deformations[J]. ACM Transcations on Graphics,2002,21(1):20~51.
    [111] Taubin G.. A signal processing approach to fair surface design [C]//In Proceedings of the22ndAnnual Conference on Computer Graphics and Interactive Techniques. New York: ACM.1995.351~358.
    [112] Reuter M., Wolter F. E., Peinecke N.. Laplace-Beltrami spectral as shape-DNA of surface andsolids [J]. Computer Aided Design,2005,38(4):342~366.
    [113] Vallet B, Levy B.. Spectral geometry processing with manifold harmonics [J]. ComputerGraphics Forum,2008,27(2):251~260.
    [114] Zhang H., Kaick O. V., Dyer R.. Spectral methods for mesh processing and analysis [R].//InProceedings of Eurographics’07State-of-the-art Report,2007:1~22.
    [115]胡建伟.保持特征的网格形变和编辑算法的研究,[博士学位论文].杭州:浙江大学,2009.
    [116]赵勇.近似刚性的几何变形研究,[博士学位论文].杭州:浙江大学,2009.
    [117] Vorsatz J., Rossl C., Kobbelt L., et al.. Feature sensitive remeshing [C].//In Proceedings ofEurographics’01,2001:393~401.
    [118] Stylianou G., Farin G.. Crest lines for surface segmentation and flattening [J]. IEEETranscations on Visualization and Computer Graphics,2004,10:536~544.
    [119] Zhou Q. N., Weinkauf T., Sorkine O.. Feature-based mesh editing [C].//In Proceedings ofEurographics2011.
    [120] Hildebrandt K., Polthier K., Wardetzky M.. Smooth feature lines on surface meshes [C].//InProceedings of Eurographics Symposium on Geometry Processing2005.
    [121] Yoshizawa S., Belyaev A. G., Seidel H. P.. Fast and robust detection of crest lines on meshes[C].//In Proceedings of ACM Symposium on Solid and Physical Modeling2005.
    [122] Ohtake Y., Belyaev A., Seidel H. P.. Ridge-valley lines on meshes via implicit surface fitting [J].ACM Trans. Graph.,23(3),2004.
    [123] Kolomenkin M., Shimshoni I., Tal A.. Demarcating curves for shape illustration [J]. ACMTransactions on Graphics,2008,27(5):1571~1579.
    [124] Thirion J. P.. The extremal mesh and the understanding of3D surfaces [J]. International Journalof Computer Vision,1996,19(2):115~128.
    [125] Rusinkiewicz S.. Estimating curvatures and their derivatives on triangle meshes[C].//InProceedings of2nd International Symposium on3D Data Processing, Visualization andTransmission,2004:486~493.
    [126] Kanai T., Suzuki H., Mitani J., et al.. Interactive mesh fusion based on local3D metamorphosis[C].//In Proceedings of Graphics Interface '99,1999:148~156.
    [127] Museth K., Breen D. E., Whitaker R. T., et al.. Level set surface editing operators [J]. ACMTransactions on Graphics,2002,21(3):330~338.
    [128] Bartels R., Forsey D.. Spline overlay surfaces [R]. Technical Report, University of BritishColumbia, Vancouver,1993.
    [129] Chan L., Mann S., Bartels R.. World space surface pasting [C].//In Proceedings of theConference on Graphics Interface’97, Toronto: Canadian Information Processing Society,1997:146~154.
    [130] Conrad B. and Mann S.. Better pasting via quasi-interpolation [M].//Saint-Malo. Curve andSurface Design, Nashville: Vanderbilt University Press,1999:27~36.
    [131] Furukawa Y., Masuda H.. Cut-and-paste editing based on constrained B-spline volume ftting[C].//In Proceedings of Computer Graphics International '03,2003:222~225.
    [132] Mann S., Yeung T.. Cylindrical surface pasting [C].//In Proceedings of Geometric Modelin'99,London: Springer-Verlag,2001:233~248.
    [133] Fu H., Tai C. L., Zhang H.. Topology-free cut-and-paste editing over meshes [C].//InProceedings of the3rd International Conference on Geometric Modeling and Processing,2004:173~182.
    [134] Belhumeur P. N., Kriegman D. J., Yuille A. L.. The bas-relief ambiguity [J]. InternationalJournal of Computer Vision.1999,35(1):33~44.
    [135] Chandraker M. K., Kahl F., Kriegman D. J.. Reflections on the generalized bas-relief ambiguity[C].//In Proceedings of IEEE Conf. on Computer Vision and Pattern Recongnition, CVPR’05,2005:788~795.
    [136] Alldrin N., Mallick S., Kriegman D.. Resolving the generalized bas-relief ambiguity by entropyminimization [C].//In Proceedings of IEEE Conference on Computer Vision and PatternRecognition, CVPR’07,2007.
    [137] Tan P., Mallick S., Quan L., et al.. Isotropy, reciprocity and the generalized bas-relief ambiguity[C].//In Proceedings of IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’07,2007.
    [138] Anderson S., Levoy. M.. Unwrapping and visualizing cuneiform tablets [J]. IEEE ComputerGraphics and Applications,2002,22(6):82~88.
    [139] Kolomenkin M., Shimshoni I., Tal A.. On edge detection on surface [C].//In Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition (CVPR’2009),2009:20~25.
    [140]周培德.计算几何:算法设计与分析[M].第三版,北京:清华大学出版社,2008.
    [141] Catmull E. A subdivision algorithm for computer display of curved surfaces [D]. Salt Lake City:University of Utah,1974.
    [142] Isenberg T., Freudenberg B., Halper N., et al.. A developer's guide to silhouette algorithms forpolygonal models [J]. Computer Graphics and Applications,2003,23(4):28~37.
    [143] Gravesen J., Ungstrup M.. Constrcuting invariant fairness measures for surfaces [J]. Advancesin Computational Mathematics,2002,17(1~2):67~88.
    [144] Moreton H., Sequin C.. Functional optimization for fair surface design [J]. ACM SIGGRAPHComputer Graphics,1992,26(2):167~176.
    [145] Meyer M., Desbrun M., Schroder P., et al.. Discrete differential geometry operators fortriangulated2-manifolds [C].//In Proceedings of International Workshop on Visualization andMathematics, Berlin-Dahlem,2002:35~57.
    [146] Xu G. L.. Discrete Laplace-Beltrami operators and their convergence [J]. Computer AidedGeometric Design,2004,21(8):767~784.
    [147]周昆,鲍虎军,石教英.统一的数字几何处理框架[J].计算机学报,2002,90:904~909.
    [148] Oliensis J.. Local reproducible smoothing without shrinkage [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1993,15(3):307~312.
    [149] Taubin G.. Optimal polyhedral surface smoothing as filter design [C].//In Proceedings of4thEuropean Conference on Computer Vision, Cambridge UK, Volume1064,1996:283-292.
    [150] Ranta M., Inui M., Kimura F., et al.. Cut and paste based modeling with boundary features [C].//In Proceedings on2nd ACM Symposium on Solid Modeling and Applications, ACMNewYork,1993:303~312.
    [151] Zhang H., Kaick V. O., Dyer R.. Spectral mesh processing [J]. Computer Graphics Forum,2010,29(6):1865~1894.
    [152] Karni Z., Gotsman C.. Spectral compression of mesh geometry [C]//In Proceedings of ACMSIGGRAPH’00,2000:279~286.
    [153] Botsch M., Kobbelt L.. An intuitive framework for realtime freeform modeling [J]. ACMTranscations on Graphics,2004,23(3):630~634.
    [154] Sorkine O., Cohen-Or D., Lipman Y., et al.. Laplace surface editing [C].//In Proceedings of the2004Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ACM NewYork,2004:175~184.
    [155] Yu Y. Z., Zhou K., Xu D., et al.. Mesh editing with poission-based gradient field manipulation[J]. ACM Transcations on Graphics,2004,23(3):644~651.
    [156] Nealen A., Sorkine O., Alexa M., et al.. A sketch-based interface for detail-preserving meshediting [J]. ACM Transcations on Graphics,2005,24(3):1142~1147.
    [157] Toledo S.. Taucs: A library of sparse linear solvers, version2.2. Tel-Aviv University, availableonline at http://www.tau.ac.il/~stoledo/taucs/, Sept.2003.
    [158]李庆扬,王能超,易大义.数值分析[M].第五版,北京:清华大学出版社,2010.
    [159] Reuter M., Wolter F. E., Peinecke N.. Laplace-spectra as fingerprinters for shape matching [C].//In Proceedings of the2005ACM Symposium on Solid and Physical Modeling, ACMNewYork,2005:101~106.
    [160] Wu J. H., Kobbelt L.. Efficient spectral watermarking of large meshes [J]. The VisualComputers,2005,21(8~10):848~857.
    [161] Zhou K., Synder J., Guo B., et al.. Iso-charts: stretch-driven mesh parameterization usingspectral analysis [C].//In Proceedings of the2004Eurographics/ACM SIGGRAPHSymposium on Geometry Processing,2004:45~54.
    [162] Levy B.. Laplace-Beltrami eigenfunctions: Towards and algorithm that understands geometry[C].//In IEEE International Conference on Shape Modeling and Applications,2006:13~22.
    [163] Karypis G., Kumar V.. A Fast and Highly Quality Multilevel Scheme for Partitioning IrregularGraphs [J]. SIAM Journal on Scientific Computing,1999,20(1):359~392.
    [164] Gonzalez R. C..数字图像处理[M].第二版,阮秋琦,阮宇智等译,北京:电子工业出版社,2003.
    [165] Bhat P, Curless B, Cohen M, et al.. Fourier analysis of the2D screened Poisson equation forgradient domain problems [C].//In Proceedings of10th European Conference on ComputerVision (ECCV). Berlin: Springer-Verlag Press,2008:114~128.
    [166] Perez P., Ganqnet M., Blake A.. Poisson image editing [J]. ACM Transcations on Graphics,2003,22(3):313~318.
    [167] Horovitz I., Kiryati N.. Depth from gradient fields and control points: bias correction inphotometric stereo [J]. Image and Visison Computing,2004,22(9):681~694.
    [168] Agrawal A.. Scene analysis under variable illumination using gradient domain methods [D].Maryland, U.S.A.: University of Maryland at College Park.2006
    [169] Durand F, Dorsey J.. Fast bilateral filtering for the display of high-dynamic-range images [J].ACM Transactions on Graphics,2002,21(3):257~266.
    [170] Canny J. A computational approach to edge detection [J]. IEEE Transaction on Pattern Analysisand Machine Intelligence,1986,8(6):679~698.
    [171] Frankot R. T., Chellappa R. A method for enforcing integrability in shape from shadingalgorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence10th,1998,439~451.
    [172] Hertzmann A.. Introduction to3D Non-Photorealistic Rendering: Silhouettes and Outlines [R].//In Proceedings of ACM SIGGRAPH99Non-Photorealistic Rendering Course Notes. Course17, Chapter7
    [173] Hertzmann A., Zorin D.. Illustrating smooth surfaces [C].//In Proceedings of27th AnnualConference on Computer Graphics and Interactive Techniques, NewYork: ACM Press,2000:517~526.
    [174] Koenderink J. J.. What does the occluding contour tell us about solid shape?[J]. Perception,1984,13(3):321~330.
    [175] Markosian L., Kowalski M. A., Goldstein D., et al.. Real-time nonphotorealistic rendering [C].//In Proceedings of24th Annual Conference on Computer Graphics and Interactive Techniques,NewYork: ACM Press,1997:415~420.
    [176] DeCarlo D., Finkelstein A., Rusinkiewicz S., et al.. Suggestive Contours for Conveying Shape[J]. ACM Transactions on Graphics,2003,22(3):848~855.
    [177] DeCarlo D., Finkelstein A., Rusinkiewicz S.. Interactive rendering of suggestive contours withtemporal coherence [C].//In Proceedings of3rd International Symposium onNon-Photorealistic Animation and Rendering,2004:15~24.
    [178] Judd T., Durand F., Adelson E. H.. Apparent ridges for line drawing [J]. ACM Transactions onGraphics,2007,26(3): Article No.19.
    [179] Zhang L., He Y., Xie X. X., et al.. Laplacian lines for real-time shape illustration [C].//InProceedings of the2009Symposium on Interactive3D Graphics and Games, NewYork: ACMPress,2009:129~136.
    [180] Rusinkiewicz S., Cole F., DeCarlo D., et al.. Line drawing from3D models [R]. Class notes inProceedings of ACM SIGGRAPH,2008.
    [181] Koenderink J. J.. Solid shape [M]. Cambridge: MIT Press,1990.
    [182] Rossl C., Kobbelt L., Seidel, H. P.. Extraction of feature lines on triangulated surfaces usingmorphological operators [C].//In Proceedings of AAAI Symposium on Series. Smart Graphics,Stanford, CA, U.S.A.:2000:71~75.
    [183] Peng J., Kristjansson D., Zorin D.. Interactive modeling of topologically complex geometricdetail [J]. ACM Transactions on Graphics,2004,23(3):635~643.
    [184] Porumbescu S. D., Budge B., Feng L., et al.. Shell maps [J]. ACM Transactions on Graphics,2005,24(3):626~633.
    [185] Praun E. Hoppe H.. Spherical parametrization and remeshing [J]. ACM Transactions onGraphics,2003,22(3):340~349.
    [186] Schreiner J., Asirvatham A., Praun E., et al.. Inter-surface mapping [J]. ACM Transactions onGraphics,2004,23(3):870~877.
    [187] Anguelov D., Srinivasan P., Koller D., et al.. SCAPE: Shape completion and animation ofpeople [J]. ACM Transactions on Graphics,2005,24(3):408~416.
    [188] Kraevoy V., Sheffer A.. Template based mesh completion [C].//In Proceedings of the3rdEurographics Symposium on Geometry Processing, Eurographics Association,2005:13~22.
    [189] Surazhsky V. Gotsman C.. Explicit surface remeshing [C].//In Proceedings of the1stEurographics Symposium on Geometry Processing, Eurographics Association,2003:20-30.
    [190] Gu X., Gortler S. J., Hoppe H.. Geometry images [J]. ACM Transactions on Graphics,2002,21(3):355~361.
    [191] Floater M. S.. Meshless parameterization and B-spline surface approximation [C].//InProceedings of IMA Conference on the Mathematics of Surfaces IX, London: Springer-Verlag2000:1~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700