利用舰船噪声的海底地声参数反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅海环境下,海底地声参数对水声信号传播有着重要的影响,也是水下声纳应用的重要前提,因而海底地声参数获取研究一直是水声中的热点问题。由于主动信号的局限性、如对海洋生态环境的破坏性及特殊情况下的隐身要求使得利用被动声源进行地声参数反演越来越受到重视。在近海海域,由于舰船(渔船和运输船)大量存在,它们航行时候产生的噪声是水声应用的重要声源,也是我们的工作重点。在此背景下,本论文对利用舰船噪声进行海底地声参数获取作了研究,其主要内容包括以下几个部分:
     (1)论文第一部分回顾了地声参数反演研究的历史,对地声参数反演技术的发展历程及主要反演方法进行了总结概括,并对它们的特点进行了简单分析。该部分内容也对海洋噪声特性研究及利用噪声进行水声应用研究做了简单回顾。海洋噪声的多样性、复杂性及不确定性,使得很难直接应用于传统主动声学方法中,这就需要研发新设备或者新的处理方法。矢量水听器由于可同点同时测量水声中的声压和矢量场信息,因此现在被越来越多的研究学者所应用,关于矢量水听器及其矢量场方面的研究和应用在该部分有简要概述。
     (2)论文的第二部分主要介绍了线性声学理论及一些受声源影响较小比较适用于被动声学的物理观察变量。理论推导和数值仿真研究发现舰船宽带噪声的矢量场也存在有规则的干涉结构,而且矢量场的干涉结构和声压场干涉结构有所不同、并且该差异由环境条件决定的、因而可以反过来应用到环境参数反演中。通过联合声压场和矢量场处理,我们可以提取更能体现声场干涉特性的声能流分量,这对那些基于声场干涉特性的应用无疑是有帮助的。同样地、也是通过联合声压场和矢量场处理得到了和声源谱级无关但是对地声参数极高敏感的波导特征阻抗比,非常适合作为被动声学中的观察变量。该部分也给出了不同宽带声矢量场时域信号预测的数值研究及其相互比较进行了验证。
     (3)论文的第三部分介绍了利用声场干涉法通过分析舰船噪声干涉结构进行沉积层地声参数反演。通常来说,舰船噪声的低频干涉条纹大致结构受声源谱特性影响不大,但干涉条纹的位置会随环境缓慢变化。理论分析发现低频干涉条纹位置随环境参数变化的规律是近乎线性的,并通过数值仿真给出了典型浅海模型下沉积层参数(声速和厚度)和低频干涉条纹变化规律。基于该变化规律,我们提出了一个基于推导出的变化规律的声场干涉法进行沉积层参数估计,并处理了地中海上实验采集的舰船噪声数据,处理结果和之前同一海域利用主动声源测量的结果符合的很好。理论和实验处理数据也证实该方法对声源深度和距离的都具有一定的稳健性,非常适合于未知被动表面声源进行地声参数反演。
     (4)论文的第四部分介绍了基于全局优化算法和波导特征阻抗比反演海底参数的研究。由于波导特征阻抗比的声源谱级无关性及对环境参数的高敏感性,使得其非常适合应用于被动环境测量。该部分讨论了波导特征阻抗比对环境参数的敏感性分析,并处理了大连海域采集的渔船噪声矢量声场数据,分别使用声压场、矢量场和波导特征阻抗比进行了地声参数反演,结果显示,利用波导特征阻抗比的反演结果比单独使用声压场或者矢量场更符合实际实验海域的地声特性。
The ocean bottom geoacoustic parameters have significant effects on the soundpropagation and sonar performance predictions in shallow waters; therefore geoacousticinversion has been a very hot topic in underwater acoustics. Due to the limitations of activesources, e.g., environmental protection and security reason in particular situations, the usingsound sources already exist in the ocean for geoacoustic inversion is drawing more andmore attentions. In shallow waters, there exist plenty of ship activites (fishing and shipmen),whose noise is a good resource for passive acoustic applications. Based on theseconsiderations, this thesis studies the using ship noise for ocean bottom geoacousticinversion, which includes the following main aspects:
     (1) The first part reviews the past researches on geoacoustic inversion, which brieflyintroduces the geoacoustic history and the main advantages and disadvantages of traditionalgeoacoustic inversion techniques. This section emphasizes these researches on the oceansound noise characteristics and these applications based on the noise sources. Due to theuncertainty and complicity of oceanic noise, it is hard to directly apply active acoustictechniques in passive sources, which needs newly developed equipments or new methods.Since a vector sensor can simultaneously measure the pressure and vector field of the soundfield at the same point, the using vector sensor in acoustic applications are more and morepopular in underwater acoustics. The vector sensor research history and applications arealso reviewed in this section.
     (2) The second part introduces the linear acoustic propagation theory in shallow watersand theoretical basises for our applications. The broadband vector field of a ship source ofopportunity is found also exhibits interference structure but has different structure with thatof pressure field. Their structure differences are determined by environmental properties andcan therefore be used for environmental inverse problems. Through investigation, thecombination of pressure filed and vector field can achieve physical observables that betterinterpret the waveguide interference characteristics, which is favorable for thoseapplications exploiting the waveguide interference characteristics. The waveguidecharacteristics impedance is obtained also through the combination of pressure field andvector field, which is source spectal level independent but very sensitive to geoacousticparameters. These features make it favourable to be observed for passive inversion purpose.In this section, some numerical researchs on the time-domain broadband vector signal predictions are also given.
     (3) The third section discusses the using interference structure of a broadband shipnoise for sediment geoacoustic inversion. The low-frequency striations structure of a shipnoise of opportunity is found weakly affected by the source spectrum shape, but theirlocations are slightly changed according to environmental perturbations (here refer tosediment sound speed and thickness). Their relationship is theoretically analysed andnumerical interpreted under a typical shallow water environment. Based on the relationship,an interferometer technique is proposed to characterize the sediment property variations in asofted-sediment shallow water environment. The ship noise data collected in MediterraneanSea is processed and the results agree well with those of active measurements in the sameexperiment site. The robustness of the method to uncertainties of source depth and range isalso discussed.
     (4) The fourth part is about the research on using the waveguide characteristicimpedance measured by a vector sensor due a ship noise for ocean bottom geoacousticinversion. A global search optimize algorithm based inversion scheme is used to estimatethe geoacoustic parameters and their uncertainties. In this section, we process the ship noisedata measured at Dalian sea, the inversion scheme is respectively applied to the pressuredata, vector data and the waveguide characteristic impedance due to a passing-by ship. Theinversion results of the waveguide characteristic impedance show better agreement withprior information of the geoacoustic properties of this sea area, demonstrating the accuracyof using waveguide impedance for passive geoacoustic inversion.
引文
[1] E. L. Hamilton. Geoacoustic modeling of the sea floor. The Journal of theAcoustical Society of America,1980,68(5):1313–1340P.
    [2] M. D. Richardson, K. B. Briggs, L. D. Bibee, P. A. Jumars, W. B. Sawyer, D. B.Albert, R. H. Bennett, T. K. Berger, M. J. Buckingham, N. P. Chotiros, P. H. Dahl,N. T. Dewitt, P. Fleischer, R. Flood, C. F. Greenlaw, D. V. Holliday, M. H. Hulbert,M. P. Hutnak, P. D. Jackson, J. S. Jaffe, H. P. Johnson, D. L. Lavoie, A. P. Lyons, C.S. Martens, D. E. Mcgehee, K. D. Moore, T. H. Orsi, J. N. Piper, R. I. Ray, A. H.Reed, R. F. L. Self, J. L. Schmidt, S. G. Schock, F. Simonet, R. D. Stoll, D. J. Tang,D. E. Thistle, E. I. Thorsos, D. J. Walter, and R. A. Wheatcroft. Overview ofSAX99: Environmental Considerations. IEEE Journal of Oceanic Engineering,2001,26(1):26–53P.
    [3] A. Tolstoy. Matched field processing for underwater acoustics. World ScientificSingapore,1993.
    [4] C. S. Clay. Use of arrays for acoustic transmission in a noisy ocean. Reviews ofGeophysics,1996,4(4):475–507P.
    [5] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky. An overview ofmatched field methods in ocean acoustics. IEEE Journal of Oceanic Engineering,1993,18(4):401–424P.
    [6] W. Munk. Ocean Acoustic Tomography: Can It Work? In95th meeting: AcousticalSociety of America,1978,63, S71P.
    [7] P. F. Worcester. Reciprocal acoustic transmission in a midocean environment. TheJournal of the Acoustical Society of America,1977,62(4):895P.
    [8] S. M. Jesus, C. Soares, E. Coelho, and P. Picco. An experimental demonstration ofblind ocean acoustic tomography. The Journal of the Acoustical Society of America,2006,119(3):1420–1431P.
    [9] R. M. Jones and T. M. Georges. Test of nonperturbative ocean acoustic tomographyinversion. The Journal of the Acoustical Society,1992,92(4):2325P.
    [10] B. D. Cornuelle. Travel time tomography simulations for the test ocean constructedfor the124thMeeting of the Acoustical Society of America. The Journal of theAcoustical Society of America,1992,92(4):2424P.
    [11] E. C. Shang. Ocean acoustic tomography based on adiabatic mode theory. TheJournal of the Acoustical Society of America,1989,85(4):1531–1537P.
    [12] R. C. Spindel. The1981ocean tomography experiment: Preliminary results. TheJournal of the Acoustical Society of America,1982,71(S1):S40P.
    [13] I. Nakano, T. Tsuchiya, and Y. Amitani. JAMSTEC’s ocean tomography method.The Journal of the Acoustical Society,1992,92(4):2326P.
    [14] W. Munk. Ocean acoustic tomography. Physical Oceanography, pages2006,119–138P.
    [15] E. C. Shang and Y. Y.Wang. Issues important in modal tomography. The Journal ofthe Acoustical Society of,1992,92(4):2325P.
    [16] D. Gaucher, C. Gervaise, L. Ei, and F. Verny. Feasibility of passive ocean acoustictomography in shallow water context: optimal design of experiments. In SevnthEuropean Conference on Underwater Acoustics,2004.
    [17] E. De Marinis, O. Gasparini, P. Picco, S. M. Jesus, A. Crise, and S Salon. Passiveocean acoustic tomography: theory and experiment. In Sixth European Conferenceon Underwater Acoustics,2002.
    [18] C. Soares. Broadband Matched-Field Tomography using simplified AcousticSystems. Phd thesis, Universidade do Algarve,2006.
    [19] C. Ioana, N. Josso, C. Gervaise, J. Mars, and Y. Stephan. Signal analysis approachfor passive tomography: applications for dispersive channels and movingconfiguration.2009.
    [20] C. Ioana, A. Jarrot, C. Gervaise, A. Quinquis, and J. I. Mars. Underwater channelcharacterization using opportunity sources: a time-frequency-phase approach. InAcoustics08Paris,2008,123:3441–3446P.
    [21] G. V. Frisk. Inverse methods in ocean bottom acoustics. The Journal of theAcoustical Society of America,1987,82:S110P.
    [22] M. D. Collins. Nonlinear inversion for ocean-bottom properties. The Journal of theAcoustical Society of America,1992,92(5):2770–2783P.
    [23] S. E. Dosso, M. L. Yeremy, J. M. Ozard, and N. R. Chapman. Estimation ofocean-bottom properties by matched-field inversion ofacoustic field data. IEEEJournal of Oceanic Engineering,1993,18(3):232–239P.
    [24] S. M. Jesus. Can maximum likelihood estimators improve genetic algorithm searchin geoacoustic inversion? Journal of Computational Acoustics,1998,6:73–82P.
    [25] J.-P. Hermand and P. Gerstoft. Inversion of broad-band multitone acoustic datafrom the YELLOW SHARK summer experiments. IEEE Journal of OceanicEngineering,1996,21(4):324–346P.
    [26] A. Tolstoy, N. R. Chapman, and G. Brooke. Workshop’97benchmarking forgeoacoustic inversion in shallow water. Journal of Computational Acoustics (JCA),1998,6(1-2):1–28P.
    [27] N. R. Chapman, S. Chin-Bing, D. King, and R. B. Evans. Benchmarkinggeoacoustic inversion methods for range-dependent waveguides. IEEE Journal ofOceanic Engineering,2003,28(3):320–330P.
    [28] D. Tollefsen and M.Wilmut. Inversions of horizontal and vertical line array data forthe estimation of geoacoustic model parameters, IEEE Journal of OceanicEngineering,2006,30:309–320P.
    [29] A. Caiti, S. M. Jesus, and A. Kristensen. Geoacoustic seafloor exploration with atowed array in a shallowwater area of the Strait of Sicily. IEEE Journal of OceanicEngineering,1996,21(4):355–366.
    [30] M. Siderius, P. L. Nielsen, and P. Gerstoft. Range-dependent seabedcharacterization by inversion of acoustic data from a towed receiver array. TheJournal of the Acoustical Society of America,2002,112:1523–1535P.
    [31] P. Gerstoft and M. Siderius. Time-domain geoacoustic inversion of high-frequencychirp signal from a simple towed system. IEEE Journal of Oceanic Engineering,2003,28(3):468–478P.
    [32] C. Park, W. Seong, and P. Gerstoft. Geoacoustic inversion in time domain usingship of opportunity noise recorded on a horizontal towed array. The Journal of theAcoustical Society of America,2005,117(4):1933–1941P.
    [33] J.-P. Hermand. Broad-band geoacoustic inversion in shallow water from waveguideimpulse response measurements on a single hydrophone: theory and experimentalresults. IEEE Journal of Oceanic Engineering,,199924(1):41–66P.
    [34] P. Gerstoft. Inversion of seismoacoustic data using genetic algorithms and aposteriori probability distributions. The Journal of the Acoustical Society ofAmerica,1994,95(2):770–782P.
    [35] P. Gerstoft. SAGA Users guide5.4, an inversion software package [availableonline]. www.mpl.ucsd.edu/people/pgerstoft/saga/saga.html.
    [36] J. E. Quijano, S. Dosso, E. J. Dettmer, L. M. Zurk, M. Siderius, and C. H. Harrison.Bayesian geoacoustic inversion using wind-driven ambient noise. The Journal ofthe Acoustical Society of America,1988,131:2658–2667P.
    [37] Z.-H. Michalopoulou. A bayesian approach to model decomposition in oceanacoustics. The Journal of the Acoustical Society of America,2009,126:EL147–EL152P.
    [38] O. Carrière and J.-P. Hermand. Sequential bayesian geoacoustic inversion formobile and compact source-receiver configuration. The Journal of the AcousticalSociety of America,2012,131:2668–2681P.
    [39] J.-P. Hermand, M. Meyer, M. Asch, and M. Berrada. Adjoint-based acousticinversion for the physical characterization of a shallow water environment. TheJournal of the Acoustical Society of America,2006,119(6):3860P.
    [40]杨坤德,马远良.利用海底反射信号进行地声参数反演的方法.物理学学报,2009,58(3):1798—1805页
    [41]李风华,孙梅,张仁和.由矢量水听器阵反演海底地声参数.哈尔滨工程大学学报,2010,31(7):895—902页
    [42]张学磊,李整林,黄晓砥.一种地声参数的联合反演方法.声学学报,2009,35(1):54—59页
    [43]高伟,王宁,王好忠.2005黄海实验混响垂直相关统计反演海底参数.声学学报,2008,33(2):109—115页
    [44]杨坤德.水声信号的匹配场处理技术研究.西北工业大学出版社,2003.
    [45]张忠兵,马远良,杨坤德,鄢社锋.浅海声速剖面的匹配波束反演方法.声学学报,2005,30(2):103—107页
    [46]郭永刚,王宁,高大治.由垂直入射脉冲和海底回波反演海底声参数.中国海洋大学学报:自然科学版,2006,36(1):112—118页
    [47]殷宝友,林建恒,马力.海面噪声垂直相干特性反演地声参数.声学技术,2011,30(1):46—55页
    [48]吴金荣,马力,郭圣明.基于地声模型的浅海混响地声反演研究.哈尔滨工程大学学报,2010,31(7):856—862页
    [49]付金山.海底参数反演技术研究.哈尔滨工程大学硕士学位论文,2006
    [50] P. H. Dahl, J. H. Miller, D. H. Cato, and R. K. Andrew. Underwater ambient noise.Acoustics Today,2007,3(1):23–33P.
    [51] Chad Lawrence Epifanio. Active daylight passive acoustic imaging using ambientnoise. Phd thesis, University of California,1997.
    [52] V. O. Knudsen, R. S. Alford, and J. W. Emling. Underwater ambient noise. Journalof marine research,1948,7:410–429P.
    [53] G. M. Wenz. Acoustic ambient noise in the ocean: spectra and sources. The Journalof the Acoustical Society of America,1962,34(12):1936–1956P.
    [54] G. M. Wenz. Review of underwater acoustics research: Noise. The Journal of theAcoustical Society of America,1972,51(3):1010–1024P.
    [55] R. J. Urick. Principles of underwater sound. McGraw-Hill Book Company, NewYork,1983.
    [56] B. F. Cron and C. H. Sherman. Spatial-correlation functions for various noisemodels. The Journal of the Acoustical Society of America,1962,34(11):1732–1735P.
    [57] J. T. Robert. Ambient-sea-noise model. The Journal of the Acoustical Society ofAmerica,1964,36(8):1541–1545P.
    [58] C. H. Harrison. Formulas for ambient noise level and coherence. The Journal of theAcoustical Society of America,1996,99(4):2055–2066P.
    [59] M. J. Buckingham and N. M. Carbone. Source depth and the spatial coherence ofambient noise in the ocean. The Journal of the Acoustical Society of America,1997,102(5):2637–2644P.
    [60] S. N. Patek, L. E. Shipp, and E. R. Staaterman. The acoustics and acoustic behaviorof the California spiny lobster (Panulirus interruptus). The Journal of theAcoustical Society of America,2009,125(5):3434–3443P.
    [61] M. Lugli and M. L. Fine. Stream ambient noise, spectrum and propagation ofsounds in the goby Padogobius martensii: sound pressure and particle velocity. TheJournal of the Acoustical Society of America,2007,122(5):2881–2892P.
    [62] C. H. Harrison. Noise directionality for surface sources in range-dependentenvironments. The Journal of the Acoustical Society of America,1997,102(5):2655–2662P.
    [63] G. B. Deane, M. J. Buckingham, and C. T. Tindle. Vertical coherence of ambientnoise in shallow water overlying a fluid seabed. Journal of the Acoustical Societyof America,1997,102(6):3413–3424P.
    [64] K. G. Sabra, P. Roux, and W. A. Kuperman. Arrival-time structure of thetime-averaged ambient noise cross-correlation function in an oceanic waveguide.The Journal of the Acoustical Society of America,2005,117(1):164–174P.
    [65] P. Roux andW. A. Kuperman. Time reversal of ocean noise. The Journal of theAcoustical Society of America,2005,117(1):131–136P.
    [66] M. A. McDonald, J. A. Hildebrand, and S. M. Wiggins. Increases in deep oceanambient noise in the Northeast Pacific west of San Nicolas Island, California. TheJournal of the Acoustical Society of America,2006,120(2):711–718P.
    [67] P. Roux, K.G. Sabra, W. A. Kuperman, and A. Roux. Ambient noise crosscorrelation in free space: Theoretical approach. The Journal of the AcousticalSociety of America,2005,117:79–84P.
    [68] A. B. Baggeroer, E. K. Scheer, and The NPAL Group. Statistics and verticaldirectionality of low-frequency ambient noise at the North Pacific AcousticsLaboratory site. The Journal of the Acoustical Society of America,2005,117(3):1643–1655P.
    [69] M. J. Buckingham and A. S. J. Stephen. A new shallow-ocean technique fordetermining the critical angle of the seabed from the vertical directionality of theambient noise in the water column. The Journal of the Acoustical Society ofAmerica,1987,81(4):938–946P.
    [70] F. Desharnais, D. J. Thomson, and C. A. Gillard. Source depth and array tilt effectson seabed inversion of ambient noise. The Journal of the Acoustical Society ofAmerica,2003,113:2204P.
    [71] M. J. Buckingham. Rapid environmental assessment with ambient noise. In SevnthEuropean Conference on Underwater Acoustics (ECUA),2004.
    [72] C. H. Harrison and D. G. Simons. Geoacoustic inversion of ambient noise: Asimple method. The Journal of the Acoustical Society of America,2002,112(4):1377–1389P.
    [73] D. J. Tang. Inversion of sediment property using ambient noise. The Journal of theAcoustical Society of America,2003,113:2204P.
    [74] C. H. Harrison. Sub-bottom profiling using ocean ambient noise. The Journal ofthe Acoustical Society of America,2004,115(4):1505–1515P.
    [75] C. H. Harrison. Performance and limitations of spectral factorization for ambientnoise sub-bottom profiling. The Journal of the Acoustical Society of America,2005,118(5):2913–2923P.
    [76] J. Traer, P. Gerstoft, H. C. Song, andW. S. Hodgkiss. On the sign of the adaptivepassive fathometer impulse response. The Journal of the Acoustical Society ofAmerica,2009,126(4):1657–1658P.
    [77] S. L. Means and M. Siderius. Effects of sea-surface conditions on passivefathometry and bottom characterization. The Journal of the Acoustical Society ofAmerica,2009,126(5):2234–2241P.
    [78] P. Hursky and M. Siderius. Using ambient noise and vector sensor arrays to form asubbottom profiler. The Journal of the Acoustical Society of America,2006,120:3027–3028P.
    [79] M. Siderius, C. H. Harrison, and M. B. Porter. A passive fathometer technique forimaging seabed layering using ambient noise. The Journal of the AcousticalSociety of America,2006,120:1315–1323P.
    [80] C. H. Harrison and M. Siderius. Bottom profiling by correlating beam-steerednoise sequences. The Journal of the Acoustical Society of America,2008,123(3):1282–1296P.
    [81] M. Siderius, H. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C. Harrison.Adaptive passive fathometer processing. The Journal of the Acoustical Society ofAmerica,2010,127(4):2193–2200P.
    [82] Jr. Juan I. Arvelo. Robustness and constraints of ambient noise inversion. TheJournal of the Acoustical Society of America,2008,123(2):679–686.
    [83] M. J. Buckingham, B. V. Berkhous, and S.A.L. Glegg. Imaging the ocean withambient noise. Nature,1992,356:327–329P.
    [84] C. L. Epifanio, J. R. Potter, G. B. Deane, M. L. Readhead, and M. J. Buckingham.Imaging in the ocean with ambient noise: the ORB experiments. The Journal of theAcoustical Society of America,1999,106(6):3211–3226P.
    [85] J. R. Potter and M. Chitre. Ambient noise imaging in warm shallow seas;second-order moment and model-based imaging algorithms. The Journal of theAcoustical Society of America,1999,106(6):3201–3210P.
    [86] M. J. Buckingham. Acoustic daylight imaging in the ocean, in Handbook ofComputer Vision and Applications-Volume1: Sensors and Imaging, Eds. B. Jahne,H. Haussecker, P. Geissler, Academic Press, San Diego,1999,415-424P.
    [87] R. J. Urick. Noise signature of an aircraft in level flight over a hydrophone in thesea. The Journal of the Acoustical Society of America,1972,52:993–997P.
    [88] M. J. Buckingham and E. M. Giddens. A light aircraft as a low-frequency soundsource for acoustical oceanography. In Ocean Remote Sensing Conference,2004.
    [89] M. J. Buckingham. Acoustic remote sensing of the sea bed using propeller noisefrom a light aircraft. Sounds in the Sea, Cambridge University Press,2005.
    [90] M. J. Buckingham, E. M. Giddens, and F. Simonet. Inversion of the propellerharmonics from a light aircraft for the geoacoustic properties of marine sediments.2nd Workshop on Experimental Acoustic Inversion Methods for Assessmenmt ofthe Shallow Water Environment,2006,257–263P.
    [91] M. J. Buckingham, E. M. Giddens, F. Simonet, and T. R. Hahn. Propeller noisefrom a light aircraft for low-frequency measurements of the speed of sound in amarine sediment. Journal of Computational Acoustics,2002,10(4):445–464P.
    [92] M. J. Buckingham, E. M. Giddens, F. Simonet, and T. R. Hahn. Soud from a lightaircraft for underwater acoustics applications. In International conference on sonar-Sensors and Systems,2002.
    [93] M. J. Buckingham, E. M. Giddens, J. B. Pompa, F. Simonet, and T. R. Hahn.Sound from a light aircraft for underwater acoustics experiments? ACTA Acouticaunited with acoustica,2002,88:752–755P.
    [94] W. Kuperman, M.Werby, K. Gilbert, and G. Tango. Beam forming onbottom-interacting tow-ship noise. IEEE Journal of Oceanic Engineering,1985,10(3):290–298P.
    [95] D. J. Battle, P. Gerstoft, W. A. Kuperman, W. S. Hodgkiss, and M. Siderius.Geoacoustic inversion of tow-ship noise via near-field-matched-field processing.IEEE Journal of Oceanic Engineering,2003,28(3):454–467P.
    [96] D. J. Battle, P. Gerstoft, W.S. Hodgkiss, W. A. Kuperman, and P. L. Nielsen.Bayesian model selection applied to self-noise geoacoustic inversion. The Journalof the Acoustical Society of America,2004,116(4):2043–2056P.
    [97] N. R. Chapman, R. M. Dizaji, and R. L. Kirlin. Inversion of geoacoustic modelparameters using ship radiated noise cross-relation matched field processor,2006,Springer.
    [98] R. A. Koch and D. P. Knobles. Geoacoustic inversion with ships as sources. TheJournal of the Acoustical Society of America,2005,117(2):626–637P.
    [99] S. A. Stotts. A robust spatial filtering technique for multisource localization andgeoacoustic inversion. The Journal of the Acoustical Society of America,2005,118(1):139–162P.
    [100] D. Tollefsen and S. E. Dosso. Bayesian geoacoustic inversion of ship noise on ahorizontal array. The Journal of the Acoustical Society of America,2008,124(2):788–795P.
    [101] K. D. Heaney. Rapid geoacoustic characterization: applied to range-dependentenvironments. IEEE Journal of Oceanic Engineering,2004,29(1):43–50P.
    [102] K. D. Heaney, D. D. Sternlicht, A. M. Teranishi, B. Castile, and M. Hamilton.Active rapid geoacoustic characterization using a seismic survey source. IEEEJournal of Oceanic Engineering,2004,29(1):100–109P.
    [103] K. D. Heaney. High-frequency rapid geo-acoustic characterization. AIP ConferenceProceedings,2004,728:47–54P.
    [104] T. C. Yang, K. B. Yoo, and L. T. Fialkowski. Sub-bottom profiling and geoacousticinversion using a ship-towed line array. Acoustics2006NRL review,2006,1–3P.
    [105] T. C. Yang, K. B. Yoo, and L. T. Fialkowski. Subbottom profiling using a shiptowed line array and geoacoustic inversion. The Journal of the Acoustical Societyof America,2007,122(6):3338–3352P.
    [106] M. G. Morley, N. R. Chapman, T. McGee, and B. Woolsey. Estimating geoacousticproperties of marine sediments by matched field inversion using ship noise. TheJournal of the Acoustical Society of America,2005,118:1857P.
    [107] M. Nicholas, J. S. Perkins, G. J. Orris, L. T. Fialkowski, and G. J. Heard.Environmental inversion and matched-field tracking with a surface ship and anL-shaped receiver array. The Journal of the Acoustical Society of America,2004,116(5):2891–2901P.
    [108] S. A. Stotts, R. A. Koch, S. M. Joshi, V. T. Nguyen, V. W. Ferreri, and D. P.Knobles. Geoacoustic inversions of horizontal and vertical line array acoustic datafrom a surface ship source of opportunity. IEEE Journal of Oceanic Engineering,2010,35(1):79–102P.
    [109] S. A. Stotts and R. A. Koch. Geoacoustic inversions and localizations withadaptively beamformed data from a surface ship of opportunity source. The Journalof the Acoustical Society of America,2010,127(1):84–95P.
    [110] Y. V. Petukhov. Fundamental directions of investigations of interferencephenomena observed in the propagation of broadband acoustic signals in oceanicwaveguide. Oceanic acoustic interference phenomena and signal processing,2001.
    [111] A. B. Wood. Model experiments on sound propagation in shallow seas. The Journalof the Acoustical Society of America,1959,31:1213-1235P.
    [112] D. E.Weston. A moire fringe analog of sound propagation in shallow water. TheJournal of theAcoustical Society of America,1960,32:647–654P.
    [113] D. E. Weston. Sound focusing and beaming in the interference field due to severalshallow-water modes. The Journal of the Acoustical Society of America,1968,44(6):1706–1712P.
    [114] D. E.Weston and D. Smith. Experiments on time-frequency interference patterns inshallow-water acoustic transmission. Journal of Sound and Vibration,1969,10(3):424–429P.
    [115] D. E. Weston, K. J. Stevens, J. Revie, and M. Pengelly. Multiple frequency studiesof sound transmission fluctuations in shallow water. Journal of Sound andVibration,1971,18(4):487–497P.
    [116] R. T. Bachman. Broadband interference patterns in shallow water. The Journal ofthe Acoustical Society of America,1983,74(2):576–580P.
    [117] D. E. Weston. Intensity-range relations in oceanographic acoustics. Journal ofSound and Vibration,1971,18(2):271–287P.
    [118] M. L. Vianna and W. Soares-Filho. Broadband noise propagation in a Pekeriswaveguide. The Journal of the Acoustical Society of America,1986,79(1):76–83P.
    [119] S. D. Chuprov. Interference structure of a sound field in a layered ocean. Acousticsof the Ocean: Current Status (in Russian),1982,71–91P.
    [120] G. A Grachev. Theory of acoustic field invariants in layered waveguide. AcousticalPhysics,1993,39:33–35P.
    [121] V. N. Lobanov, Y. V. Petukhov, and J. S. WOOD. Space-frequency distribution ofthe intensity of wideband sound in a shallow sea. Acoustical physics,1993,39(6):574–581P.
    [122] G. L. D’Spain and W. A. Kuperman. Application of waveguide invariants toanalysis of spectrograms from shallow water environments that vary in range andazimuth. The Journal of the Acoustical Society of America,1999,106(4):2302–2316P.
    [123] E. L. Borodina and Y. V. Petukhov. Restoration of the bottom characteristics by theinterference structure of the wide-band sound. Acoustics,1996,19:159–162P.
    [124] B. V. Sharonov, G. A. Kerzhakov, V. V. Kulinich, V. A. Lazarev, and A. D. Sokolov.Experimental investigations of interference patterns of broadband low frequencysound in ocean waveguides inhomogenous in range. In AIP ConferenceProceedings,2002,621:13–30P.
    [125] A. M. Thode, W. A. Kuperman, G. L. D’Spain, and W. S. Hodgkiss. Localizationusing Bartlett matched-field processor sidelobes. The Journal of the AcousticalSociety of America,2000,107(1):278–286P.
    [126] H. C. Song, W. A. Kuperman, and W. S. Hodgkiss. A time-reversal mirror withvariable range focusing. The Journal of the Acoustical Society of America,1998,103(6):3234–3240P.
    [127] T. C. Yang. Beam intensity striations and applications. The Journal of theAcoustical Society of America,2003,113(3):1342–1352P.
    [128] E. K. Westwood. Broadband matched-field source localization. The Journal of theAcoustical Society of America,1992,91(5):2777–2789P.
    [129] A. M. Thode. Source ranging with minimal environmental information using avirtual receiver and waveguide invariant theory. The Journal of the AcousticalSociety of America,2000,108(4):1582–1594P.
    [130] A. Turgut, M. Orr, and D. Rouseff. Broadband source localization usinghorizontal-beam acoustic intensity striations. The Journal of the Acoustical Societyof America,2010,127(1):73–83P.
    [131] K. D. Heaney. Rapid geoacoustic characterization using a surface ship ofopportunity. IEEE Journal of Oceanic Engineering,2004,29(1):88–99P.
    [132] L. An, Z. Wang, and J. R. Lu. Calculating the waveguide invariant by passive sonarlofargram image. In14th International Conference on Mechatronics and MachineVision in Practice, M2VIP2007.
    [133] W. A. Kuperman, G. L. D’Spain, and K. D. Heaney. Long range source localizationfrom single hydrophone spectrograms. The Journal of the Acoustical Society ofAmerica,2001,109(5):1935–1933P.
    [134] J. E. Quijano, L. M. Zurk, and D. Rouseff. Demonstration of the invarianceprinciple for active sonar. The Journal of the Acoustical Society of America,2008,123(3):1329–1337P.
    [135] Q. Y. Ren, J.-P. Hermand, and S. C. Piao. Space-frequency distribution of thevector field of broad-band sound in shallowwater. In OCEANS10MTS/IEEESeattle Conference,2010.
    [136] S. C. Piao and Q. Y. Ren. Investigation of Interference Phenomena of BroadbandAcoustic Vector Signals in Shallow Water. In AIP Conference Proceedings,2010,1272:69–80P.
    [137] C. B. Leslie. Hydrophone for measuring particle velocity. The Journal of theAcoustical Society of America,1956,28(4):711–715P.
    [138] V. A. Shchurov. Vector acoustics of the ocean. vladivostk: Dalhauka,2006.
    [139] J. Y. Hui, H. Liu, H. B. Yu, and M.Y. Fan. Study on the physical basis of pressureand particle velocity combined processing. Acta Acustica,2000,4:234--237P.
    [140] W. Liu, Y. Li, and S. C. Piao. Study on Correlation Processing for Acoustic vectorSignals in Underwater Sound Channel. In The10th Western Pacific AcousticsConference, Beijing, China,2009.
    [141] K. T. Wong and M. D. Zoltowski. Extended-Aperture Underwater AcousticMultisource Azimuth/Elevation Direction-Finding Using Uniformly But SparselySpaced Vector Hydrophones. IEEE Journal of Oceanic Engineering,1997,22(4):659–672P.
    [142] M. Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and Capondirection estimation. IEEE Transactions on Signal Processing,1998,46(9):2291–2304.
    [143] M. Hawkes and A. Nehorai. Effects of sensor placement on acoustic vector-sensorarray performance. IEEE Journal of Oceanic Engineering,1999,24(1):33–40P.
    [144] M. Hawkes and A. Nehorai. Acoustic vector-sensor processing in the presence of areflecting boundary. IEEE Transactions on Signal Processing,2000,48(11):2981–2993P.
    [145] M. Hawkes and a. Nehorai. Acoustic vector-sensor correlations in ambient noise.IEEE Journal of Oceanic Engineering,2001,26(3):337–347P.
    [146] M. Hawkes and A. Nehorai. Wideband source localization using a distributedacoustic vectorsensor array. IEEE transactions on signal processing,2003,51(6):1479–1491P.
    [147] B. A. Cray and A. H. Nuttall. Directivity factors for linear arrays of velocitysensors, The Journal of the Acoustical Society of America,2001,110(1):324–331P.
    [148] Ali. Abdi, H. Guo, and P. Sutthiwan. A new vector sensor receiver for underwateracoustic communication. In Oceans2007.
    [149] P. Santos, O. C. Rodriguez, P. Felisberto, S. M. Jesus, and P. Faro. Geoacousticmatched-field inversion using a vertical vector sensor array. In3rd InternationalConference and Exhibition on Underwater Acoustic Measurements Technologiesand Results, Nafplion, Greece,2009.
    [150] J. C. Osler, D. M. F. Chapman, and P. C. Hines. Measurement and modeling ofseabed particle motion using buried vector sensors. IEEE Journal of OceanicEngineering,2010,35(3):516–537P.
    [151] R. A. Koch. Proof of principle for inversion of vector sensor array data. TheJournal of the Acoustical Society of America,2010,128(2):590–599.
    [152] P. Santos, P. Felisberto, and S. M. Jesus. Vector Sensor Arrays in UnderwaterAcoustic Applications. IFIP International Federation For Information Processing,2010.
    [153] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt. ComputationalOcean Acoustics (Morden Acoustics and Signal Processing). American Institute ofPhysics,1994.
    [154] R. H. Hardin and F. D. Tappert. Applications of the split-step Fourier method to thenumerical solution of nonlinear and variable coefficient wave equations. SiamReview,1973,15:423P.
    [155] M. D. Collins. A split-step Pade solution for the parabolic equation method. TheJournal of the Acoustical Society of America,1993,93(4):1736–1742P.
    [156] C. L. Pekeris. Theory of propagation of explosive sound in shallow water.Geological Society of America,1948.
    [157] I. Stakgold. Green’s function and boundary value problems. Wilely, New York,1979.
    [158] L. M. Brekhovskikh and Yu. P. Lysanov. Fundamentals of Ocean Acoustics,volume116. Springer,3rd edition,2003.
    [159] M. B. Porter. The KRAKEN Normal Mode Program,1997.
    [160] K. T. Wong and M. D. Zoltowski. Extended-aperture underwater acousticmultisource azimuth/elevationdirection-finding using uniformly but sparselyspaced vector hydrophones. IEEE Journal of Oceanic Engineering,1997,22(4):659–672P.
    [161] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater acoustic sensor networks:research challenges. Ad Hoc Networks,2005,3(3):257–279P.
    [162] A. Nehorai and E. Paldi. Acoustic vector sensor array processing. In ConferenceRecord of the Twenty-Sixth Asilomar Conference on Signals, Systems andComputers,1999.
    [163]姚直象,惠俊英.基于单矢量水听器四种方位估计方法.海洋工程,2006,24(1):122-128页..
    [164] J.-P. Hermand and R. Soukup. Broadband inversion experiment Yellow Shark’95:Modelling the transfer function of shallow-water environment withrange-dependent soft clay bottom. In Proceedings of the3rdEuropean Conferenceon Underwater Acoustics,1996.
    [165] L. A. Brooks, M. R. F. Kidner, A. C. Zander, C. H. Hansen, Z. Y. Zhang, andOthers. Striation processing of spectrogram data. In International Congress onSound and Vibration ICSV13,2006.
    [166] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vesselenhancement filtering. Medical Image Computing and Computer-AssistedInterventation,1998.
    [167] T. Lindeberg. Edge detection and ridge detection with automatic scale selection. InConf. on Comp.Vis. and Pat. Recog,1996.
    [168] V. G. Petnikov and V. M.z’kin Ku. Shallow water variability and its manifestationin the interference pattern of sound fields. AIP Conference Proceedings,2002,621:207–217P.
    [169] R. Bamler and P. Hartl. Synthetic aperture radar interferometry. Inverse Problems,1998,14:R1–R54P.
    [170] Q. Y. Ren, J.-P. Hermand, and S. C. Piao. Acoustic interferometry for sedimentgeoacoustic characterization using broadband ship noise in the Yellow Sharkenvironment. In Pacific Rim Underwater Acoustics Conference, Jeju, Korea,2011.
    [171] G. Beylkin. Discrete Radon transform. IIEEE Transactions on Acoustics, Speech,&Signal Processing,1987,35:163–172P.
    [172] D. Rouseff and R. C. Spindel. Modeling the waveguide invariant as a distribution.AIP Conference Proceedings,2002,621:137–148P.
    [173] P. Balasubramanian and M. M. Muni. A note onThe effective depth of a Pekeriswaveguide including shear wave effects. The Journal of the Acoustical Society,1989,88(1):564–565P.
    [174] J.-P. Hermand and J.-C. Le-Gac. MREA/BP07cruise report, NATO Undersea Res.Cntr., La Spezia. NURC-CR-2007-04-1D1,2007.
    [175] K. Siemes, M. Snellen, A. R. Amiri-simkooei, D. G. Simons, and J.-P. Hermand.Predicting spatial variability of sediment properties from hydrographic data forgeoacoustic inversion. IEEE Journal of Oceanic Engineering,2010,35(4):401–424.
    [176] P. T. Arveson and D. J. Vendittis. Radiated noise characteristics of a modern cargoship. The Journal of the Acoustical Society of America,2000,107(1):118–129P.
    [177] D. P. Knobles, J. A. Goff, R. A. Koch, P. S. Wilson, and J. A. Shooter. Effect ofinhomogeneous sub-bottom layering on broadband acoustic propagation. IEEEJournal of Oceanic Engineering,2010,35:732–743P.
    [178] M.D. Collins. A split-step pade solution for the parabolic equation method. TheJournal of the Acoustical Society of America,1993,93:1736–1742P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700