氧化物半导体薄膜晶体管的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于氧化物半导体的薄膜晶体管(TFTs)因在未来大尺寸、高帧率和高分辨率的平板显示器中的潜在应用而备受关注。现今的有源矩阵液晶显示器(AMLCD)和有源矩阵有机发光二极管显示(AMOLED)普遍采用的是非晶硅的TFT技术。和非晶硅TFT技术相比,氧化物半导体TFT技术存在诸多优点,包括高迁移率、高光学透过率和低工艺温度等。这些优点使得氧化物TFT技术更适合运用于透明显示和柔性显示。在本文中,我们研究了三种不同的氧化物半导体,分别是氧化锌(ZnO)、铟镓锌氧(InGaZnO, IGZO)和铟铝锌氧(InAlZnO, IAZO)。本文的主要研究内容和结果可以概括如下:
     1.我们制备了以ITO和金属Cr作为源漏电极的ZnO TFTs,研究了源漏电极与ZnO沟道层的接触对TFT性能的影响。ITO电极能与沟道层形成了更好的接触,其器件性能也明显优于Cr电极的TFT。
     2.我们采用了退火控制ZnO薄膜载流子的方法来实现ZnO TFTs的器件特性。发现对室温制备的ZnO TFTs,在N2气氛下采用低温退火比较合适,既能增加ZnO沟道层的迁移率和降低缺陷态密度,又能保证低的关态电流。低温退火的缺点是不能消除薄膜中高温退火才能消除的缺陷态。
     3.我们利用TFT的结构研究了ZnO薄膜中持续光电导(PPC)现象,发现栅极电压能够控制光电流衰退的快慢。我们提出一个可能的模型解释这种栅压可控PPC现象的原因。在栅极电压的作用下,电子与电性相反的氧空位Vo2+和空穴的分离,导致复合速率的下降。
     4.我们制IGZO TFTs并研究了其稳定性,发现了IGZO TFTs的两种不稳定机制。室温制备的IGZO TFTs具有栅压连续扫描不稳定性,表现为第二次扫描的转移特性曲线出现大的偏移,这是由沟道中浅陷阱缺陷导致的不稳定性。这些浅陷阱缺陷是由氧空位与薄膜中的空隙共同引起的,通过氧气气氛高温退火能够消除这种缺陷。退火后的IGZO TFTs具有栅极偏压工作不稳定性,表现为转移特性曲线平行右移而其亚阈值摆幅S几乎不变。栅极偏压不稳定性归因于绝缘层与沟道层界面的陷阱机制。
     5.我们在室温条件下沉积了非晶IAZO薄膜,研究了退火温度对薄膜结构,形貌,光学和电学性能的影响。薄膜的非晶态结构即使在高温退火下也能稳定存在。退火处理会影响薄膜的原子重新排列,但对表面形貌影响不大。退火后薄膜的电阻率不断下降,迁移率也有所提高。随着退火温度的升高,薄膜的吸收边发生红移,其光学禁带宽度不断下降。
     6.我们制备了IAZO TFTs,发现其具有与IGZO TFTs相当的电学性能。低温退火的IAZO TFTs具有跟室温制备的IGZO TFTs一样的连续扫描不稳定性。XPS的结果显示退火温度升高,氧空位含量减少,表明引起不稳定的浅陷阱缺陷与氧空位相关。高温退火后这种不稳定性消失,只存在界面陷阱机制引起的偏压工作不稳定性。
     7.我们研究了环境因素对IAZO TFTs稳定性的影响,验证了空气成分如何影响TFT性能。干燥的N2和02几乎不影响TFT性能。湿度对TFT的性能有很大影响,一方面增加了沟道层的表面电导,另一方面导致阈值电压的偏移。进一步的偏压稳定性测试显示,氧气的湿度越大,阈值电压变化越大,稳定性越差。我们提出水辅助氧吸附的模型解释了湿氧对氧化物TFT稳定性的影响。
Recently, thin-film transistors (TFTs) based on oxide semiconductors have attracted considerable attention because of their potential application in the next generation flat panel displays, which are characterized by large screen, high frame rate and high resolution. Compared to amorphous silicon TFTs that is currently used in active-matrix liquid crystal display (AMLCD) and active-matrix organic light-emitting-diode display (AMOLED), oxide semiconductors TFTs have numerous advantages including high mobility, high optical transparency and low processing temperature, making them suitable to be used in transparent and flexible display.
     In this thesis, our work focused on three different oxide semiconductors:zinc oxide (ZnO), indium gallium zinc oxide (InGaZnO, IGZO) and indium aluminum zinc oxide (InAlZnO, IAZO). The major contents of this thesis are summarized as follows:
     1. ZnO TFTs with ITO or Cr as Drain/Source electrodes were fabricated. The effect of contact with different electrodes on the performance was investigated. ITO electrodes can form a better contact with the ZnO channel, thus TFTs with ITO electrodes showed superior performance than TFTs with Cr electrodes.
     2. Annealing treatment was used to control the carrier concentration in ZnO films and achieve the operation of ZnO TFTs. For as-deposited ZnO TFTs, low-temperature annealing under N2is preferable. Because the low-temperature can not only increase the mobility and reduce the defects density, but also keep a low off-current. The disadvantage of low-temperature annealing is its disability to remove the defects that only high-temperature annealing can do.
     3. We employed a TFT device to investigate the persistent photoconductivity (PPC) in ZnO films. The phenomenon that the rate of photocurrent decay can be controlled by the gate bias was observed. We proposed a plausible model to explain the PPC controlled by gate-bias. Under the gate-bias, the electric field will drive electrons away from the electropositive oxygen vacancies (VO2+) and holes, leading to the reduction of recombination rate between electrons and VO2+or holes.
     4. The IGZO TFTs were fabricated and their stability was investigated. Two different instability mechanisms were observed in IGZO TFTs. The first one is shallow trap mechanism that happens to as-deposited IGZO TFTs when the transfer characteristic curves were continuously swept. These shallow traps are formed when an oxygen vacancy site is adjacent to a large open space in the film. And high-temperature annealing with O2can annihilate these shallow traps. After high-temperature annealing, IGZO TFTs only suffer from gate-bias stress instability, characterized by parallel positive threshold voltage shift with no change of sub-threshold swing. The interface trapping mechanism is responsible for gate-bias stress instability.
     5. Amorphous IAZO films were deposited at room temperature and annealed at different temperatures. The effects of annealing temperature on the structural, morphology, optical and electrical performance of the films were investigated. The amorphous structure is stable even at high-temperature annealing. The annealing treatment would lead to redistribute of atom in the film while show no significant influence on the morphology. The annealing treatment also increased the mobility and reduced the resistivity of the film. Red shift was observed for the absorption edge for the film and the optical band gap narrowed as the annealing temperature increase.
     6. IAZO TFTs were fabricated, showing comparable electrical performance to IGZO TFTs. IAZO TFTs annealed at low temperature had the positive shift of transfer characteristic curve under continuous sweeping, as same as as-deposited IGZO TFTs. XPS results showed the number of oxygen vacancies reduced as the annealing temperature increased, indicating the shallow traps are related to oxygen vacancies. This instability disappear after high-temperature annealing, only left the gate-bias stress instability cause by interface trapping site.
     7. The impact of ambient on stability of IAZO TFTs was investigated and how the ingredients of ambient affect the TFT performances was confirmed. It was observed that dry O2and N2had little influence on the TFT performances, while the relative humidity of O2had significant impact on the TFT performances. Firstly, it induced the back surface conductivity of the channel layer. Secondly, it led to positive shift of threshold voltage. Further study on the gate-bias stressing showed the larger of humidity of O2, the large shift of threshold voltage and the less stable for the TFT devices. A water-assisted oxygen absorption model was proposed to account for the impact of wet O2on stability of oxide TFT.
引文
[1]T. Kamiya, K. Nomura, and H. Hosono. Present status of amorphous In-Ga-Zn-O thin-film transistors. Science and Technology of Advanced Materials,2010,11(4):044305.
    [2]S. Higashi, D. Abe, Y. Hiroshima, K. Miyashita, T. Kawamura, S. Inoue, and T. Shimoda. High-quality SiO2/Si interface formation and its application to fabrication of low-temperature-processed polycrystalline Si thin-film transistor. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2002,41(6A): 3646-3650.
    [3]T. Kamiya, Z. a. K. Durrani, H. Ahmed, T. Sameshima, Y. Furuta, H. Mizuta, and N. Lloyd. Reduction of grain-boundary potential barrier height in polycrystalline silicon with hot H2O-vapor annealing probed using point-contact devices. Journal of Vacuum Science & Technology B,2003,21(3):1000-1003.
    [4]G. F. Boesen, and J. E. Jacobs. ZnO field-effect transistor. Proceedings of the Institute of Electrical and Electronics Engineers,1968,56(11):2094-2095
    [5]R. L. Hoffman, B. J. Norris, and J. F. Wager. ZnO-based transparent thin-film transistors. Applied Physics Letters,2003,82(5):733-735.
    [6]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Journal of Applied Physics,2003,93(3):1624-1630.
    [7]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science,2003,300(5623): 1269-1272.
    [8]P. F. Carcia, R. S. Mclean, and M. H. Reilly. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Applied Physics Letters,2006,88(12): 123509.
    [9]H. H. Hsieh, and C. C. Wu. Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes. Applied Physics Letters,2007,91(1):01350.
    [10]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins. Fully transparent ZnO thin-film transistor produced at room temperature. Advanced Materials,2005,17(5):590-594.
    [11]A. Bashir, P. H. Wobkenberg, J. Smith, J. M. Ball, G. Adamopoulos, D. D. C. Bradley, and T. D. Anthopoulos. High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere. Advanced Materials,2009,21(21):2226-2231.
    [12]S. J. Lim, S. J. Kwon, H. Kim, and J. S. Park. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Applied Physics Letters,2007, 91(18):183517
    [13]S. H. K. Park, C. S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J. I. Lee, K. Lee, M. S. Oh, and S. Im. Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel. Advanced Materials,2009,21(6):678-682.
    [14]J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim. Control of threshold voltage in ZnO-based oxide thin film transistors. Applied Physics Letters,2008,93(3):033513.
    [15]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature,2004,432(7016):488-492.
    [16]ISI数据检索平台.http://www.webofknowledge.com/.
    [17]日经技术在线.[IDW]夏普首次公开氧化物TFT液晶面板.(2009-12-26),http://china.nikkeibp.com.cn/news/flat/49288-20091215.html.
    [18]日经技术在线.[SID]三星、LG和友达光电发布氧化物半导体TFT驱动的有机EL面板.(2010-6-3),1ittp://china.nikkeibp.com.cn/news/flat/51732-20100602.html.
    [19]日经技术在线.日美韩台一线研究者齐聚TAOS 2010,探讨透明非结晶氧化物半导体及其显示器应用.2010-01-06, http://china.nikkeibp.com.cn/news/flat/49476-20100105.html.
    [20]日经技术在线.氧化物半导体TFT专利授权给三星,日本企业判断失误.(2011-08-24),http://big5.nikkeibp.com.cn/news/flat/57634-20110823.html.
    [21]日经技术在线.夏普开始量产IGZO TFT驱动液晶面板,首次公开32英寸的4K产品.(2012-04-17), http://china.nikkeibp.com.cn/news/flaat/60680-20120416.html.
    [22]T. N. Xu, H. Z. Wu, Y. Y. Zhang, X. O. Wang, X. M. Zhu, and Z. J. Yuan. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010,59(7):5018-5022.
    [23]J. Zhang, X. F. Li, J. G. Lu, N. J. Zhou, P. J. Guo, B. Lu, X. H. Pan, L. Chen, and Z. Z. Ye. Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors. Rsc Advances,2014,4(7):3145-3148.
    [24]C. J. Wu, X. F. Li, J. G. Lu, Z. Z. Ye, J. Zhang, T. T. Zhou, R. J. Sun, L. X. Chen, B. Lu, and X. H. Pan. Characterization of amorphous Si-Zn-Sn-O thin films and applications in thin-film transistors. Applied Physics Letters,2013,103(8):082109.
    [25]L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Applied Physics Letters, 2009,95(7):072112.
    [26]X. F. Li, E. L. Xin, J. F. Shi, L. L. Chen, C. Y. Li, and J. H. Zhang. Stability of low temperature and transparent amorphous InGaZnO thin film transistor under illumination. Acta Physica Sinica,2013,62(10):108503.
    [27]Q. J. Yao, S. X. Li, and Q. Zhang. Influences of channel metallic composition on indium zinc oxide thin-film transistor performance. Semiconductor Science and Technology,2011,26(8): 085011
    [28]L. Yue, H. F. Pu, H. L. Li, S. J. Pang, and Q. Zhang. Dip-coated Al-In-Zn-O thin-film transistor with poly-methylmethacrylate gate dielectric. Journal of Physics D-Applied Physics,2013,46(44):445106
    [29]L. F. Lan, and J. B. Peng. High-Performance Indium-Gallium-Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide. IEEE Transactions on Electron Devices,2011, 58(5):1452-1455.
    [30]L. F. Lan, M. J. Zhao, N. N. Xiong, P. Xiao, W. Shi, M. Xu, and J. B. Peng. Low-Voltage High-Stability Indium-Zinc Oxide Thin-Film Transistor Gated by Anodized Neodymium-Doped Aluminum. IEEE Electron Device Letters,2012,33(6):827-829.
    [31]X. A. Zhang, J. W. Zhang, W. F. Zhang, D. Wang, Z. Bi, X. M. Bian, and X. Hou. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films,2008,516(10):3305-3308.
    [32]H. Z. Zhang, L. Y. Liang, A. H. Chen, Z. M. Liu, Z. Yu, H. T. Cao, and Q. Wan. High-performance transparent thin-film transistor based on Y2O3/In2O3 with low interface traps. Applied Physics Letters,2010,97(12):122108.
    [33]A. H. Chen, L. Y. Liang, H. Z. Zhang, Z. M. Liu, X. J. Ye, Z. Yu, and H. T. Cao. Enhancement of a-IZO TTFT Performance by Using Y2O3/Al2O3 Bilayer Dielectrics. Electrochemical and Solid State Letters,2011,14(2):H88-H92.
    [34]N. F. Mott, and E. A. Davis. Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford,1979.
    [35]R. W. Cahn. Physics of Amorphous Materials-Elliott,Sr. Nature,1985,314(6006):26-26.
    [36]H. Hosono. Handbook of Transparent Conductors. Springer-Verlag New York Inc,2010,460.
    [37]W. E. Spear, and P. G. Lecomber. Substitutional Doping of Amorphous Silicon. Solid State Communications,1975,17(9):1193-1196.
    [38]P. G. Lecomber, W. E. Spear, and A. Ghaith. Amorphous-Silicon Field-Effect Device and Possible Application. Electronics Letters,1979,15(6):179-181.
    [39]E. P. Denton, H. Rawson, and J. E. Stanworth. Vanadate Glasses. Nature,1954,173(4413): 1030-1032.
    [40]H. Hosono. Ionic amorphous oxide semiconductors:Material design, carrier transport, and device application. Journal of Non-Crystalline Solids,2006,352(9-20):851-858.
    [41]T. Kamiya, and H. Hosono. Creation of new functions in transparent oxides utilizing nanostructures embedded in crystal and artificially encoded by laser pulses. Semiconductor Science and Technology,2005,20(4):S92-S102.
    [42]H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. Journal of Non-Crystalline Solids,1996,200:165-169.
    [43]M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe. Novel Transparent and Electroconductive Amorphous-Semiconductor-Amorphous AgSbO3 Film. Japanese Journal of Applied Physics Part 2-Letters,1995,34(3 A):L281-L284.
    [44]H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, and K. Shimidzu. Amorphous Transparent Electroconductor 2CdO-Center-Dot-GeO2-Conversion of Amorphous Insulating Cadmium Germanate by Ion-Implantation. Applied Physics Letters,1995,67(18):2663-2665.
    [45]H. Hosono, Y. Yamashita, N. Ueda, H. Kawazoe, and K. Shimidzu. New amorphous semiconductor:2CdO center dot PbOx. Applied Physics Letters,1996,68(5):661-663.
    [46]H. Hosono, H. Maeda, Y. Kameshima, and H. Kawazoe. Novel n-type conducting amorphous chalcogenide CdS.In2Sx:an extension of working hypothesis for conducting amorphous oxides. Journal of Non-Crystalline Solids,1998,227:804-809.
    [47]M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono. Amorphous transparent conductive oxide InGaO3(ZnO)(m) (m<4):a Zn 4s conductor. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties,2001,81(5):501-515.
    [48]H. Hosono, M. Yasukawa, and H. Kawazoe. Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides. Journal of Non-Crystalline Solids,1996,203: 334-344.
    [49]B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine. High-mobility amorphous In2O3-10wt% ZnO thin film transistors. Applied Physics Letters,2006,89(6):062103.
    [50]Y. H. Hwang, J. H. Jeon, K. J. Seo, and B. S. Bae. Solution-Processed, High Performance Aluminum Indium Oxide Thin-Film Transistors Fabricated at Low Temperature. Electrochemical and Solid State Letters,2009,12(9):H336-H339.
    [51]M. G. Kim, H. S. Kim, Y. G. Ha, J. Q. He, M. G. Kanatzidis, A. Facchetti, and T. J. Marks. High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors. Journal of the American Chemical Society,2010,132(30):10352-10364.
    [52]J. Liu, D. B. Buchholz, J. W. Hennek, R. P. H. Chang, A. Facchetti, and T. J. Marks. All-Amorphous-Oxide Transparent, Flexible Thin-Film Transistors. Efficacy of Bilayer Gate Dielectrics. Journal of the American Chemical Society,2010,132(34):11934-11942.
    [53]H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Applied Physics Letters,2005,86(1):013503.
    [54]Y. J. Chang, D. H. Lee, G. S. Herman, and C. H. Chang. High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochemical and Solid State Letters,2007,10(5): H135-H138.
    [55]S. Kivelson, and C. D. Gelatt. Effective-Mass Theory in Noncrystalline Solids. Physical Review B,1979,19(10):5160-5177.
    [56]K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O:Experiment and ab initio calculations. Physical Review B,2007, 75(3):035212.
    [57]T. Kamiya, K. Nomura, and H. Hosono. Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO4 studied by density functional theory. Physica Status Solidi a-Applications and Materials Science,2010,207(7):1698-1703.
    [58]T. Kamiya, and H. Hosono. Material characteristics and applications of transparent amorphous oxide semiconductors. Npg Asia Materials,2010,2(1):15-22.
    [59]K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)(5) films. Applied Physics Letters,2004,85(11):1993-1995.
    [60]T. Kamiya, K. Nomura, and H. Hosono. Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O:Percolation Conduction Examined by Analytical Model. Journal of Display Technology,2009,5(12):462-467.
    [61]T. Kamiya, K. Nomura, and H. Hosono. Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Applied Physics Letters, 2010,96(12):122103
    [62]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films,2005,486(1-2):38-41.
    [63]J. Tauc. Amorphous and lequid semiconductors. Plenum Press,1974,175.
    [64]陈坤基.非晶半导体物理引论.中国学术出版社,1987,208-209.
    [65]T. Kamiya, K. Nomura, and H. Hosono. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x:Tauc-Lorentz optical model and origins of subgap states. Physica Status Solidi a-Applications and Materials Science,2009,206(5):860-867.
    [66]T. Kamiya, K. Nomura, M. Hirano, and H. Hosono. Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO4-x:Optical analyses and first-principle calculations, physica status solidi c,2008,5(9):3098-3100.
    [67]F. Utsuno, H. Inoue, I. Yasui, Y. Shimane, S. Tomai, S. Matsuzaki, K. Inoue, I. Hirosawa, M. Sato, and T. Honma. Structural study of amorphous In2O3 film by grazing incidence X-ray scattering (GIXS) with synchrotron radiation. Thin Solid Films,2006,496(1):95-98.
    [68]F. Utsuno, H. Inoue, Y. Shimane, T. Shibuya, K. Yano, K. Inoue, I. Hirosawa, M. Sato, and T. Honma. A structural study of amorphous In2O3-ZnO films by grazing incidence X-ray scattering (GIXS) with synchrotron radiation. Thin Solid Films,2008,516(17):5818-5821.
    [69]T. Kamiya, K. Nomura, and H. Hosono. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs:Electronic Structure, Electron Transport, Defects and Doping. Journal of Display Technology,2009,5(7):273-288.
    [70]D. Y. Cho, J. Song, K. D. Na, C. S. Hwang, J. H. Jeong, J. K. Jeong, and Y. G. Mo. Local structure and conduction mechanism in amorphous In-Ga-Zn-O films. Applied Physics Letters,2009,94(11):112112.
    [71]S. H. Wei, and A. Zunger. Role of Metal D-States in Ii-Vi Semiconductors. Physical Review B,1988,37(15):8958-8981.
    [72]J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang. Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors. Electrochemical and Solid State Letters,2008,11(6):H157-H159.
    [73]D. H. Lee, K. Kawamura, K. Nomura, T. Kamiya, and H. Hosono. Large Photoresponse in Amorphous In-Ga-Zn-O and Origin of Reversible and Slow Decay. Electrochemical and Solid State Letters,2010,13(9):II324-II327.
    [74]K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko. Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors. Japanese Journal of Applied Physics,2009,48(1):011301.
    [75]K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Applied Physics Letters,2008,93(19):192107.
    [76]P. K. Weimer. TFT-New Thin-Film Transistor. Proceedings of the Institute of Radio Engineers,1962,50(6):1462-1469
    [77]E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins. Recent advances in ZnO transparent thin film transistors. Thin Solid Films,2005, 487(1-2):205-211.
    [78]A. Tsumura, H. Koezuka, and T. Ando. Macromolecular Electronic Device-Field-Effect Transistor with a Polythiophene Thin-Film. Applied Physics Letters,1986,49(18): 1210-1212.
    [79]Y. B. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. H. Chen, D. Nordlund, M. F. Toney, J. S. Huang, and Z. N. Bao. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014,5:3005
    [80]M. N. Qu, H. Li, R. Liu, S. L. Zhang, and Z. J. Qiu. Interaction of bipolaron with the H2O/O2 redox couple causes current hysteresis in organic thin-film transistors. Nature Communications,2014,5:3185.
    [81]W. Y. Chou, Y. S. Lin, L. L. Kuo, S. J. Liu, H. L. Cheng, and F. C. Tang. Light sensing in photosensitive, flexible n-type organic thin-film transistors. Journal of Materials Chemistry C, 2014,2(4):626-632.
    [82]D. H. Cho, S. Yang, C. Byun, J. Shin, M. K. Ryu, S. H. K. Park, C. S. Hwang, S. M. Chung, W. S. Cheong, S. M. Yoon, and H. Y. Chu. Transparent Al-Zn-Sn-O thin film transistors prepared at low temperature. Applied Physics Letters,2008,93(14):142111
    [83]J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Applied Physics Letters,2009,95(1):013503.
    [84]W. Lim, E. A. Douglas, S. H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, and W. H. Chang. High mobility InGaZnO4 thin-film transistors on paper. Applied Physics Letters,2009, 94(7):072103.
    [85]D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg, and J. F. Wager. Electrical modeling of thin-film transistors. Critical Reviews in Solid State and Materials Sciences, 2008,33(2):101-132.
    [86]施敏.半导本器件物理与工艺(基础版).苏州大学出版社,2009,109-112.
    [87]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Applied Physics Letters,2006,89(11):112123
    [88]K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko. Study on Current Crowding in the Output Characteristics of Amorphous InGaZnO4 Thin-Film Transistors Using Dual-Gate Structures with Various Active-Layer Thicknesses. Japanese Journal of Applied Physics,2009,48(8):081606
    [89]Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono. Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes. Thin Solid Films,2008,516(17):5899-5902.
    [90]G. K. Reeves, and H. B. Harrison. Obtaining the Specific Contact Resistance from Transmission-Line Model Measurements. Electron Device Letters,1982,3(5):111-113.
    [91]J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Applied Physics Letters,2007,90(26):262106.
    [92]A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono. Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor. Applied Physics Letters, 2009,94(13):133502.
    [93]B. Du Ahn, H. S. Shin, H. J. Kim, J. S. Park, and J. K. Jeong. Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors. Applied Physics Letters,2008,93(20):203506.
    [94]J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon, and Y. Park. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Applied Physics Letters,2008,93(5):053501.
    [95]C. H. Wu, H. H. Hsieh, C. W. Chien, and C. C. Wu. Self-Aligned Top-Gate Coplanar In-Ga-Zn-O Thin-Film Transistors. Journal of Display Technology,2009,5(12):515-519.
    [96]S. Kim, J. Park, C. J. Kim, H. Song, S. Kim, S. Park, H. Yin, H. I. Lee, E. Lee, and Y. Park. Source/Drain Formation of Self-Aligned Top-Gate Amorphous GaInZnO Thin-Film Transistors by NH3 Plasma Treatment. IEEE Electron Device Letters,2009,30(4):374-376.
    [97]M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono. Trap densities in amorphous-InGaZnO(4) thin-film transistors. Applied Physics Letters,2008,92(13):133512
    [98]K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, and H. Hosono. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy. Applied Physics Letters,2008,92(20): 202117.
    [99]K. H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee. The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors. Applied Physics Letters,2009,95(23): 232106.
    [100]D. L. Staebler, and C. R. Wronski. Reversible Conductivity Changes in Discharge-Produced Amorphous Si. Applied Physics Letters,1977,31(4):292-294.
    [101]P. T. Erslev, E. S. Sundholm, R. E. Presley, D. Hong, J. F. Wager, and J. D. Cohen. Mapping out the distribution of electronic states in the mobility gap of amorphous zinc tin oxide. Applied Physics Letters,2009,95(19):192115.
    [102]P. Gorrn, M. Lehnhardt, T. Riedl, and W. Kowalsky. The influence of visible light on transparent zinc tin oxide thin film transistors. Applied Physics Letters,2007,91(19): 193504.
    [103]D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee. Amorphous IZO-based transparent thin film transistors. Thin Solid Films,2008,516(17):5894-5898.
    [104]P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato.Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide. Journal of Non-Crystalline Solids,2006,352(9-20): 1756-1760.
    [105]P. Gorm, T. Riedl, and W. Kowalsky. Encapsulation of Zinc Tin Oxide Based Thin Film Transistors. Journal of Physical Chemistry C,2009,113(25):11126-11130.
    [106]M. J. Powell, C. Vanberkel, I. D. French, and D. H. Nicholls. Bias Dependence of Instability Mechanisms in Amorphous-Silicon Thin-Film Transistors. Applied Physics Letters,1987, 51(16):1242-1244.
    [107]M. J. Powell. The Physics of Amorphous-Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices,1989,36(12):2753-2763.
    [108]R. B. M. Cross, and M. M. De Souza. Investigating the stability of zinc oxide thin film transistors. Applied Physics Letters,2006,89(26):263513
    [109]M. S. Oh, K. Lee, J. H. Song, B. H. Lee, M. M. Sung, D. K. Hwang, and S. Im. Improving the Gate Stability of ZnO Thin-Film Transistors with Aluminum Oxide Dielectric Layers. Journal of the Electrochemical Society,2008,155(12):H1009-H1014.
    [110]Y. Vygranenko, K. Wang, and A. Nathan. Stable indium oxide thin-film transistors with fast threshold voltage recovery. Applied Physics Letters,2007,91(26):263508
    [111]Y. Vygranenko, K. Wang, R. Chaji, M. Vieira, J. Robertson, and A. Nathan. Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition. Thin Solid Films, 2009,517(23):6341-6344.
    [112]S. J. Seo, C. G. Choi, Y. H. Hwang, and B. S. Bae. High performance solution-processed amorphous zinc tin oxide thin film transistor. Journal of Physics D-Applied Physics,2009, 42(3):035106
    [113]P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp. Stability of transparent zinc tin oxide transistors under bias stress. Applied Physics Letters, 2007,90(6):063502.
    [114]J. Triska, J. F. Conley, R. Presley, and J. F. Wager. Bias stress stability of zinc-tin-oxide thin-film transistors with Al2O3 gate dielectrics. Journal of Vacuum Science & Technology B, 2010,28(4):C5i1-C5i6.
    [115]P. T. Liu, Y. T. Chou, and L. F. Teng. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Applied Physics Letters,2009,95(23):233504.
    [116]J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Applied Physics Letters,2008,93(9):093504.
    [117]W. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko. Stable room temperature deposited amorphous InGaZnO(4) thin film transistors. Journal of Vacuum Science & Technology B,2008,26(3):959-962.
    [118]M. Fujii, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, J. S. Jung, and J. Y. Kwon. Thermal Analysis of Degradation in Ga2O3-In2O3-ZnO Thin-Film Transistors. Japanese Journal of Applied Physics,2008,47(8):6236-6240.
    [119]A. Suresh, and J. F. Muth. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters,2008,92(3):033502.
    [120]K. Nomura, T. Kamiya, M. Hirano, and H. Hosono. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Applied Physics Letters,2009,95(1):013502.
    [121]K. Hoshino, D. Hong, H. Q. Chiang, and J. F. Wager. Constant-Voltage-Bias Stress Testing of a-IGZO Thin-Film Transistors. IEEE Transactions on Electron Devices,2009,56(7): 1365-1370.
    [122]J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo. The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors. Applied Physics Letters,2009,95(12): 123502.
    [123]A. Sato, M. Shimada, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono. Amorphous In-Ga-Zn-O thin-film transistor with coplanar homojunction structure. Thin Solid Films,2009,518(4):1309-1313.
    [124]R. Hoffman, T. Emery, B. Yeh, T. Koch, and W. Jackson.21.4:Zinc Indium Oxide Thin-Film Transistors for Active-Matrix Display Backplane. SID Symposium Digest of Technical Papers,2009,40:288-291.
    [125]I. T. Cho, J. M. Lee, J. H. Lee, and H. I. Kwon. Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses. Semiconductor Science and Technology,2009,24(1):015013.
    [126]S. J. Lim, J. M. Kim, D. Kim, S. Kwon, J. S. Park, and H. Kim. Atomic Layer Deposition ZnO:N Thin Film Transistor:The Effects of N Concentration on the Device Properties. Journal of the Electrochemical Society,2010,157(2):H214-H218.
    [127]R. B. M. Cross, and M. M. De Souza. The effect of gate-bias stress and temperature on the performance of ZnO thin-film transistors. IEEE Transactions on Device and Materials Reliability,2008,8(2):277-282.
    [128]J. M. Lee, I. T. Cho, J. H. Lee, W. S. Cheong, C. S. Hwang, and H. I. Kwon. Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics. Applied Physics Letters,2009,94(22):222112
    [129]T. C. Fung, K. Abe, H. Kumomi, and J. Kanicki. Electrical Instability of RF Sputter Amorphous In-Ga-Zn-O Thin-Film Transistors. Journal of Display Technology,2009,5(12): 452-461.
    [130]H. S. Seo, J. U. Bae, D. H. Kim, Y. Park, C. D. Kim, I. B. Kang, I. J. Chung, J. H. Choi, and J. M. Myoung. Reliable Bottom Gate Amorphous Indium-Gallium-Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer. Electrochemical and Solid State Letters,2009,12(9): H348-H351.
    [131]J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu. Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors. Etri Journal,2009,31(1):62-64.
    [132]K. Nomura, T. Kamiya, and H. Hosono. Interface and bulk effects for bias-light-illumination instability in amorphous-In-Ga-Zn-O thin-film transistors. Journal of the Society for Information Display,2010,18(10):789-795.
    [133]A. Kolmakov, and M. Moskovits. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research,2004,34(151-180.
    [134]Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu. ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters,2004,85(24):5923-5925.
    [135]J. F. Conley, L. Stecker, and Y. Ono. Directed integration of ZnO nanobridge devices on a Si substrate. Applied Physics Letters,2005,87(22):223114.
    [136]Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Applied Physics Letters, 2009,94(2):023110
    [137]D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. Chung. Amorphous gallium indium zinc oxide thin film transistors:Sensitive to oxygen molecules. Applied Physics Letters,2007,90(19):19210.
    [138]J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Applied Physics Letters,2008,92(7):072104.
    [139]C. C. Huang, B. D. Pelatt, and J. F. Conley. Directed integration of ZnO nanobridge sensors using photolithographically patterned carbonized photoresist. Nanotechnology,2010,21(19): 195307.
    [140]J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Applied Physics Letters,2008, 93(12):123508.
    [141]W. Kim, and K. S. Chu. ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity. Physica Status Solidi a-Applications and Materials Science,2009,206(1):179-182.
    [142]杨邦朝,王文生.薄膜物理与技术.电子科技大学出版社,1994,60-95.
    [143]吴萍.ZnO基薄膜晶体管与非晶透明导电薄膜的研究.浙江大学材料系,2013,15-19.
    [144]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2009,94(16):169901.
    [145]H. K. Liang, S. F. Yu, and H. Y. Yang. ZnO random laser diode arrays for stable single-mode operation at high power. Applied Physics Letters,2010,97(24):241107.
    [146]L. Hu, L. P. Zhu, H. P. He, Y. M. Guo, G. Y. Pan, J. Jiang, Y. Z. Jin, L. W. Sun, and Z. Z. Ye. Colloidal chemically fabricated ZnO:Cu-based photodetector with extended UV-visible detection waveband. Nanoscale,2013,5(20):9577-9581.
    [147]P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters,2003,82(7):1117-1119.
    [148]P. F. Carcia, R. S. Mclean, and M. H. Reilly. Oxide engineering of ZnO thin-film transistors for flexible electronics. Journal of the Society for Information Display,2005,13(7):547-554.
    [149]K. Kim, S. Park, J. B. Seon, K. H. Lim, K. Char, K. Shin, and Y. S. Kim. Patterning of Flexible Transparent Thin-Film Transistors with Solution-Processed ZnO Using the Binary Solvent Mixture. Advanced Functional Materials,2011,21(18):3546-3553.
    [150]K. Song, J. Noh, T. Jun, Y. Jung, H. Y. Kang, and J. Moon. Fully Flexible Solution-Deposited ZnO Thin-Film Transistors. Advanced Materials,2010,22(38): 4308-4312.
    [151]S. Bethke, H. Pan, and B. W. Wessels. Luminescence of Heteroepitaxial Zinc-Oxide. Applied Physics Letters,1988,52(2):138-140.
    [152]S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, A. Iliadis, and D. C. Look. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Applied Physics Letters,1999,75(25):3947-3949.
    [153]J. Park, C. Kim, S. Kim, H. Song, S. Kim, D. Kang, H. Lim, H. Yin, R. Jung, E. Lee, J. Lee, K. W. Kwon, and Y. Park. Source/drain series-resistance effects in amorphous gallium-indium zinc-oxide thin film transistors. IEEE Electron Device Letters,2008,29(8): 879-881.
    [154]S. M. Hatch, J. Briscoe, and S. Dunn. A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Advanced Materials,2013,25(6):867-871.
    [155]H. K. Yadav, K. Sreenivas, and V. Gupta. Enhanced response from metal/ZnO bilayer ultraviolet photodetector. Applied Physics Letters,2007,90(17):172113
    [156]Q. Yang, X. Guo, W. H. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang. Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. Acs Nano,2010,4(10):6285-6291.
    [157]M. Furuta, Y. Kamada, M. Kimura, S. Shimakawa, T. Kawaharamura, D. P. Wang, C. Y. Li, S. Fujita, and T. Hirao. Photocurrent and Persistent Photoconductivity in Zinc Oxide Thin-Film Transistors under Ultraviolet-Light Irradiation. Japanese Journal of Applied Physics,2011,50(11):110204.
    [158]P. I. Reyes, C. J. Ku, Z. Q. Duan, Y. Xu, E. Garfunkel, and Y. C. Lu. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Applied Physics Letters,2012,101(3):031118
    [159]J. Nayak, J. Kasuya, A. Watanabe, and S. Nozaki. Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO. Journal of Physics-Condensed Matter,2008,20(19):195222
    [160]S. Lany, and A. Zunger. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Physical Review Letters,2007,98(4):045501.
    [161]S. Lany, and A. Zunger. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B,2005,72(3):035215.
    [162]A. Janotti, and C. G. Van De Walle. Oxygen vacancies in ZnO. Applied Physics Letters, 2005,87(12):122102.
    [163]A. Janotti, and C. G. Van De Walle. Native point defects in ZnO. Physical Review B,2007, 76(16):165202.
    [164]Y. Wang, Z. L. Liao, G. W. She, L. X. Mu, D. M. Chen, and W. S. Shi. Optical modulation of persistent photoconductivity in ZnO nanowires. Applied Physics Letters,2011,98(20): 203108.
    [165]J. G. Lu, Z. Z. Ye, J. Y. Huang, L. Wang, and B. H. Zhao. Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Applied Surface Science,2003,207(1-4):295-299.
    [166]X. Bie, J. G. Lu, Y. P. Wang, L. Gong, Q. B. Ma, and Z. Z. Ye. Optimization of parameters for deposition of Ga-doped ZnO films by DC reactive magnetron sputtering using Taguchi method. Applied Surface Science,2011,257(14):6125-6128.
    [167]Y. P. Wang, J. G. Lu, X. Bie, L. Gong, X. Li, D. Song, X. Y. Zhao, W. Y. Ye, and Z. Z. Ye. Transparent conductive Al-doped ZnO thin films grown at room temperature. Journal of Vacuum Science & Technology A,2011,29(3):031505
    [168]B. Poti, A. Passaseo, M. Lomascolo, R. Cingolani, and M. De Vittorio. Persistent photocurrent spectroscopy of GaN metal-semiconductor-metal photodetectors on long time scale. Applied Physics Letters,2004,85(25):6083-6085.
    [169]J. Reemts, and A. Kittel. Persistent photoconductivity in highly porous ZnO films. Journal of Applied Physics,2007,101(1):013709.
    [170]S. S. Park, W. H. Choi, D. H. Nam, K. Chai, J. K. Jeong, H. D. Lee, and G. W. Lee. Performance and Stability Characterization of Bottom Gated Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Grown by RF and DC Sputtering. Japanese Journal of Applied Physics,2009,48(4):04C134.
    [171]J. Zhang, X. F. Li, J. G. Lu, Z. Z. Ye, L. Gong, P. Wu, J. Huang, Y. Z. Zhang, L. X. Chen, and B. H. Zhao. Performance and stability of amorphous InGaZnO thin film transistors with a designed device structure. Journal of Applied Physics,2011,110(8):084509.
    [172]M. J. Gadre, and T. L. Alford. Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals. Applied Physics Letters,2011,99(5):051901.
    [173]G. W. Hyung, J. Park, J. X. Wang, H. W. Lee, Z. H. Li, J. R. Koo, S. J. Kwon, E. S. Cho, W. Y. Kim, and Y. K. Kim. Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors with a Low-Temperature Polymeric Gate Dielectric on a Flexible Substrate. Japanese Journal of Applied Physics,2013,52(7):071102.
    [174]D. Kong, H. K. Jung, Y. Kim, M. Bae, Y. W. Jeon, S. Kim, D. M. Kim, and D. H. Kim. The Effect of the Active Layer Thickness on the Negative Bias Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors. IEEE Electron Device Letters,2011,32(10): 1388-1390.
    [175]C. Chen, K. Abe, H. Kumomi, and J. Kanicki. a-InGaZnO thin-film transistors for AMOLEDs:Electrical stability and pixel-circuit simulation. Journal of the Society for Information Display,2009,17(6):525-534.
    [176]K. C. Ok, S. H. K. Park, C. S. Hwang, H. Kim, H. S. Shin, J. Bae, and J. S. Park. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Applied Physics Letters,2014,104(6):063508.
    [177]S. Y. Huang, T. C. Chang, M. C. Chen, T. C. Chen, F. Y. Jian, Y. C. Chen, H. C. Huang, and D. S. Gan. Improvement in the bias stability of amorphous InGaZnO TFTs using an Al2O3 passivation layer. Surface & Coatings Technology,2013,231:117-121.
    [178]J. S. Park, K. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong. Novel ZrlnZnO Thin-film Transistor with Excellent Stability. Advanced Materials,2009,21(3):329-333.
    [179]F. R. Libsch, and J. Kanicki. Bias-Stress-Induced Stretched-Exponential Time-Dependence of Charge Injection and Trapping in Amorphous Thin-Film Transistors. Applied Physics Letters,1993,62(11):1286-1288.
    [180]K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong. Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics. IEEE Electron Device Letters,2010,31(12): 1404-1406.
    [181]N. F. Mott, and E. A. Davis. Electronic Processes in Non-Crystalline Materials. Oxford: Materials Oxford University Press,1979:289-291.
    [182]M. Fakhri, H. Johann, P. Gorrn, and T. Riedl. Water as Origin of Hysteresis in Zinc Tin Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces,2012,4(9):4453-4456.
    [183]J. F. Boyle, and K. A. Jones. Effects of Co, Water-Vapor and Surface-Temperature on Conductivity of a SnO2 Gas Sensor. Journal of Electronic Materials,1977,6(6):717-733.
    [184]Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Applied Physics Letters, 2009,94(2):023110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700