河谷特殊生境植物多样性特征与生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘西北地处湘、鄂、渝、黔边区,以武陵山脉为主体,属“水杉植物区系”范畴,是我国三个特有现象中心之“鄂西—川东中心”的核心地带,在我国乃至整个东亚植物区系中具有重要意义。河谷是该区河流深切形成的一个自然生态系统,属于典型特殊生境,是组成该区植物区系的关键地带。然而,目前对这一重要和关键地区的研究还很不深入,是亟待研究的薄弱或者空白地带。受山体陡壁或悬崖的隔离,河谷特殊生境犹似“岛屿”状态,有着独特多样且非地带性植物区系,是研究植物物种分化和多样性形成机制最为理想的地域。同时,由于特殊的生态环境因子作用,植物在形态、生理、繁殖等方面有着丰富的多样化形态和特殊的适应机制,该地域亦是研究生态系统结构、功能和适应进化机制的独特场所。
     本研究选择湘西北德夯峡谷和猛洞河两条典型河谷特殊生境为代表,进行详细的植物调查、标本采集和分类研究,在查清该区植物种类基础上作进一步区系特征和适应特性分析,揭示有关区系地理问题,功能型和繁育系统多样性及生态关联性,特殊种系(如地区特有种、河谷专性种等)的分布及特点,物种辐射分化和生态适应性规律,为研究特殊生境区域物种分化和适应进化、植物多样性形成与维持机制等重大科学问题提供理论依据,也为正在进行的《湖南植物志》和地方自然资源持续利用、保护和综合管理提供科学资料。研究结果如下:
     1.首次定义河谷特殊生境,初步探讨其形成原因,结合外部形态特征将其分为9个小生境类型,认为河谷特殊生境为系列小生境的有机组合,提出河谷特殊生境生态效应理论及模型。系统归纳和总结了河谷特生境生态系统的环境特征和生态特性,深入分析其脆弱性原因,并提出治理和保护方案。
     2.从科、属、种3个层面系统分析德夯峡谷和猛洞河河谷植物区系的组成、特征、性质、起源及与其他区系的关系。德夯峡谷有维管束植物1162种,隶属于148科566属,蕨类和藤本植物相当丰富。组成德夯峡谷植物区系的科、属以泛热带分布最多,是德夯风景区植物区系的主体。猛洞河有维管植物129科,389属,670种(含变种),特有程度高,属区系地理分析表明其是一个从热带向温带过渡的区系。种水平分析表明其属于东亚和热带亚洲植物区系交汇。利用STATISTICA统计软件对武陵山区内和我国其他类型(干热、干暖)河谷植物区系进行聚类和主成分分析,揭示该区河谷的特殊性及其在该区植物区系中的重要作用。选择相对丰富度、分化指数, IM值等指数对各小生境多样性分析表明土台小生境各指数均比较高,岩溶洞穴最低。
     3.提出“生境专性植物(obligate plant)”概念,并初步调查湘西北河谷特殊生境有专性植物160种,隶属于71科121属。群落中灌木层和草本层的优势物种大部分为峡谷生境专性种,乔木层优势植物中专性种较少。河谷特殊生境专性种在生长型、器官形态、生活史、生态适应类群及适应性分区等方面形成了一系列与环境相适应的特征以及特定的适应分布结构。随着群落演替的进行,峡谷生境专性植物由少逐步增多,演替后期则逐步减少。
     4.以典型河谷专性植物吉首蒲儿根Sinosenecio jishouensis、凤凰蜘蛛抱蛋Aspidistra fenghuangensis为代表,研究河谷专性植物生物生态学特性、辐射分化适应及物种形成过程。从生态分布、物候特征、繁殖特性三个方面系统研究表明吉首蒲儿根的花部构成、高度同期的开花模式和“刷状机制”、瘦果小且无冠毛、以克隆繁殖为主兼有种子繁殖及间隔子自动断裂等是对峡谷瀑布特殊生境长期分化、选择和适应性进化的结果。利用形态学和细胞学方法研究凤凰蜘蛛抱蛋的形态辐射分化特征,修订和补充描述了凤凰蜘蛛抱蛋形态,从染色体数目和核型动态讨论其亲缘关系,从细胞地理学角度探讨其可能的起源、演化和物种形成过程,并提出随体缺失可能有利于物种适应新的环境,是进化的表征。
     5.从根、茎、叶、花和果实各方面探讨了河谷特殊生境植物功能性状多样性及其适应意义。河谷特殊生境植物根分为5种类型,茎有3种形态;叶级以中型叶为主,叶质以纸质占绝对优势,两面均无毛的种类最多;花性状中以小花类居多,颜色以浅色为主;果实性状以干果占较大比例,以机械传播作为主要的传播方式。从区系成面探讨河谷特殊生境繁育系统与生态关联性,分析进一步印证河谷植物区系的热带亲缘性,并讨论了系统发生关系对性系统和生态关联性的限制和生态环境对性系统分化与进化中的作用。
The northwestern region of Hunan province, located next to Hubei, Chongqing and Sichun provinces, belonging to the Metasequoia Flora, is made up largely by the Wulingshan Mountains. It forms the core of one the three“Centers of Endemism”in China, the eastern Sichuan and western Hubei Center, and is an important element of the Chinese and East Asian Flora. A typical and important physical feature of this region is the natural habitats associated with the deeply cut river valleys. Much like isolated mountains and cliffs, these river valley microhabitats are isolated“islands”of diverse endemic plants, making them ideal for studying species differentiation and diversity. In addition, plants of this region show a great diversity of adaptive morphological features, obviously as a result of the special environment of these microhabitats. Therefore, the plant species these valley microhabitats are of special interest for studying ecosystem structures and functions, and adaptive evolutionary mechanisms. However, previous studies on the flora of this region are few.
     Two typical canyons of this kind, the Dehang Canyon and Mengdong River Canyon, in the northwestern Hunan region were chosen as research sites in this study. We made extensive collections of plant specimens in both sites throughout the growing season. All specimens collected were later identified to species. The floristic characteristics and apparently adaptive plant features were analyzed. We further examined the functional type and reproductive system diversity and ecological correlates, the distribution characteristics of notable species (i.e., endemic and niche-specific species), and patterns of diversification and adaptation of plant species in the two sites. The results of this study is sumarized as below:
     1. The term Canyon micohabitat was defined for the first time in this study, and the possible causes for the formation of this speical habitat were discussed. Based on geomorphologic features, 9 submicrohabitats were identified. The environmental characteristics of this special ecosystem were systematically characterized, the factors likely to disrrupt this fragile ecosystemwere fully analyzed, and corresponding management and conservation measures were suggested.
     2. The plant floristic components, characteristics and origins of the special Eco-environment of Dehang Canyon and Mengdong River were analyzed at the Family, Genera and Species levels, and its floristic correlations with other floras were made. The results showed that there were 1162 vascular species belonging to 566 genera and 148 families in this region. Fern and Vine plants were the most diverse groups. The flora in Dehang Canyon were mainly tropical components at Family and Genera levels. Mengdong River, where the species were rather endemic, contained 670 vascular species belonging to 389 genera and 129 families. Floristic geographical analysis at the genera level indicated that this flora was an obvious transitional one from tropical to temperate flora. The species level analysis showed that this flora was the mixed one of East Asia and Tropical Asia. The results of clustering and principal components analyses between Wulingshan region and other domestic Areal Types by using STATISTICA software showed the importance of the Canyon microhabitatin this region. The parameters, such as relative richness, differentiation index, and IM value, were used to evaluate the diversity characters of microhabitats. The results showed that all the parameters of Tutai were high, while the Yanrong low.
     3. There were 160 niche-specific species belonging to 71 families and 121 genera in the canyon microhabitat of North Western Hunan. Most of the niche-specific species distributed in the herb layer and the shrub layer, while seldom in the tree layer. The Canyon microhabitat niche-specific species evolved a series of ecological features, including growth type, organ morphology, life history, ecological adaptation groups and areas of ecological adaptation, adapting to the special habitats,. With the succession of plant community, the niche-specific plant species increased, while in the later stage they were fewer.
     4. Two typical Canyon microhabitat species (Sinosenecio jishouensis and Aspidistra fenghuangensis) were studied in detail for life history traits, differentiation and speciation of the niche-specific species. Results of the study on the ecological distribution, phenology and reproductive characteristics of S. jishouensis showed that the floral structures, high degree of synchronization in the flowering pattern and "brush-like mechanism", and small achene without pappus, together with relying mainly on clone production while making sexual production subsidiary, are the consequences of long-term ecological adaption to the Canyon Fall special habitat. The morphological and cytologic methods were used to studied the patterns of morphological differentiation of A. fenghuangensis. Amendment and supplement on morphology of A. fenghuangensis were made. The genetic relationship was discussed by analyzing chromosome number and karyotype dynamic, and the possible origin, evolution and speciation of A. fenghuangensis were stuided from the cytogeographical aspect. The loss of satellite chromosomes was an evolutionary features, because this might be beneficial to its adaptation to new environment.
     5. The roots, stems, leaves, flowers and fruits of species in the Canyon microhabitat were studied to reveal their functional diversity and adaptive significance. There were 5 types of roots and 3 types of flowers. The leaf with medium size was the main leaf type, leaf quality was mainly paper type, and most leaves were hairless on both sides. Small type flowers accounted for a large proportion, and most flowers were light colored. Most of the fruits were of dry type, and mainly dependent on mechanical transportation. The analysis of sexual reproduction systems further corroborated the relationship between the canyon microhabitat and the Tropical Flora. The phylogenetic constraint on sexual reproduction systems and ecological correlations, and the effects of ecological environment on the differentiation and evolution of sexual reproduction systems were discussed.
     This study could provide further evidence for solving the major scientific issues, such as the differentiation and adaptive evolution of specific habitated species, and the plant diverstiy formation and its maintaining mechamisms. It also provided important data for the compilation of the Hunan Flora, and for the conservation, sustainable utilization, and comprehensive management of local natural resources.
引文
[1] Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants[J]. Annual Review of Ecology and Systematics, 1985, 16: 447-479.
    [2] Gaston KJ, Kunin WE. Rare-common differences: an overview. In: Kunin WE, Gaston KJ(eds.) The biology of rarity[M]. London: Chapman & Hall, 1997: 12-29.
    [3] Antonovics J, Ellstrand N C, Brandon R N et. al. Geneticvation and environmental variation. In: Gottlieb L D, Jain S K (eds). Plant Evolutionary Biology[M]. London: Champan & Hall Press. 1988: 275-304.
    [4]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[M].北京:中国科学技术出版社, 1994: 1-12.
    [5]祖元刚,孙梅,康乐.生态适应与生态进化的分子机理[M].北京:高等教育出版社, 2000
    [6]张的.生物进化[M].北京:科学出版社, 1998, 106.
    [7] Amold ML. Natural hybridization as an evolutionary process[J]. Annu. Rev. Ecol. Syst., 1992, 23: 237-261.
    [8]张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展[J].生物多样性, 1999, 7 (1): 1-7.
    [9]张宏达.植物区系学与植物地理学[A].见《张宏达文集》.广州:中山大学出版社, 1995: 3-7
    [10] Duran A., Hamzaoglu, E. Flora of Kazankaya Canyon (Yozgat-?orum)[J]. Turk J Bot, 2002, 26: 351-369.
    [11] Gilbert E. Flora of the West fork of Oak Creek Coconino county, Arizona[J]. Asu Life Sciences, 2004, 1-119.
    [12] Bonnie H, Walter F. Vascular plant species checklist of Bighorn Canyon National Recreation Area[J]. Montana and Wyoming. 2002, 1-73.
    [13]孙航,周浙昆.喜马拉雅东部雅鲁藏布江大峡湾河谷地区种子植物区系的特点和来源[J].云南植物研究, 1996, 182(2): 185-204.
    [14]孙航,周浙昆.喜马拉雅东部雅鲁藏布江大峡湾河谷地区种子植物区系的性质和近缘关系[J].应用与环境生物学学报, 1997, 3(2): 184-190.
    [15]金振洲.滇川干热河谷种子植物区系成分研究[J].广西植物, 1999, 19(1): 1-14.
    [16]金振洲.滇川干暖河谷种子植物区系成分研究[J].广西植物, 1999, 19(4): 313-321.
    [17]金振洲,杨永平,陶国达.华西南干热河谷种子植物区系的特征、性质和起源.云南植物研究[J], 1995, 17(2): 129-143.
    [18]江明喜,党海山,黄汉东,等.三峡库区香溪河流域河岸带种子植物区系研究[J].长江流域资源与环境, 2004, 13(2): 178-182.
    [19]韦毅刚.桂林漓江沿岸植物区系特点及其与景观的关系[J].广西植物, 2004, 24 (6) : 508-514.
    [20]熊源新,吴翠珍,王晓宇,等.兜叶藓属Horikawaea Nog.的分类、分布研究及H.nitida Nog.在贵州的发现[J].武汉植物学研究, 2006, 24(6): 514-517.
    [21]李小娜.云南罗平喀斯特河谷苔藓植物研究[D].贵阳:贵州师范大学, 2006.
    [22]赵传海.马岭河峡谷苔藓植物区系、生态及其生物钙华沉积研究[D].贵阳:贵州师范大学, 2006.
    [23]张朝辉.中国西南喀斯特瀑布苔藓植物的生态学研究[D].上海:复旦大学, 2007.
    [24]张朝晖,陈家宽.黔中瀑布水生苔藓植物区系及其生物喀斯特沉积生态类型研究[J].中国岩溶, 2007, 2: 1-5.
    [25]张朝晖,陈家宽,艾伦·培特客斯.英格兰喀斯特瀑布苔藓植物水生群落生态研究[J].水生生物学报, 2008, 1: 78-83.
    [26]李燕华.凤凰山峡谷亚气生蓝藻的分类及生态学研究[J].吉林:东北师范大学, 2008.
    [27] Bowers, JE, Webb RH, Pierson EA. Succession of desert plants on debris flow terraces, Grand Canyon, Arizona, U.S.A[J]. Journal of Arid Environments, 1997, 36(1): 67-86.
    [28]莫兰J.M.环境科学要论[M].北京:海洋出版社, 1987: 41-43.
    [29]蔡永立,王希华,宋永昌.中国东部亚热带青冈栎种群叶片的生态解剖[J].生态学报, 1999, 19(6): 844-849.
    [30] Shield LM. Leaf xeromophy are related to physiolonical and structural influences[J]. Botrev, 1950, 16: 399-447.
    [31]马克西莫夫H.A.旱性结构的生理学意义[A].见《马克西莫夫院士选集》上卷, (周小民,译).北京:科学出版社, 1962: 360-366.
    [32] Fahn A. Structural and functional properties of trichomes of xe-romorphic leaves[J]. Annual of Botany, 1986, 57: 631-637.
    [33]李正理,李荣敖.我国甘肃九种旱生植物同化枝解剖结构观察[J].植物学报, 1981, 23 (3): 181-185.
    [34]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报, 1981, 23 (4): 278-283.
    [35]贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报, 1994, 18(3): 219-227.
    [36]常朝阳,张明理,等.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应[J].植物研究, 1997, 17(1): 65-71.
    [37]梁松洁,张金政,张启翔,等.北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究[J].植物研究, 2004, 24(24): 434-438.
    [38] Kramer PJ. Water relation of plants[M]. NewYork: Academic Press, 1983.
    [39] Willekens H, Chammogpol S, Daveym, et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants[J]. Embo. Journal, 1997, 16: 4806-4816.
    [40]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 1999,19(6): 850-854.
    [41]贾文锁,卢从明,邢宇,等.从水分胁迫的识别到ABA积累的细胞信号转导[J].植物学报,2002, 44: 1135-1141.
    [42]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报, 2002, 21(2): 140-145.
    [43]徐炳成,山仑,黄占斌,等.黄土丘陵区柳枝稷与白羊草光合生理生态特征的比较[J].中国草地, 2003, 5(1): 1-4.
    [44]武维华.植物生理学[M].北京:科学出版社, 2004: 426-477.
    [45]应俊生,张玉龙.中国种子植物特有属[M].北京:科学出版社, 1994: 1-15.
    [46]陈功锡,刘世彪,敖成齐,等.武陵山地区种子植物区系中的中国特有属研究[J].西北植物学报, 2004, 24(5): 865-871.
    [47] Shiu Ying Hu. The Metasequioa flora and its phytogeographic significance[J]. J. Arnold Arbor, 1980, 61: 41-94.
    [48] Wu Zhengyi, Wu Sugong. A proposal for a new floristic kingdom (realm)—the E.Asiatic Kingdom, its delineation and characteristics. In Zhang Aoluo Wu Sugong (eds.): Floristic characteristics and diversity of east Asian plants[A]. CHEP and Springer, 1998, 3-42.
    [49]祁承经,喻勋林,肖育檀,等.华中植物区种子植物区系的研究[J].云南植物研究, 1995,增刊VII: 55-92.
    [50]祁承经,喻勋林,曹铁如,等.湖南八大公山的植物区系及其在植物地理学上的意义[J].云南植物研究, 1994, 16(4): 321-332.
    [51]陈灵芝.中国的生物多样性——现状及保护对策[M].北京:科学出版社, 1993: 164-200.
    [52]陈功锡,廖文波,敖成齐,等.武陵山地区种子植物区系特征与性质研究[J].植物研究, 2001, 21(4): 527-535.
    [53]廖博儒,吴明煜,戴灵鹏,等.湖南武陵源种子植物区系初步研究[J].武汉植物学研究, 2004, 22(3): 231-239.
    [54] Chen Gongxi, Gu Zhongcun, Li Huming, et al. Floristic feature and diversity of seed plants in Dehang region, Hunan. In Zhang Aoluo,Wu Sougong (Eds.): Floristic characteristics and diversity of east Asian plants[A]. CHEP and Springer, 1998, 157-162.
    [55]李良千,张春芳,宋书银,等.湘西北壶瓶山自然保护区植物区系[J].植物分类学报, 1991, 29(2): 113-130.
    [56]曹铁如,喻勋林,周建仁.湖南保靖县白云山木本植物区系的研究[J].中南林学院学报, 1996, 16(2): 16-22.
    [57]陈功锡,敖成齐,廖文波,等.武陵山地区蕨类植物区系与邻近区系关系的比较分析[J].西北植物学报, 2003, 23(1): 120-126.
    [58]黎维平,刘胜祥.湖南菊科紫菀属一新种——吉首紫菀[J].植物分类学报, 2002, 40(5): 455-457.
    [59] Zhang DG, Liu Y, Yang QE. Sinosenecio jishouensis (Compositae), a new species from north-west Hunan, China. Bot. Stud. , 2008, 49: 287–294.
    [60]黎维平,陈功锡.湖南紫菀属(菊科)一新变种——垂茎三脉紫菀[J].植物分类学报, 2006, 44(3): 348-350.
    [61]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究, 2003,25(3): 245-257.
    [62]吴征镒.中国种子植物属的分布区类型[J].云南植物研究, 1991(增刊Ⅳ): 1-139.
    [63]陈功锡,廖文波,敖成齐,等.武陵山地区种子植物区系特征与性质研究[J].植物研究, 2002, 22(1): 98-120.
    [64]谷中村,陈功锡,李鹄鸣.德夯风景区维管植物调查与研究(二)维管束植物名录.内部资料. 1997.
    [65]永顺县林业局.猛洞河综合考察报告.内部资料.1999.
    [66] Baskin JM, Baskin CC. Endemism in rock outcrop plant communities of unglaciated easten United States: an evaluation of the roles of the edaphic, genetic and light factors[J]. Journal of Biogeography, 1988, 15: 829-840.
    [67] Jinhua Yu, Baopu Fu. Numerical simulation of the airflow over and in valley terrain[J]. Acta meteorologica sinica, 1995, 53(1): 50-60.
    [68]朱守谦主编.喀斯特森林生态(I)[M].贵阳:贵州科技出版社, 1993.
    [69]金振州,杨永平,陶国达.华西南干热河谷种子植物种子植物区系特征、性质和起源[J].云南植物研究, 1995, 17(2): 129-143.
    [70]张荣祖.横断山区干旱河谷[M].北京:科学出版社, 1992: 1-82.
    [71]曹敏,金振洲.云南巧家金沙江干热河谷的植被分类[J].云南植物研究, 1989, 11(3): 324-336.
    [72]欧晓昆.元谋干热河谷植物区系研究[J].云南植物研究, 1988,10(1): 11-18.
    [73]周立江,管中天.金沙江河谷苏铁天然植物群落的研究[J].云南植物研究, 1985, 7(2): 153-168.
    [74]曹永恒,金振洲.云南潞江坝怒江干热河谷植被研究[J].广西植物, 1993,15(4): 132-138.
    [75]金振洲,欧晓昆,区普定,等.金沙江干热河谷种子植物区系特征的初探[J].云南植物研究, 1994, 16(1): 1-16.
    [76]陈功锡,邓涛,张代贵,等.湖南德夯风景区峡谷特殊生境植物区系与生态适应性初探[J].西北植物学报, 2009, 29(7): 1470-1478.
    [77]陈功锡.德夯风景区植物区系的研究(Ⅰ)植物区系组成分析[J].吉首大学学报.(自然科学版), 1994, 15(6): 74-79.
    [78]陈功锡,谷中村,李鹄鸣,等.德夯风景区植物区系的研究(Ⅱ)地理成分及其起源分析[J].吉首大学学报(自然科学版), 1996, 17(2): 74-78.
    [79]陈功锡,张丽,李鹄鸣,等.德夯风景区植物区系的研究(Ⅲ)与邻近区系关系的比较分析[J].吉首大学学报(自然科学版), 1998, 19(1): 34-38.
    [80]陈功锡,谷中村.湖南省德夯风景区蕨类植物区系的研究[J].广西植物, 1996, 16 (4): 331-337.
    [81]陈功锡,谷中村.德夯风景区蕨类植物的生态类型[J].吉首大学学报(自然科学版), 1994, 15(5): 71-75.
    [82]谷中村,陈功锡.德夯风景区的药用植物资源[J].吉首大学学报(自然科学版), 1997, 18(3): 49-51.
    [83]谷中村.湖南省德夯淀粉和油脂植物资源调查[J].吉首大学学报(自然科学版), 1997, 18(4): 33-35.
    [84]陈涛,张宏达.南岭植物区系地理学研究Ⅰ.植物区系的组成和特点[J].热带亚热带植物学报, 1994, 2 (1): 10-23.
    [85]吴征镒.中国种子植物属的分布区类型[J].云南植物研究, 1991(增刊Ⅳ): 1-39.
    [86]李锡文.中国种子植物区系统计分析[J].云南植物研究, 1996,18(4): 363-384.
    [87]王荷生.华北植物区系的演变和来源[J].地理学报, 1999, 03: 23-33.
    [88]张晓丽,武宇红,赵静,等.邢台西部太行山区种子植物区系及与其它山区区系的关系[J].广西植物, 2006, 26(5): 535-540.
    [89]湖南省林业调查规划设计院.湖南小溪自然保护区自然资源综合科学考察报告, 2000: 1-83.
    [90]陈功锡.德夯风景区植物区系的研究1.植物区系地理成分及其起源分析①[J].湖南林专学报, 1995, 1: 37-43.
    [91]余天虹.梵净山、荔波茂兰植物区系分析比较[J].贵州师范大学学报(自然科学版), 2000, 20(2): 50-54.
    [92]缪绅裕,王厚麟,肖明朗.广东和平黄石坳自然保护区种子植物区系[J].广西植物, 2008, 28(4): 460-464.
    [93]曹永恒.云南潞江坝怒江干热河谷植物区系研究[J].云南植物研究, 1993, 15(4): 339 -345.
    [94]吴宁乔,永康.四川省宁南县干热河谷植物区系[J].山地研究, 1994,12(1): 21-26.
    [95]邱祖青,杨永宏,曹秀文,等.白龙江干旱河谷木本植物多样性及其区系地理特征[J].甘肃农业大学学报, 2007, 42(5): 119-125.
    [96]王荷生.植物区系地理[M].北京:科学出版社, 1992.
    [97]马克平,高贤明.东灵山地区植物区系的基本特征及其与若干山区植物区系的关系[J].植物研究, 1995, 15 (4) : 263-276.
    [98]王顺忠,陈桂深,柏玉平等.青海湖鸟岛地区植物群落物种多样性与土壤环境因子的关系[J].应用生态学报, 2005, 16(1): 186-188.
    [99]傅德平,谢辉,于恩涛,等.艾比湖湿地自然保护区荒漠植物群落物种多样性研究[J].干旱区资源与环境, 2009, 23(1): 174-178.
    [100] Larson DW, Matthes U, Kelly PE. Cliff ecology: Pattern and process in cliff ecosystems[M]. Cambridge: Cambridge UniversityPress, 2000: 1-358.
    [101] Porembskis, Barthlott W. Inselbergs[M]. Springer, 2000: 1-196.
    [102]白顺江,陆贵巧.雾灵山物种多样性及景观格局多样性的研究[J].河北农业大学学报, 2006, 2(29): 60-64.
    [103]茹文明,张金屯,毕润成,等.山西霍山森林群落林下物种多样性研究[J].生态学杂志, 2005, 24(10): 1139-1142.
    [104]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究—丰富度、均匀度和物种多样性指数[J].生态学报, 1995, 16(3): 225-234.
    [105]周立志,马勇.中国西部干旱地区啮齿动物多样性分布格局[J].生物多样性, 2002, 10(1):44-48.
    [106]贺山峰,蒋德明,李晓兰,等.小叶锦鸡儿固沙群落草本种群重要值与生态位的研究[J].干旱区资源与环境, 2007, 21(10): 150-155.
    [107] Wardle P. Vegetation of New Zealand[M]. Cambridge: Cambridge University Press, 1991: 1-471.
    [108] Mcintyre S, Lavorel S, Landsberg J. Disturbance response in vegetation—towards a global perspective on functional traits[J]. Journal of Vegetation Science, 1999, 10: 621-630.
    [109] Stebbins GL.植物的变异和进化[M] (复旦大学遗传学研究所,译).上海:上海科学技术出版社, 1963: 1-529.
    [110] Merrell DJ.生态遗传学[M] (黄瑞复,译).北京:科学出版社, 1991: 1-181.
    [111]陈功锡,李菁,盛忠恒.湘西北发现大片野生蜡梅林[J].广西植物, 1995, 15(4): 73.
    [112] Selvi F. Rare Plants on Mount Amiata, Italy: vulnerability to extinction on an ecological“island”[J]. Biological Conservation, 1997,81: 257-266.
    [113] Ellenberg H. Vegetation ecology of central Europe[M]. Cambrigde: Cambridge University Press, 1988: 1-142.
    [114] Chin SC. The flora of Malaya I[J]. Gardens’Bulletin Singapore, 1977, 30: 165-219.
    [115]文和群,许兆然.中国南部石灰岩濒危植物的初步研究[J].广西植物, 1993,增刊(4): 5-52.
    [116] Southwood TR. Tactics, Strategies and templets[J]. Oilkos, 1988, 52: 3-18.
    [117] Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate[J]. Plant Physiology, 1990, 94: 621-627.
    [118] Webb CO, Ackerlyy DD, Mcpeek MA. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33: 475-505.
    [119] Reich PB, Tjpelker MG, Walters MB, et al. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light[J]. Functional Ecology, 1998, 12: 327-338.
    [120] Zhang DG, Liu Y, Yang QE. Sinosenecio jishouensis (Compositae), a new species from north-west Hunan, China[J]. Bot. Stud., 2008, 49: 287-294.
    [121] IUCN. 2001. IUCN Red List Categories and Criteria, version 3.1. IUCN Species Survival Commission, Gland/Cambridge.
    [122] Jeffrey C, Chen YL. Taxonomic studies on the tribe Senecioneae (Compositae) eastern Asia[J]. Kew Bull, 1984, 39: 205-446.
    [123] Ollerton J, Lack A. Flowering phenology: An example ofrelaxation of natural selection[J]. Trend Ecol Evo, 1992, 7: 274-276.
    [124] Barrett SCH, Harder LD. Ecology and evolution of plant mating[J]. Trends in Ecology & Evolution, 1996, 11: 73-79.
    [125]黄双全,郭友好.传粉生物学的研究进展[J].科学通报, 2000, 45(3): 225-237.
    [126] Mulligan GA, Kevan PG. Color,brightness and other floral characteristics attracting insects tothe blossoms of some Canadian Weeds[J]. Canadian Journal of Botany, 1973, 51: 1939-1952.
    [127] Galetto L, Bernardello L. Nectar secretion pattern and removal effects in three species of Solanaceae[J]. Canadian Journal of Botany, 1993, 71: 1394-1398.
    [128] Link DA. The floral nectarines in the Limnanthaceae[J]. Plant Systematics and Evolution, 1992, 179: 235-243.
    [129] Castellanos MC, Wilson P, Thomson JD Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae)[J]. American Journal of Botany, 2002, 89: 111-118.
    [130] Herrera J. Flowering and fruiting phenology in the coastal shrublands of Donana, south Spain[J].Vegetatio, 1986), 68: 91-98.
    [131] Bawa KS. Patterns of flowering in tropical plants. In: Jones C E,Little R J.(eds) Handbook of Experimental Pollination Ecology. New York: Van Nostrand Reinhold Company, 1983, 394-410.
    [132]肖宜安,何平,李晓红.濒危植物长柄双花木开花物候与生殖特性[J].生态学报, 2004, 24: 14-21.
    [133] Leins P, Erbar C. On the mechanisms of secondary pollen presentation in the Campanulales- Asterales-complex[J]. Botanica Acta, 1990, 103: 87-92.
    [134] Erbar C, Leins P. Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales-complex[J]. Flora, 1995,190: 323-338.
    [135]马绍宾,姜汉侨.小粟科鬼臼亚科种子大小变异式样及其生物学意义[J].西北植物学报, 1999, 19(4): 715-724.
    [136] Hone DW, Benton MJ. The evolution of large size: How dose Cope’s Rule work?[J]. Trends Ecol Evol, 2005, 20: 4-6.
    [137] Angela TM, David DA, Campbell O, et al. A brief history of seed size[J]. Science, 2005, 307: 576-580.
    [138]张世挺,杜国祯,陈家宽,等.不同营养条件下24种高寒草甸菊科植物种子重量对幼苗生长的影响[J].生态学报, 2003, 23(9): 1737-1744.
    [139]张世挺,杜国祯,陈家宽.种子大小变异的进化生态学研究现状与展望[J].生态学报, 2003, 23(2): 353-362.
    [140]何池全,赵魁义,余国营.湿地克隆植物的繁殖对策与生态适应性[J].生态学杂志, 1999, 18(6): 38-46.
    [141]钟章成.植物种群的繁殖对策[J].生态学杂志, 1995,14(1): 37-42.
    [142] Grime JP. Plant Strategies and Vegetation Processes[M].Chichester: John Wiley & Sons, 1979.
    [143] Lovett DL. Population dynamics and local specializa-tion in a clonal perennial (Ranunculus repens). I. The dynamics of ramets in contrasting habitats[J]. Journal of Ecology, 1981, 69: 743-755.
    [144] Schmid B. Spatial dynamics and integrationwithin clones of grassland perennials with different growth form[J]. Proceedings of the Royal Society of London, 1986, 228: 173-186.
    [145]魏晓慧,殷东生,祝宁.自然条件下风箱果的克隆构型[J].植物生态学报, 2007, 31(4):625-629.
    [146]董鸣.异质性生境中的植物克隆生长:风险分摊[J].植物生态学报, 1996, 20(6): 543-548.
    [147] Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52: 201-220.
    [148] Stebbins GL. Chromosomal evolution in higher plants[M]. London: Edward Arnold, 1971.
    [149]郎楷永,祝正银.四川百合科蜘蛛抱蛋属新植物[J].云南植物研究, 1984, 6(4): 385-388.
    [150]郎楷永,李光照,刘演,等.中国蜘蛛抱蛋属植物的分类和植物地理的研究[J].植物分类学报, 1999, 37: 468-508.
    [151]洪德元,郎楷永,张志宪.蜘蛛抱蛋属(百合科)的细胞分类学研究(I)[J].植物分类学报, 1986, 24: 353-361.
    [152]乔琴,张长芹,马永鹏,等.蜘蛛抱蛋属植物的核型不对称性分析[J].云南植物研究, 2008, 30(5): 565-569.
    [153] Jones K. Aspects of chromosome evolution in higher plants[J]. Adv Bot Res, 1978, 6: 159-194.
    [154]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报, 2007, 31(1): 150-165.
    [155] Cornelissen JH, Lavorel S, Garnier E, et al. Ahandbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51: 335-380.
    [156]初玉.浑善达克沙地植物功能型多样性[D].北京:中国科学院植物研究所, 2005.
    [157]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报, 1999, 19 (6): 787-792.
    [158] Wylie RB. Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledon trees[J]. Amercian Joural of Botany, 1951, 38: 355-361.
    [159] Jackson LW. Effect of shade on leaf structure of deciduous tree species[J]. Ecology, 1967, 48: 498-499.
    [160] Lee DW, Graham R. Lesf optical properties of rainforest sun and extreme shade plants[J]. Amercian Journal of Botany, 1986, 73: 1100-1108.
    [161] Lee DW, Bone RA. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants[J]. American Journal of Botany, 1990, 77: 370-380.
    [162] Li ZL. Morphogenesis and structure of xeromorphic plant[J]. Bulletin of Biology, 1981, 4: 9-12.
    [163]王国宏,周广胜.甘肃木本植物区系生活型和果实类型构成式样与水热因子的相关分析[J].植物研究, 2001, 21(3): 448-455.
    [164] Leishman MR, Westoby M. Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain[J]. Functional Ecology, 1998, 12(3): 480-485.
    [165] Claire ML, Trevor BG, Tao Sang. Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot[J]. Journal of Systematics and Evolution, 2008, 46(3): 396-404.
    [166]庞立东,王天玺,刘新霞,等.内蒙古阿拉善荒漠灌木果实类型多样性研究[J].内蒙古农业大学学报, 2006, 27(1): 69-73.
    [167] Chazdon RI, Careaga S, Webb C, et al. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests[J]. Ecol Monogr, 2003, 73: 331-48.
    [168] MatalianaGM, Wendt DS, Araujo D, Scarano FR. High abundance of dioecious plants in a tropical costal vegetation[J]. Am J Bot, 2005, 92: 1513-1519.
    [169] Heywood VH. Phytotaxonomica[M](柯植芬,译). Beijing: Science Press, 1979.
    [170] Grant V. Plant speciation. 2rd ed[M]. New York: Columbia University Press, 1981.
    [171] McIntosh ME. Flowering phenology and reproductive output in two sister species of Ferocact- us(Cactaceae)[J]. Plant Ecology, 2002, 159: 1-13.
    [172]郭友好,黄双全,陈家宽.水生被子植物的繁育系统与进化[J].水生生物学报, 1998, 22 (l): 79-85.
    [173]刘仲健,陈利君,刘可为,等.心启兰属(Chenorchis)——兰科一新属及其蚂蚁传粉的生态策略[J].生态学报, 2008, 28(6): 2433-2444.
    [174] Opler PA, Baker HG, FrankieGW. Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems[J]. Biotropica, 1980, 12: 40-6.
    [175] Bawa KS, Perry DR, Beach JH. Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and incompatibility mechanisms[J]. Am J Bot, 1985a, 72: 331-45.
    [176] Gross CL. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes–more monoecy but why? [J]. Am J Bot, 2005, 92: 907- 919.
    [170] Chen J, Flemming T H, Zhang L, et al. Patterns f fruit traits in a tropical rainforest in Xi- shuangbanna, SWChina[J]. Acta ecologica, 2004, 26: 157-164.
    [177] Chen XS, Li QJ. Patterns of plant sexual systems in subtropical evergreen broad- leaved forests in Ailao Mountains, SW China[J]. Journal of Plant Ecology, 2008a, 1(3): 179-185.
    [178] Chen XS, Li QJ. Sexual systems and ecological correlates in an azonal tropical forests, SW China[J]. Biotropica, 2008b, 40: 160-7.
    [179] Ashton PS. Speciation among tropical forest trees: some deductions in the light of recent evid- ence[J]. Biol J Linn Soc, 1969, 1: 155-196.
    [180] Ibarra-Manr?′quez G, Qyama K. Ecological Correlates of Reproductive Traits Of Mexican Rain Forest Trees[J]. American Journal of Botany, 1992, 79: 383-394.
    [181] Bawa KS. Breeding systems of tree species of a lowland tropical community[J]. Evolution, 1974, 28: 85-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700