多空间尺度下驼鹿和狍受人类干扰的生态效应及其适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2005年至2007年冬季,综合运用动物生态调查技术、现代景观生态学技术、数学生态学的建模技术、种群生态学、行为生态学等技术以及营养生态学的生化分析技术,在东北小兴安岭西北坡的沾河和胜山地区,布设60条长约2km的样线,调查10m×10m的样方613个,2m×2m的小样方5265个,跟踪足迹链105段53 000m,收集粪便样本184份,检测雪尿样本260份,对多空间尺度下驼鹿(Alces alces cameloides)和狍(Capreolus pygargus bedfordi)受人类干扰的生态效应及其适应机制进行了研究,获得以下6个方面结果:
     1、驼鹿和狍在假定无人为干扰和有人为干扰的资源选择模型中,对各种资源变量表现出不同的选择或回避行为。而且,在包括人为干扰变量的模型中,驼鹿和狍对各种人为干扰变量也表现出不同的选择或回避反应。驼鹿在空间分布上不回避狍,模型评估显示两种动物的优质生境都大量丧失,优、良等级生境转化为中、差等级生境,并呈现出相互隔离的斑块,特别是驼鹿受人为活动干扰程度最大。在干扰模型的GIS图层质量分级中,驼鹿的优质生境仅剩一小块孤岛,绝大部分优、良生境转化为差生境,表明一旦人为干扰进一步加重可能导致整个地区驼鹿种群的严重濒危乃至绝迹。
     2、驼鹿和狍在研究地区内对可食植物类别的偏爱程度不同。驼鹿对柳,而狍对杨的选择性最高。在不同干扰程度的区域内,驼鹿和狍表现出不同的食物选择性和采食特征;在微生境、斑块和景观尺度下,驼鹿和狍的采食活动呈现出不同的生境需求,而且驼鹿和狍都展示出在微生境尺度对食物丰富度的选择性;人为干扰活动影响驼鹿和狍在各尺度采食活动的资源选择。通过分别建立的斑块和景观尺度模型的GIS图层运算,可知驼鹿和狍优、良等级的生境面积都较中、差等级采食生境的面积小,且平均单位斑块的面积小,生境的丧失及破碎化严重。综合斑块和景观尺度的模型运算,表明整个研究地区内驼鹿采食生境的丧失较狍严重。
     3、驼鹿卧息活动在不同尺度条件下呈现出不同的生境资源需求,并且均受公路、居民点和森林采伐时间间隔的影响,且显示出相似的反应距离。由于居民点附近分布的活倒木提供了丰富的食物,吸引驼鹿对其附近区域的选择,对森林采伐时间间隔的延长表现出偏爱性逐渐降低,对公路的回避反应约出现在3.5km;狍的卧息活动也体现出不同尺度下不同的生境需求,并且在这3个尺度均受到居民点的影响,在斑块尺度受到采伐时间间隔的影响。各尺度狍对居民点均显示出相似的反应距离。距居民点6km左右时,狍卧息活动对居民点呈现回避反应。在斑块尺度下,随采伐间隔时间的延长偏爱性增强。
     4、应用分维分析获得驼鹿和狍生境利用特征的结果表明,驼鹿移动路径的分维值随着尺度的变化出现明显的间断点,而狍的移动路径随尺度的变化呈直线,表现为自相似性;驼鹿在3个不同分维尺度范围(6-10m,10-15m和6-15m)内的生境利用均与开阔生境的喜好和排粪行为相关,但在6-15m内与寻找食物和对针阔混交林的利用有关,而在6-10m内则与寻找食物和回避针叶林有关;狍在3-20m对生境的利用主要与对密集乔木林的回避以及与加大采食量和采取适宜的卧息策略相关。
     5、对驼鹿和狍活动微生境特征的统计和判别分析表明,雪深、当年生柳条比例和采伐时间间隔对判别这两个物种微生境的特征贡献最大。其中,采伐时间间隔对判别驼鹿和狍微生境分离的作用最大,其次是雪深和当年生柳条的比例。驼鹿和狍展示出对森林采伐迹地不同演替阶段特征适应性的差异。因此,适宜的森林采伐干扰活动可能促进两物种微生境的分离,有利共存。
     6、驼鹿和狍种群的营养动态研究中,未发现即将死亡的个体(UN:C≥20.0mg:mg),但发现2006年和2007年1月份沾河地区驼鹿和2006年3月份沾河地区狍种群中都存在较大比例个体受到严重营养限制(UN:C≥3.5mg:mg),而且2006年和2007年1月至2月胜山地区狍种群的营养状况要好于沾河地区狍。影响沾河地区驼鹿种群营养动态的主要因素可能是与狍之间的食物竞争。当生境较差时,驼鹿和狍均呈现内源蛋白的分解代谢,并通过调整对杨、桦等食物的采食水平来减少与狍的食物重叠,同时采食含有可消化能和粗蛋白更高的冷杉来补充能量和蛋白需求以适应严酷的生境;影响狍种群营养动态的主要因素可能是食物与雪深的共同作用。当生境较差时,狍也靠内源蛋白的分解代谢,同时提高食物中营养成分较高的杨的利用比例及偶而利用草本植物来适应对营养和能量的需求。综合分析食物丰富度、雪深、食性的时空变化与驼鹿和狍种群营养动态之间的关系,发现驼鹿和狍在生境严酷时,各自都呈现出腿部形态(前膝高度)、采食行为、营养代谢等一系列的适应组合。此外,通过细化驼鹿和狍种群个体中UN:C值的分布能够间接反映种群死亡率变化的动态趋势,分析其与生境因子的相关性,使雪尿分析技术在生境日益丧失的鹿类动物种群的保护与管理工作中呈现较高的应用价值。
Ecological effects of anthropogenic disturbances on moose (Alces alces cameloides) and roe deer (Capreolus pygargus bedfordi) at multiple spatial scales were studied by locating 60 2-km transects, surveying 613 10-m×10-m plots and 5265 2-m×2-m subplots, following 105 snow tracks in total length of 53 000-m, collecting 184 fecal samples and assaying 260 snow-urine samples, in the northwestern Lesser Kingan Mountains by using both ecological techniques (such as field survey, modem landscape ecological techniques, mathematic ecological modeling, population ecology techniques, behavioral ecology techniques etc.) and nutritional ecological techniques (such as high performance liquid chromatography and biochemical analysis) from 2005 to 2007. Six conclusions were drawn as follows:
     1. In our survey, moose and roe deer exhibited differential selection or avoidance behavior for all kinds of resources and human disturbances. Moose did not appear to avoid the occurrences of roe deer. The spatial distribution of moose revealed no avoidance of roe deer, but differential selection of resources and different responses to human disturbance. Models indicated that the inclusion of human disturbance as a factor in the modelling significantly diminished the assessment of habitat quality, and resulted in an assessment showing an increase in the degree of fragmentation of high quality and good quality habitat patches. Such disturbance was extremely significant for moose, as shown in a comparison of the quality layers of GIS maps with and without the inclusion of human disturbance factors. Most habitat assessed as high quality without the inclusion of any human disturbance factor was assessed as poor quality if human disturbance factors were included in the model; only a small patch of high quality remained. This suggested that human disturbance is a key factor affecting distribution patterns of moose and roe deer.
     2. Moose and roe deer exhibited differential preferences for plant species in the whole study area. Moose primarily preferred willows, while roe deer preferred poplars. They exhibited different characteristics of foraging behavior in zones with differing magnitudes of human disturbances. Moose and roe deer appeared to have different habitat requirements for foraging activity at microhabitat, patch and landscape scales, but they all were correlated with food abundances at microhabitat scale. Human disturbance influenced foraging habitat selection of moose and roe deer at the three scales as above. Individual calculations of GIS map layers of patches and landscapes indicated that both the whole area and mean patch area of high and good forage habitats were smaller than that of poor and low ones, suggesting a serious habitat loss and fragmentation. In addition, the loss of moose foraging habitat was more serious than that of roe deer as revealed by combined calculations.
     3. For the three different scales, microhabitat, patch and landscape, the moose exhibited different habitat requirements for bed-site selection, but this selection was negatively influenced by proximity to roads, positively influenced by the presence of settlements for forestry workers and researchers, andnegatively influenced by the harvesting interval of the forest patch. It also responded (avoiding or selecting) at similar distances for the three different habitat scales when they were confronted with the same type of human disturbance features. It did not appear to avoid settlement Significantly, in contrast, it showed a slight preference. The avoidance distance for roads occurred at about 3.5km. Habitat preference decreased with the extension of forest harvest intervals. Habitat requirement of roe deer was a little different from that of moose. Bed-site selection of this species was influenced by the proximity of settlements at all three scales, but was only influeced by forest harvest interval at patch scale. The response distance to a settlement was about 6 km at all three scales. In contrast to the moose, habitat preference of roe deer increased with the extension of forest harvest intervals.
     4. Fractal analysis of habitat utilization characteristics indicated that fractal value of moose movement path changed with the scales and revealed an apparent abrupt disjoint point, while the fractal value of roe deer showed straight line and self-similarity. These results suggested that moose demonstrated a preference for open habitat and similar fecal pellet excreting behavior at all three fractal scales, but only correlated with foraging in the proximity of food plants and use of mixed coniferous and deciduous forest at 6-15m, and correlated with foraging in the proximity of food plants and avoiding coniferous forest at 6-10m. Roe deer habitat utilization was mainly correlated with avoidance of denser arboreal forest, strategies increasing forage quantity and adopting suitable bedding behavior.
     5. Snow depth, the proportion of annual willow shoots and forest harvest intervals were significant variables to differentiate the microhabitat selection of both moose and roe deer. Forest harvest intervals contributed to their microhabitat separation the most, followed by snow depth and the proportion of annual willow shoots. Consequently, both deer species exhibited differences in adaptibility to harvested patches at different successional stages, tolerance to snow depth and preferences in food plant species selection. Hence, suitable forest harvest activities may promote the separation of their microhabitats, benefiting their coexistence.
     6. No dead or moribund individuals (UN:C≥20.0mg:mg) were found in these surveys, but a considerable proportion of moose were observed suffering from serious nutritional restriction (UN:C≥3.5mg:mg) in Jan. of 2006 and Jan. 2007 years in Zhanhe region, as well as roe deer in Mar. 2006 in the same region. In contrast, the nutritional condition of roe deer in Shengshan region was better than those in Zhanhe region from Jan. to Feb. in 2006 and 2007. Food competition between moose and roe deer might be a main factor impacting nutritional trends of moose population. At the time that harsh habitat occurred, moose exhibited endogenous protein catabolism. They reduced food overlap with roe deer by regulating foraging frequency for poplar and birch etc. and obtained energy and crude protein by foraging more quantity of faber fir, which has higher energy and protein contents; Snow depth and food abundance might be the main factors impacting the nutritional trends of roe deer population. Roe deer also exhibited endogenous protein catabolism, obtained energy and crude protein met their energy and crude protein requirements by foraging a higher proportion of poplar in their diets (poplar has higher crude protein levels) and a higher proportion of those few grasses which yield more digestible energy, while they were experiencing harsh habitat. Our comprehensive analyses of the relationship between nutritional trend and the temporal and spatial changes of food abundances, snow depths and diets suggested that the two species adopt different series of adaptable combinations of leg morphology, foraging behavior and nutritional metabolism etc. while they were experiencing harsh habitat conditions. In addition, trends of death rate changes of moose and roe deer populations might be indirectly reflected by refining the distribution of UN:C of individuals, which could allow us to analyze its correlation with habitat factors. Therefore, snow-urine analysis might be a valuable tool in practical management of deer populations under conditions of increasing habitat loss.
引文
[1] 傅伯杰,陈利顶.景观多样性类型及其生态意义.地理学报,1996,51(5):454-462.
    [2] 汪松.中国濒危动物红皮书.兽类.北京:科学出版社.1998.
    [3] 万冬梅,高玮,王秋雨等.生境破碎化对丹顶鹤巢址选择的影响.应用生态学报,2002,13(50):58-584.
    [4] Herkert. Effects of Prairie Fragmentation on the Nest Success of Breeding Birds in the Mideontinental United States. Conservation Biology, 2003, (17): 587-593.
    [5] Fahrig, L. and A. A. Grez. Population spatial structure, human-caused landscape changes and species survival. Revista Chilena de Historia Natural, 1996, 69: 5-13.
    [6] Gilpin, M. E. Spatial structure and population vulnerability. Pages 125-139 in M. E. Soule, ed. Viable populations for conservation. Cambridge University Press. Cambridge, U. K, 1987.
    [7] Kareiva, P. Habitat fragmentation and the stability of predator-preyinteractions. Nature, 1987, (326): 388-390.
    [8] Wilcove D. S., C H McLellan & A. P. Doboson. Habitat fragmentation in the temperate zone In Soule M E(ed) Conservation Biology Sinauer Associates Inc Publishers, 1986.
    [9] Forman, R. T., T. L. Mosaics. The Ecology of Landscapes and Regions. Cambridge University Press, 1995.
    [10] Verme. L. J. Swamp conifer deeryards in northern Michigan: their ecology and management. Journal of Forestry, 1965, 63: 523-529.
    [11] Hughes, J. W. and T. J. Fahey. Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. Journal of Ecology, 1991, 79: 605-616.
    [12] Blair, R. M. and L. E. Brunett. Seasonal browse selection by deer in a southern pine hard wood habitat. Journal of Wildlife Management, 1980, 44(1): 79-88.
    [13] Hurst, G. A. and R. C. Warren. "Enhancing white-tailed deer habitat of pine plantations by intensive management. "MAFES Tech. Bull. 1981, No.107. Miss. Agri. and For. Exp. Sta. Mississippi.
    [14] 张明海,萧前柱.冬季马鹿采食生境和卧息生境选择的研究.兽类学报,1990,10(3):175-183.
    [15] Thill, R. E., and H. F. Morris. Quality of spring deer diets on Louisiana pinehardwood sites. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies, 1983, 37: 127-137.
    [16] Hughes, J. W. and T. J. Fahey. Colonization dynamics of herbs and shrubs in a disturbed northern hardwood forest. Journal of Ecology, 1991, 79: 605-616.
    [17] 马建章,陈化鹏,孙仲武等.马鹿和狍饲料植物的营养质量.生态学报,1996,16(3):269-276.
    [18] Newton, C. R, Graham, A., Heptinstall, L. E., Powell, S. J., Summers, C., Kalsheker, N., Smith, J. C. and A. F. Markham. Analysis of any point mutation in DNA. The amplification refractory mutation system(ARMS). Nucleic Acids Research, 1989, 17: 2503-2516.
    [19] Blymer, M. J. and H. S. Mosby. Deer utilization of clear-cuts in southeastern Virginia. Southern Journal of Applied Forestry, 1977, 1(3): 10-13.
    [20] Lyon, L. J. Habitat Effectiveness for Elk as Influenced By Roads and Cover. Journal of Forestry, 1979, 658-660.
    [21] Kelein. Reaction of reindeer to abstractions and disturbance. Science, 1971, 173, 393-398.
    [22] Curatolo. The effects of pipelines, roads, and traffic on the movements of Caribou (Rangifer tarandus). Canadian Field Naturist, 1986, 100, 218-224.
    [23] Rost. G. and J. A. Bailey. Distribution of Mule deer and Elk in relation to Roads, Journal of Wildlife Management, 1979, 43(3): 634-641.
    [24] Holbrook, H. T. Influence of Roads on Turkey Mortality. Journal of Wildlife Management, 1985, 49(3): 611-614.
    [25] 侯茂林,盛承发.害虫研究与防治中的生态学尺度.应用生态学报.1998,9(2):213-216.
    [26] 陈玉福,董鸣.生态学系统的空间异质性.生态学报.2003,23(2):346-352.
    [27] Gordon, H. O., J. F. Wittenberger. Spatial and temporal scales in habitat selection. The American naturalist, 1991, 137(1): 29-49.
    [28] Wiens, J. A. The ecology of bird communities. New York: Cambridge Univ Press, 1989, 315-316.
    [29] Francois Potvin, Louis Belanger, Kim Lowell. Marten habitat selection in a clearcut boreal landscape. Conservation Biology, 2000, 14(3): 844-857.
    [30] Christina, D. Hargis, John, A. Bissonette, David L Tumer. The influence of forest fragmentation and landscape pattern on American martens. Journal of Applied Ecology, 1999, 36: 157-172.
    [31] Clayton D Apps, Bruce N Mclellan, Trevor A Kinley, John P Flaa. Scale-dependent habitat selection mountain caribou, Columbia mountains, British Columbia. Journal of Wildlife Management, 2001, 65(1): 65-77.
    [32] 李哈滨,王政权,王庆成.空间异质性定量研究理论与方法.应用生态学报.1998,9(6):651-657.
    [33] 张明海,李言阔.动物生境选择研究中的时空尺度.兽类学报,2005,25(4):395-401.
    [34] 姜广顺,马建章,张明海.马鹿冬季生境破碎化因子斑块尺度结构的地理统计学分析.北京林业大学学报,2006,(28),Supp.2,95-100.
    [35] 王力军,马建章,洪美玲,肖向红.应用雪尿分析技术评价不同类型生境中狍冬季的营养状况.兽类学报,2003,23(2):108-114.
    [36] McLellan, B. N. and D. M. Shackelton. Grizzly bears and resource extraction industries: effects of roads on behaviour, habitat use and demography. Journal of Applied Ecology, 1988, 25: 451-460.
    [37] Cameron, R. D., D. J. Reed, J. R. Dau, and W. T. 'Smith. Redistribution of calving caribou in response to oil field development on the Arctic Slope of Alaska. Arctic, 1992, 45: 338-342.
    [38] Mace, R. D., and J. S. Waller. Grizzly bear distribution and human conflicts in Jewel Basin Hiking Area, Swan Mountains, Montana. Wildlife Society Bulletin, 19961, 24: 461-467.
    [39] Stevens, M. A., and D. J. Boness. Influences of habitat features and human disturbance on use of breeding sites by a declining population of southern fur seals(Arctocephalus australis). Journal of Zoology, 2003, 260: 145-152.
    [40] Van Dyke, F. G., R. H. Brocke, H. G. Shaw, B. B. Ackerman, T. P. Hemker, and F. G. Lindzey. Reactions of mountain lions to logging and human activity. Journal of Wildlife Management, 1986, 50: 95-102.
    [41] Skogland, R., and B. Grovan. The effects of human disturbance on the activity of wild reindeer in different physical condition. Rangifer, 1988, 8: 11-19.
    [42] Borkowski. Distribution and habitat use by red and roe deer following a large forest fire in South-western Poland. Forest Ecology and Management, 2004, 201: 287-293.
    [43] MacArthur, R. A., R. H. Johnston, and V. Geist. Factors influencing heart rate in free-ranging bighorn sheep: a physiological approach to the study of wildlife harassment. Canadian Journal of Zoology, 1979, 57: 2010-2021.
    [44] Fowler, G. S. Behavioral and hormonal responses of Magellanie penguins(Spheniscus magellanicus) to tourism and nest site visitation. Biological Conservation, 1999, 90: 143-149.
    [45] Kerley, L. I., J. M. Goodrich, D. G. Miquelle, E. N. Smimov, H. B. Quigley, and M. G. Hornocker. Effects of road and human disturbance on Amurtigers. Conservation Biology, 2002, 97-108.
    [46] Constantine, R., D. H. Brunton, and T. Dennis. Dolphin-watching tour boats change bottlenose dolphin(Tursiops truncates) behaviour. Biological Conservation, 2004, 117: 299-307.
    [47] Johnson, C J., M. S. Boyce, C. C. Schwartz, and M. A. Haroldson. Modelling Survival: application of the Anderson-Gill model to Yellowstone grizzly bear. Journal of Wildlife Management, 2004, 68: 966-978.
    [48] Marchand, M. N., and J. A. Litvaitis. Effects of habitat features and landscape composition on the population structure of a common aquatic turtle in a region undergoing rapid development. Conservation Biology, 2004, 18: 758-767.
    [49] Jiang, G. S., J. Z. Ma and M. H. Zhang. Spatial distribution of ungulate responses to habitat factors in Wandashan Forest Region, northeastern China. Journal of Wildlife Management, 2006, 70(5): 1470-1476.
    [50] 朴仁珠,关国生,张明海.中国驼鹿种群数量及分布现状的研究.兽类学报,1995 15(1):11-16.
    [51] 黑龙江省森林工业总局.黑龙江省森工国有林区陆生野生动物资源调查成果报告.哈尔滨:2000.
    [52] 李玉柱,萧前柱,陈化鹏.黑龙江省胜山林场冬季驼鹿、马鹿和狍的种间关系.兽类学报,1992,12(2):110-116.
    [53] Dale, M. R. T. Lacunarity analysis of spatial pattern: a comparison. Landscape Ecology, 2000, 15: 467-468.
    [54] ERDAS Inc. ERDAS IMAGINE 8.5 Tour Guides 2001.
    [55] Hansen, B. U. and Mosbech, A. Use of NOAA-AVHRR data to monitor snow cover and spring melt off in the wildlife habitats in Jameson Land, East Greenland. Polar Research, 1994, 13: 125-137.
    [56] Crist, E. P., and Ciscone, R. C. Application of the tasseled cap concept tosimulated thematic mapper data. Photogramm. Eng. Remote Sens., 1984, 50: 343-352.
    [57] ESRI. Using Avenue Customization and Application Development for Areview, 1996.
    [58] Wilson, B. A., Aberton, J. G., Reichl, T. Effects of fragrnented habitat and fire on the distribution and ecology of the swamp antechinus(Antechinus minimus maritimus) in the eastern Otways, Victoria. Wildlife Research, 2001. 28, 527-536.
    [59] Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald, W. P. Erickson. Resource selection by animals. Second edition. Kluwer Academic Publishers, Dordrecht, The Netherlands. 2002.
    [60] Anderson, D. R., K. P. Burnham, and W. L. Thompson. Null hypothesis testing: problems, prevalence, and an alternative. Journal of 'Wildlife Management, 2000, 64: 912-923.
    [61] Pearce, J. and S. Ferrier. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 2000, 133: 225-245.
    [62] Boyce, M. S., Vernier, P. R., Neilsen, S. E. and Schmiegelow, F. K. A. Evaluating resource selection functions. Ecological Modelling, 2002, 157, 281-300.
    [63] Huberty, C. J. Applied Discriminant Analysis. Wiley Interseience, New York, NY., 1994.
    [64] Hosmer, D. W., and S. Lcmeshow. Applied logistic regression. John Wiley and Sons, New York, USA, 2000.
    [65] Menard, S. Applied logistic regression analysis. Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-106. Thousand Oaks, California, USA, 2001.
    [66] Carroll, C., R. F. Noss, and P. C. Paquct. Carnivores as focal species for conservation planning in the Rocky Mountain region. Ecological Applications, 2001, 11: 961-980.
    [67] Rosenberg, M. S. PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Version 1.0. Department of Biology, Arizona State University, Tempe, A. Z, 2001.
    [68] Dale, M. R. T. Spatial pattern analysis in plant ecology. Cam, bridge University Press, Cambridge, USA, 1999.
    [69] Dale M. R. T. Lacunarity analysis of spatial patterns: a comparison. Landscape Ecology, 2000, 15: 467-478.
    [70] Czech, B. Elk behavior in response to human disturbance at Mt. St. Helens National Volcanic Monument. Applied Animal Behaviour Science, 1991, 29: 269-277.
    [71] Nellemann, C., and R. D. Cameron. Cumulative impacts of an evolving oil-field complex on the distribution of calving caribou. Canadian Journal of Zoology, 1998, 76: 1425-1430.
    [72] Vistnes, I., and C. Nellemann. Avoidance of cabins, roads, and power lines by reindeer during calving. Journal of Wildlife Management, 2001, 65: 915-925.
    [73] Mahoney, S. P., and J. A. Schaefer. Hydroelectric development and the disruption of migration in caribou. Biological Conservation, 2002, 107: 147-153.
    [74] Frid, A. Dall's sheep responses to over flights by helicopter and fixed-wing aircraft. Biological Conservation, 2003, 110: 387-399.
    [75] Hurvich, C. M. and Tsai, C. L. The impact of model selection on inference in linear regression. American Statistician, 1990, 44, 214-217.
    [76] Derksen, S. and Keselman, H. J. Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 1992, 45, 265-282.
    [77] Mernard, S. Applied Logistic Regression Analysis. Quantitative Applications in the Social Sciences SeriesNo. 07-106. Sage University, Thousand Oaks, CA. 1995.
    [78] Knick, S. T., and D. L. Dyer. Distribution of black-tailed jackrabbit habitat determined by GIS in southwestern Idaho. Journal of W'ddlife Management, 1997, 61: 75-85.
    [79] Erickson, W. P., T. L. McDonald, and R. Skinner. Habitat selection using GIS data: a case study. Journal of Agricultural, Biological, and Environmental Statistics, 1998, 3: 296-310.
    [80] McDanald, T. L., and L. L. McDonald. A new ecological risk assessment procedure using resource selection models and geographic information systems. Wildlife Soeiety Bulletin, 2002, 30: 1015-1021.
    [81] Dyer, S. J., J. P. O'Neill, S. M. Wasel, S. Boutin. Avoidance of industrial development by woodland caribou. Journal of Wildlife Management, 2001, 65: 531-542.
    [82] Nellemann, I. Vistns, P. Jordhoy, O. Strand. Winter distribution of wild reindeer in relation to power lines, roads and resorts. Biological Conservation, 2001, 101: 351-360.
    [83] Boyce, and J. S. Waller. Grizzly bears for Bitterroot: predicting potential abundance and distribution. Wildlife Society Bulletin, 2003, 31: 670-683.
    [84] Jepsen, J. U. and C. J. Topping. Modelling roe deer (Capreolus capreolus) in a gradient of forest fragmentation, behavioral plasticity and choice of cover. Canadian Journal of Zoology, 2004, 82(9): 1528-1541.
    [85] Van Tighem, K. Elk and deer: Antlered animals of the West. Altitude Publishing, Canmore. 2001.
    [86] McLellan, B. N. and D. M. Shackelton. Grizzly bears and resource extraction industries: effects of roads on behavior, habitat use and demography. Journal of Applied Ecology, 1988, 25: 451-460.
    [87] Cameron, R. D., D. J. Reed, J. R. Dau, and W. T. Smith. Redistribution of calving caribou in response to oil field development on the Arctic Slope of Alaska. Arctic, 1992, 45: 338-342.
    [88] Mace, R. D., and J. S. Waller. Grizzly bear distribution and human conflicts in Jewel Basin Hiking Area, Swan Mountains, Montana. Wildlife Society Bulletin, 1996, 24: 461-467.
    [89] Follman, E. H., and J. L. Hechtel. Bears and pipeline construction in Alaska. Arctic, 1990, 43: 103-109
    [90] Millspaugh, J. J., Raedeke, K. J., Brundige, G. C. Willmott, C. C. Summer bed sites of Elk (Cervus elaphus) in the Black Hills, South Dakota: considerations for thermal cover management. The American Midland Naturalist, 1998, 139: 133-140.
    [91] Zhang, M. H., Jiang, G. S., Ma, J. Z. Habitat use and separation between red deer and roe deer in relation to human disturbance in Wandashan Mountains, Northeastern China. Wildlife Bilology(in press), 2008.
    [92] Kie, J. G. Optimal foraging and risk of predation: Effects on behavior and social structure in ungulates. Journal of Mammalogy, 1999, 80: 1114-1129.
    [93] Conroy, M. J., Y. Cohen, F. C. James, Y. G. Matsinos, B. A. Maurer, Parameter estimation, reliability, and model improvement for spatiallyexplicit models of animal populations. Ecological Applications, 1995, 5: 17-19.
    [94] Mlandenoff, D. J., T. A. Sickley, and A. P. Wydeven. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecological Applications, 1999, 9: 37-44.
    [95] Smith, W. T. and R. D. Cameron. Reactions of large groups of caribou to pipeline corridor on the Arctic Coastal Plain of Alaska. Arctic, 1985, 38: 53-57.
    [96] McLellan, B. N. and D. M. Shackleton. Immediate reactions of grizzly bears to human activities. Wildlife Society Bulletin, 1989, 17: 269-274.
    [97] Bradshaw, C. J. A., S. Boutin, D. M. Hebert. Effects of petroleum exploration on woodland caribou in northeastern Alberta. Journal of Wildlife Management, 1997, 61: 1127-1133.
    [98] Nellemann, C., I. Vistnes, P. Jordhoy, O. Strand, and A. Newton. Progressive impact of piecemeal infrastructure development on wild reindeer. Biological Conservation, 2003, 113: 307-317.
    [99] Moen, R., Pastor, J., Cohen, Y. A spatially explicit model of moose foraging and energetics. Ecology, 1997, 78: 505-521.
    [100] Wiens, J. A., Rotenberry, J. T. and VanHorne, B. Habitat occupancy of North American shrub steppe birds: the effects of spatial scale. Oikos, 1987, 48: 132-147.
    [101] Manly, B. J. F., Mcdonald, L. L., Thomas, D. L. Resource selection by animals. Chapman and Hall, 1993.
    [102] Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology, 1980, 61: 65-71.
    [103] Senft, R. L. Large herbivore foraging and ecological hierarchies. Bioscience, 1987, 37: 789-799.
    [104] Vivas, H. J., Sather, B. E. Interactions betweena generalist herbivore, the moose Alees alees, and its food resources: an experimental study of winter foraging behaviour in relation to browse availability. Journal of Animal Ecology, 1987, 56: 509-520.
    [105] Shipley, L. A., Blomquist, S. and Danell, K. Diet choices made by free-ranging moose in northern Sweden in relation to plant distribution, chemistry, and morphology, 1998.
    [106] Lundberg, P., Astrom, M., Danell, K. An experimental test of frequency-dependent food selection: winter Browsing by moose. Holarct. Ecology, 1990, 13: 177-182.
    [107] Danell, K., Edenius, L., Lundberg, P. Herbivory and tree stand composition: moose pateh use in winter. Ecology, 1991, 72: 1350-1357.
    [108] Ward, D. and Saltz, D. Foraging at different spatial scales: Dorcas gazelles foraging for lilies in the Negev desert. Ecology, 1994, 75: 48-58.
    [109] Xiaochen Yu, Qianzhu Xiao, and Yuming Lu, 1993. Selection and utilization ratio of winter diet, and seasonal changes in feeding and bedding habitat selection by moose in northeastern China. Deer of China. N. Ohtaishi and H. L. Sheng, editors. Elsevier Science Publishers B. V., 1993.
    [110] St. John, R. A. Aspen stand recruitment and ungulate impacts: Gardiner Ranger District, Gardiner, Montana. Master's thesis. University of Montana, Missoula, 1995.
    [111] Krebs, C. J. Ecological methodology. Univ. of British Columbia, 1989.
    [112] Quinn, G. P., and Keough, M. J. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, 2002.
    [113] Menard, S. Applied logistic regression analysis(Second edition). Sage Publications, Thousand Oaks, 2002.
    [114] Hosmer, D. W., and Lemeshow, S. Applied logistic regression. John Wiley and Sons, New York, 1989.
    [115] Janna Dawn Goldrup. Evaluating the effects of habitat fragmentation on winter distribution of elk(Cervus elaphus)and moose (alces alces)in the prince Albert National Park area, Saskatchewan. Master of resource management thesis. Sinmon Fraster University, Canada, 2000.
    [116] Swets, K. A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293.
    [117] Pehrson, A. Winter food consumption and digestibility in caged mountain hares. In: Myers K, MacInnes CO(eds) Pro ceedings of the world lagomorph conference. University of Guelph, Ontario, 1981, 732-742.
    [118] Pehrson, A. Digestibility and retention of food components in caged mountain hares (Lepus timidus) during the winter. Holarctic Ecology, 1983, 6:395-403
    [119] Chris, J. Johnson, Dale, R. Seip and Mark S. Boyce. A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. 2004. Journal of Applied Ecology, 2004, 41: 238-251.
    [120] Regelin, W. L., C. C. Schwartz and A. W. Franzmann. Effects of forest successsion on nutritional dynamics of moose forage. Swedish Wildlife Research Supplement, 1987, 1: 247-263.
    [121] Nystorm, A. Selection and consumption of winter browse by moose calves. Journal of wildlife management, 1980, 44:463-468
    [122] DeJong, C. B., Gill, R. M. A., van Wienen, S. E., Burlton, F. W. E. Diet selection by roe deer (Capreolus capreolus)in Kielder forest in relation to plant cover. Forestry Ecology and Management, 1995, 79, 91-97.
    [123] Robbins, C. T., Hanley, T. A., Hagerman A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., Hauts, W. W. Role of tannins on defending plants against ruminants: reduction in protein availability. Ecology, 1987a, 58: 98-107.
    [124] Robbins, C. T., Mole, S., Hagerman, A. E., Hanley, T. A. Role of tannins in defending plants against ruminants:reduction in dry matter digestion. Ecology, 1987b, 68: 1606-1615.
    [125] McArthur, C., Hagerman, A. E., Robbins, C. T. Physiological strategies of mammalian herbivores against plant defences. In: Palo RT, Robbins CT (eds) Plant defences against mammalian herbivory. Boca Raton, Fla, 1991, 103-114.
    [126] Bryant, J. P., Kuropat, P. J. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu. Rev. Ecol. Syst., 1980, 11: 261-285.
    [127] Hjeljord, O., Sunstol, F., Haagenrud, H. The nutritional value of browse to moose. Journal of Wildlife Management, 1982, 46: 333-343.
    [128] Owen-Smith, N, Novellie, P. What should a clever ungulate eat? American Naturist, 1982, 19: 151-178.
    [129] Palo, R. T. Distribution of birch (Betula spp), willow (Salix spp) and poplar (Populus spp) secondary metabolites and their potential role as chemical defence against herbivores. Journal of Chemical Ecology, 1984, 10: 499-520.
    [130] Tixier, H., Duncan, P., Scehovic, J., Yani, A, Gleizes, M., Lila, M. Food selection by European roe deer (Capreolus capreolus): effects of plant chemistry and consequences for the nutritional value of their diets. Journal of Zoology (Lond), 1997, 242: 229-245.
    [131] Duncan. P, Tixier H, Hofmann, R. R, Lechner-Doll, M. Feeding strategies and the physiology of digestion in roe deer way. In: Andersen R, Duncan P, Linnell JDC(eds). The European roe deer: the biology of success. Scandinavian University Press, Oslo, 1998, 91-116.
    [132] Telfer, E. D. Winter habitat selection by moose and white-tailed deer. Journal of wildlife management, 1970, 49: 785-792.
    [133] Pauley, G. R., Peek, J. M. and Zager, P. Predicting white-tailed deer habitat use in northern Idaho. Journal of Wildlife Management, 1993, 57(4): 904-913.
    [134] Wallace, L. L. Scale of heterogeneity of forage production and winter foraging by elk andbison. Landscape Ecology , 1995, 10: 75-83.
    [135] Thomas, J. A., Morris, M. G. Rates and patterns of extinction among British invertebrate. In: Lawton, J. H., May, R. M. (Eds.), Extinction Rates. Oxford University Press, Oxford, 1995, 111-130.
    [136] Ehrlich, P. R. The scale of the human enterprise and biodiversity loss. In: Lawton, J. H., May, R. M. (Eds.), Extinction Rates. Oxford University Press, Oxford, 1995, 214-226.
    [137] Stoeker, M. and F. F. Gilbert. Vegetation and deer habitat relations in southern Ontario: application of habitat classification to white-tailed deer. Journal of Appllied Ecology, 1977, 14: 433-444.
    [138] Chen, H. P., F. Li, L. Y. Luo, H. Wang, J. Z. Ma, F. Li. Winter bed-site selection by red deer Cervus elaphus xanthopygus and roe deer Capreolus capreolus bedfordi in forests of northeastern China. Acta Theriologica, 1999, 44(2): 195-206.
    [139] Hosmer, D. W., and Lemeshow, S. Applied logistic regression. John Wiley & Sons, New York, 1989.
    [140] Chris, J. Johnson, Mark, S. Boyce, Ray, L. Case, H. Denan Cluff, Robert, J. Gau, Anne, Gunn, R. Mulders. Cummulative effects of human developments onArctic wildlife. Wildlfie Monographs, 2005, 160: 1-36.
    [141] Van Tighem, K. Elk and deer: Antlered animals of the West. Altitude Publishing, Canmore, 2001.
    [142] Edward Armstrong, David Euler, and Gerald Racey. 1983. Winter bed-site selection by white-tailed deer. Journal of Wildlife Management, 1983, 47(3): 880-888.
    [143] Telfer, E. D. Winter habitat selection by moose and white-tailed deer. Journal of wildlife management, 1970, 49: 785-792.
    [144] Mysterud, A, Ostbye. Bed-site selection by European roe deer (Capreolus capreolus) in southern Norway during winter. Canadian Journal of Zoology, 1995, 73(5): 924-932.
    [145] Schoen. J. W., R. W. Flynn, L. H. Suring, K. Trrus,. R. Beier. Habitat-capabilitY model for brown bear in Southeast Alaska. International Conference for Bear Research and Management, 1994, 9: 327-337.
    [146] Dixon, B. G. Cummulative effects modeling for grizzly bears in the Greater Yellowstone Ecosystem. Thesis, Montana State UniversitY. Bozeman Montana, USA, 1997.
    [147] Suring, L. H., K. R.: Barber, C. C. Schwartz, T. N. Bailey, W. C. Shuster, M. D. Tetreau. Analysis of cumulative effects on brown bears on the KenaiPeninusula, Southcentral Alaska. Ursus, 1998, 10: 107-117.
    [148] Follman, E. H., and J. L. Hechtel. Bears and pipeline construction in laska. Arctic, 1990, 43-109.
    [149] Naiman, R. J. Animal influences on ecosystem dynamics. BioScience, 1988, 38. 750-752.
    [150] Ohtaishi, N. and H. L. Sheng, editors. Deer of China. Elsevier Science Publishers B. V. 1993.
    [151] Liu, Z. G., Wang, Y. SH., Pan, J. ZH., and Ge, J. P. Prediction of aboveground biomass of Leymus chinensis grassland. Chinese Journal of Ecology, 2004, 23 (4): 179-183.
    [152] Morgan, G. A and O. V. G. Mahwah. Easy use and interpretation of SPSS for Windows- answering research questions with statistics. NY: Lawrence Erlbaum, Colorado, USA, 1997.
    [153] Stancanipiano, A. J. and Schnell, G. D. Microhabitat affihities of small mammals in southwestern Oklahoma. Journal of Mammamology, 2004, 85: 948-958.
    [154] Traylor, J. J, Alisauskas, R. T., Kehoe, F. P. Nesting ecology of White-winged Scoters. Auk, 2004, 121: 950-962.
    [155] Marnell, F. Discriminant analysis of the terrestrial and aquatic habitat determinations of the smooth newt (Triturus vulgaris) and the common frog (Rana temporaria) in Ireland. Journal of Zoology(London), 1998, 244: 1-6
    [156] Segurado, P. and Araujo, M. B. An evaluation of methods for modelling species distributions. Journal of Biogeogramphy, 2004, 31: 1555-1568.
    [157] Olden, J. D. and Jackson, D. A. A comparison of statistical approaches for modelling fish species distributions. Fresh Biology, 2002, 47: 1976-1995.
    [158] Reinert, H. K. Habitat separation between sympatric snake populations. Ecology, 1984, 65: 478-486.
    [159] Wei, F. W., Z. J. Fen, Z. W., Wan, J. C. Hu. Habitat use and separation between the giant panda and the red panda. Journal of Mammalogy, 2000, 81(2): 448-455.
    [160] Brown, J. H. and Lieberman, G. A. Resource utilization and coexistence of seedeating desert rodents in sand dune habitats. Ecology, 1973, 54: 788-797.
    [161] Dueser, R. D., and Shugart, H. H. Microhabitats in forest-floor small mammal fauna. Ecology, 1978, 59: 89-98.
    [162] Van Honer, B. Niches of adult and juvenile deer mice (Perorayscus maniculatus)in serial stages of coniferous forests. Ecology, 1982, 63: 992-1003.
    [163] Schoener, T. W. Resource portioning in ecological communities. Science (Washl., D. c. ). 1982, 185: 27-39.
    [164] Zhang, Z. J, F. W. Wei, M. Li, et al. Microhabitat separation during winter among sympatric giant pandas, and tufted deer: the effects of diet, body size, and energymetabolism. Canadian Journal of Zoology, 2004, 82: 1451-1458.
    [165] Armleder, H. M., Waterhouse, M. J., Dawson, R. J., Iverson, K. E. Mule deer response to low-volume partial cutting on winter ranges in central interior British Columbia. Res. Report no. 16, British Columbia Ministry of Forests, 1998.
    [166] Apps, C. D., Mxlellan, B. N., Kinley, T. A., and Flaa, J. P. Scaledependent habitat selection by mountain caribou, Columbia Mountains, British Columbia. Journal of Wildlife Management, 2001, 65: 65-77.
    [167] Tomm, H. O., Beck, J. A. J., and Hudson, R. J. Responses of wild ungulate to logging pratices in Alberta. Canadian Journal of Zoology, 1981, 67, 1816-1823.
    [168] Rempel, R. S., Elkie, P. C., Rodgers, A. R., and Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. Journal of Wildlife Management, 1997, 61: 517-524.
    [169] Hofmann, R. R. Stewart, D. R. M. Grazer or browser: a classification based on the stomach strcture and feeding habits of East African ruminants. Mammalia., 1972, 36: 226-240.
    [170] Hofmann, R. R. Digestive physiology of the deer—their morphophysiological specialisation and adaptation. R. Soc. NZ Bull., 1985, 22: 393-407.
    [171] Henry, B. A. M. Distribution patterns of Roe deer (Capreolus capreolus) related to the availability of food and cover. Journal of Zoology (Lond.), 1981, 194: 271-275.
    [172] Parker, K. L., Robbins, C. T., and Hanley, T. A. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management, 1984, 48: 474-488.
    [173] Hovey, F. W. Shrub burial by snow deposition in immature coastal forests: a review and recommendations. Report no. IWIFR-35, British Columbia Ministry of Environment and British Columbia Ministry of Forests, 1987.
    [174] Wickstrom, M. L., Robbins, C. T., Hanley, T. A., Spalinger, D. E., and Parish, S. M. Food intake and foraging energetics of elk and mule deer. Journal of Wildlife Management, 1984, 48: 1285-1301.
    [175] Oldemeyer, J. L., Franzmann, A. W., Brundage, A. L., Ameson, P. D., and Flynn, A. Browse Quality and the Kenai Moose Population. Journal of Wildlife Management, 1977, 41: 533-542.
    [176] Robert Serrouya and Robert D'Eon. Moose habitat selection in relation to forest harvesting in a deep snow zone of British Columbia. Peter Gribbon, Downie Timber Limited Revelstoke, British Columbia, 2002.
    [177] Nares, V. O. Improving accuracy and precision in estimating fractal dimension of animal movement paths. ActaBiotheoretica, 2006, 54: 1-11.
    [178] With, K. A. Ontogeneticshifts in how grasshoppers interact with landscape structure: An analysis of movement patterns. Functional Ecology, 1994, 18: 477-485.
    [179] Nares, V. O. and M. Bourgeois. Fractal dimension measures habitat use at different spatial scales: an example with marten. Canadian Journal of Zoology, 2004, 82: 1738-1747.
    [180] Fritz, H., S. Said and H. Weimerskirch. Scale-dependent hierarchical adjustments of move ment patterns in along-range foraging seabird. Proceedings of the Royal Society of London Sefies B, 2003, 270: 1143-1148.
    [181] Nams, V. O. Using animal movement paths to measure response to spatial scale. Oecologia, 2005, 143: 179-188.
    [182] Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156: 636-638.
    [183] Milne, B. T. Applications of fractal geometry in wildlife biology. In: Bissonette, J. A. (Ed). Wildlife and Landscape Ecology. Effects of Pattern and Scale. Springer, NewYork, 1997, 32-69.
    [184] Turchin, P. Fractal analyses of animal movement-a critique. Ecology, 1996, 77: 2086-2090.
    [185] Kucera, E. Effects of winter conditions on the white-tailed deer of Delta Marsh, Manitoba. Canadian Journal of Zoology, 1976, 54: 1307-1313.
    [186] Verme, L. J. Assessment of natal mortality in upper Michigan deer. Journal of Wildlife Management, 1978, 41: 700-708.
    [187] Kareiva, P. M., and Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia(Berl.)., 1983, 56: 234-238.
    [188] Neter, J., Kutner, M. H., Nachtsheim, and Wasserman, W. Applied linear statistical models. 4thed. Irwin, Chicago, 1996.
    [189] Collins, W. B., Umess, P. J. Habitat preferences of mule deer as rated by pellet-group distributions. Journal of Wildlife Management, 1981, 45: 969-972.
    [190] Leopold, B. D., Krausman, P. R., Hervert, J. J. Comment: the pellet group census technique as an indicator of relative habitat use. Wildlife Society Bulletin, 1984, 12: 325-326.
    [191] Guillet, C., Bergstrom, R., Cederlund, G., Bergstrom, J., Ballon, P. Comparison of telemetry and pellet-group counts for determining habitat selectivity by roe deer (Capreolus capreolus) inwinter. Gibier Faune Sauvage, 1995, 12: 253-269.
    [192] Anders Marell, John, P. Ball, Annika Hofgaard. Foraging and movement paths of female reindeer. Insights from fractal analysis, correlated random walks, and Levy flights. Canadian Journal of Zoology, 2002, 80(5): 854-865.
    [193] Drozdz, A. Seasonal intake and digestibility of natural foods by roe deer. Acta theriologica, 1979, 24: 137-150.
    [194] Nelson, J. R. Nutritional requirements and food habits, pp: 323-367(Thomas, J. W. eds.) in elk of north America: ecology and management. Stackpole Books, 1982.
    [195] DelGiudice, G. D., Mech, L. D., and Seal, U. S. Chemical analyses of deer bladder urine and urine collected from now. Wildlife Society Bulletin, 1988, 16: 324-326.
    [196] DelGiudice, G. D., Mech, L. D., and Seal, U. S. Physiological assessment of deer populations by analysis of urine in snow. Journal of Wildlife Management, 1989, 53: 284-291.
    [197] Howells, G. R. and Whitehead, R. G. A system for the estimation of the urinary hydroxyprolineindex. J. Med. Lab. Tech., 1967, 24: 98-102.
    [198] DelGuidice, G. D., Peterson, R. O., and Seal, U. S. Differences in urinary chemistry profiles of moose on Isle Royale during winter. Journal of Wildlife Diseases, 1991, 27: 407-416.
    [199] DelGiudice, G. D., Singer, F. J., Seal, U. S., and Bowser, G. Physiological responses of Yellowstone bison to winter nutritional deprivation. Journal of Wildlife Management, 1994, 58: 24-34.
    [200] Harlow, H. J., and Seal, U. S. Changes in hematology' and metabolites in the serum and urine of the badger, Taxidea taxus, during food deprivation. Canadian Journal of Zoology, 1981, 59: 2123-2128.
    [201] Warren, R. J., Kirkpatrick, R. L., Oelschlaeger, A., Scanlon, P. F., Webb, K. E., Jr., and Gwazdauskas, F. C. Dietary and seasonal influences on nutritional indices of adult male white-tailed deer. Journal of Wildlife Management, 1981, 45: 926-936.
    [202] Warren, R. J., Kirkpatrick, R. L., Oelschlaeger, A., Scanlon, P. F., and Whelan, J. B. Energy, protein, and seasonal influences on white-tailed deer fawn nutritional indices. Journal of Wildlife Management, 1982, 46: 302-312.
    [203] DelGiudice, G. D., Mech, L. D., and Seal, U. S. Effects of winter undernutrition on body composition and physiological profiles of white-tailed deer. Journal of Wildlife Management, 1990, 54: 539-550.
    [204] DelGiudiee, G. D., Asleson, M. A., Varner, L. W., and Hellgren, E. C. Twenty-four-hour urinary creatinine and urea nitrogen excretion in male whitetailed deer. Canadian Journal of Zoology, 1995, 73: 493-501.
    [205] Mould, E. D., and Robbins, C. T. Nitrogen metabolism in elk. Journal of Wildlife Management, 1981, 45: 323-334.
    [206] Garrott, R. A., White, P. J., and Vagnoni, D. Purine derivative concentrations in snow-urine samples as a dietary index for free-ranging elk. Journal of Wildlife Management, 1996, 60: 735-743.
    [207] Smith, R. H., and McAllen, A. B. Nuceic acid metabolism in the ruminant. Br. J. Nutr., 1970, 25: 181-190.
    [208] Fujihara, R., Orskov, E. R., greeds, P. J., and Kyle, D. J. The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. J. Agrie. Sci. (Camb.)., 1987, 109: 7-12.
    [209] Chen, X. B., Hovell, F. D., Orskov, E. R., and Brown, D. S. Excretion of purine derivatives by ruminants: effets of exogenous nucleic acid supply on purine derivative excretion by sheep. Br. J. Nutr., 1990, 63: 131-142.
    [210] Garrot, R. A., Cook, J. G., Berardinelli, J. G., White, P. J., Cherry, S., and Vagnoni, D. B. Evaluation of the urinary allantoin: creatinine ratio as a nutritional index for elk. Canadian Journal of Zoology, 1997, 75: 1519-1525.
    [211] Hungate, R. E. Introduction: the ruminant and the rumen. In The rumen microbial ecosystem. Edited by P. N. Hobson Elsevier Applied Science, London, 1988, 1-19.
    [212] White, Robert A. Garrott, and Dennis M. Heisey. An evaluation of snow-urine ratio as indices of ungulate nutritional status. Canadian Journal of Zoology, 1997, 75: 1687-1694.
    [213] Saltz, D., White, G. C., and Bartmann, R. M. Assessing animal condition, nutrition, and stress from urine in snow. Wildlife Society Bulletin, 1995, 23: 694-698.
    [214] White, P. J., Garrott, R. A., and Heisey, D. M. Variability in snow-urine assays. Canadian Journal of Zoology, 1995, 73: 427-432.
    [215] Litvaitis, J. A., T. Kimberly, and E. M. Anderson. Mcasuring vertebrate use of terrestrial habits and foods. Page 254-274 in T. A. Bookhout, ed. Research and management techniques for wildlife and habitats. Fifth edition. The Wildlife Society, Bethesda, Maryland, USA, 1994.
    [216] K. -H. Sudckum, F. Brusemeister, A. Schroder and M. Stangassinger. Effects of amount of intake and stage of forage maturity on urinary allantoin excretion and estimated microbial crude protein synthesis in the rumen of steers. Journal of Animal Physiology and Animal Nutrition, 2006, 90: 136-145.
    [217] George, S. K., M. T. Dipu, U. R. Mehra, P. Singh, A. K. Verma, J. S. Ramgaokar. Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. Journal of Chromatography B. 2006, 832: 134-137.
    [218] Hollander, M., and D. A. Wolfe. Nonparameteric statistical methods. Second edition. John Wiley and Sons, Inc., New York, USA, 1999.
    [219] Schoener, T. W. The Anolis lizards of Bimini: resource portioning in a complex fauna. Ecology, 1968, 49: 704-726.
    [220] Abrams, P. Some comments on measuring niche overlap. Ecology, 1980, 61: 44-49.
    [221] Linton, L. R., R. W. Davies, and F. J. Wrona. Resource utilization indices: an assessment. Journal of Animal Ecology, 1981, 50: 283-192.
    [222] DelGiudice. G. D, Mech, L. D., Seal, U. S. and P. D. Karns. Winter fasting and reflecting effects on urine characteristics in white-tailed deer. Journal of Wildlife Management, 1987, 51: 860-864.
    [223] Saltz, D., and G. C. White. Urinary cortisol and urea nitrogen responses in irreversibly undernourished mule deer fawns. Journal of Wildlife Diseases. 1991, 27: 41-46.
    [224] Andrew, C. Pils, Robert, A. Garrrott, John, J. Borkowsld. Sampling and statistical analysis of snow-urine allantoin: creatinine ratios. Journal of Wildlife Management, 1999, 63(4): 1118-1132.
    [225] Hundertmark, K. J., C. C. Schwartz, and D. C. Johnson. Evaluation and testing of techniques for moose management. Alaska Dep. Fish and Game, Fed. Aid Wildl. Restor. Prog. Rep. W-23-3, Juneau, Alas, 1990, 30.
    [226] Conover, W. J. and M. M. Johnson. A comparative study of tests for homogeneity of variances, with applications to the outer conditional shelf bidding data. Technometrics, 1981, 23: 351-361.
    [227] 1986, 65(3): 436-443.
    [228] 于孝臣,萧前柱.黑河林区驼鹿的食物组成及其季节变化.兽类学报.1991,11(3):258-265.
    [229] Huston, D. B. The northern Yellowstone elk: ecology and management. Macmillan Publishing Company, Inc., New York, USA, 1982.
    [230] Kelsall, J. P. Structural adaptation of moose and deer for snow. Journal of Mammalogy, 1969, 50: 302-310.
    [231] Telfer, E. S. and J. P. Kelsall. Studies of morphological parameters affecting ungulate location in snow. Canadian Journal of Zoology, 1979, 57: 2153-2159.
    [232] Peek, J. M. Moose-snow relationships in northeastem Minnesota. Pages 39-49 in A. O. Haugen, ed. Proc. Snow and ice in relation to wildlife and recreation symposium. Iowa State Univ., Ames., 1971.
    [233] Parker, K. L., C. T. Robbins, and T. A. Hanley. Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management, 1984, 48: 474-488.
    [234] DelGiudice, G. D., R. A., Moen, Singer, F. J. and Riggs, M. R. Winter nutritional restriction and simulated body condition of Yellowstone elk and bison before and after the fires of 1988. Wildlife Monographs, 2000, 147: 1-60.
    [235] Regelin, W. L. Effects of forest succession on nutritional dynamics of moose forage. Viltrevy, 1987, 1-21.
    [236] Hobbs, N. T., D. L. Baker, J. E. Ellis, and D. M. Swift. Composition and quality of elk winter diets in Colorado. Journal of Wildlife Management, 1981, 45: 156-171.
    [237] Walter Leuthold. Ecological separation among browsing ungulates in Tsavo East National Park, Kenya. Oecologia, 1978, 35(2): 241-252.
    [238] DelGiudice, G. D., Rolf, O. Peterson, William, M. Samuel. Trends of winter nutrition restriction, ticks, and numbers of moose on Isle Royal. Journal of Wildlife Management, 1997, 61(3): 895:903.
    [239] Per Wegge, Anil K. Shrestha, and Stein R. Moe. Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecological Research, 2006, 21(5): 698-706.
    [240] Peek, J. M., D. L. Urich and R. J. Maskie. Moose habitat selection and relationship to forest management in Northeastern Minnesota. Wildlife Mongraphy, 1976, 48: 1-65.
    [241] Phillips, R. L. Moose movement patterns and range use in northwestern Minnesota. Journal of Wildlife Management, 1973, 37(3): 266-278.
    [242] Leresche, R. E. and J. L. Davis. Importance of nonbrowse food to moose on the kenal peniasula. Alaska. Journal of Wildlife Management, 1973, 37(3): 279-287.
    [243] Nowlin, R. A. Habitat selection and food habits of moose in northwestern Alberta. Proc. Am. Moose Conf. Workshop, 1978, 14: 178-193.
    [244] Regelin, W. L. Seasonal dynamics of food intake in moose. Aloes, 1984, 20: 223-224.
    [245] Vagnoni, D. R., R. A. Garrot, J. Cook, and P. J. White. 1996. Relationship between urinary allantoin: creatinine ratios and digestible dry matter intake in captive. Journal of Wildlife Management, 60: 728-734.
    [246] DelGiudice, G. D., K. D. Kerr, L. D. Mech, and U. S. Seal. Prolonged winter undernutrition and in the interpretation of urinary allantoin: creatinine ratios in white-taileddeer. Canadian Journal of Zoology, 2000, 78: 2147-2155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700