PAN基碳纤维制备过程中表面处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PAN基碳纤维生产过程有干燥致密化前上油、热定型前上油、电化学表面改性等表面处理工序。对表面处理工序进行研究有助于保证生产过程的顺利进行和提高最终成品碳纤维的品质。本文以PAN基碳纤维原丝生产过程中的上油工艺和碳纤维后处理工序中的电化学表面改性工艺为研究对象,主要研究两个方面的内容:(1)通过油剂对碳纤维生产中各阶段纤维结构和性能的影响,研究油剂种类和上油率对干燥致密化过程、预氧化过程的影响。(2)电化学表面改性处理工艺对碳纤维表面特性、碳纤维复合材料界面特性的影响,并对电化学改性机理经行了研究。
     使用三种硅系油剂分别在干燥致密化前和热定型前上油,通过改变上油浓度来控制上油率,研究油剂对PAN基碳纤维生产过程的影响。研究发现上油率和上油浓度成正比例关系。在于燥致密化前上油,上油率随上油浓度的增加提高幅度比较小,使用的油剂浓度比较高;在热定型前上油,上油率随上油浓度的增加提高幅度比较大,使用的油剂浓度比较低。油剂对致密化过程中PAN纤维和最终原丝的影响主要是表观特性的变化。上油率合适时,可以有效防止粘连并丝,减少毛丝,提高纤维的抗静电性能和集束性等。油剂不仅影响预氧丝表观特性,对其力学性能和晶体结构也有影响。油剂会促进原丝在预氧化过程中晶体结构的转变,提高预氧丝的芳构化程度。油剂对原丝在预氧化过程中的热解反应有一定的阻碍作用,使放热量降低,预氧化过程易于控制,上油率越大,阻碍作用越大。油剂的使用会使碳纤维的力学性能提高,但过高的上油率会起到相反的作用。与未上油原丝制得的碳纤维相比,使用#1、#2和#3三种油剂后,上油率为1%时,碳纤维的拉伸强度分别提高4.5%,5.4%和8.2%。本文选择#3油剂作为生产高性能碳纤维的油剂。选择致密化前上油后PAN纤维的上油率为0.4%,原丝的上油率为1%。
     以NH4H2PO4水溶液为电解液对碳纤维进行电化学表面改性处理。对不同处理程度的碳纤维的表面形貌、表面化学性、表面颜色、表面微观结构、拉伸强度及其复合材料界面性能的分析。研究发现,电化学表面处理以后,湿纺碳纤维表面沟槽加深,干喷湿纺碳纤维表面变的凹凸不平。随着处理程度的增加,首先比较薄的表皮层被刻蚀成片剥落,然后里面暴露的皮层继续被刻蚀,一层层的剥落,继续刻蚀使碳纤维表面出现深的裂纹。过度氧化会使碳纤维表面产生平行于纤维轴的纵向裂纹,垂直于纤维轴的竹节状裂纹或与纤维轴成一定角度的螺旋状裂纹,这些有规则的裂纹与碳纤维表面和内部的结构和缺陷有关。电化学表面处理以后,碳纤维表面的碳元素含量降低,氧元素和含氧官能团的含量增加,随着通过纤维束电量的增加,碳纤维表面碳元素、氧元素和含氧官能团的相对含量起初变化很大,后来变化不大。随着处理程度的增加,碳纤维表面的颜色发生改变。碳纤维表面颜色的变化与氧化过程中碳纤维表面生成的不饱和含氧官能团有关,不饱和官能团共同作用形成共轭生色官能团,碳纤维表面每种官能团的含量变化使共轭生色团吸收的光的波长发生变化,使碳纤维呈现不同的颜色。电化学改性处理以后,碳纤维的一级拉曼光谱图中D峰和G峰有一定程度的分开,表面微.观结构发生了变化。碳纤维表面的石墨片层微晶边缘被氧化刻蚀,晶粒尺寸变小。碳纤维表面的无定形碳结构、脂肪结构、类烯烃结构等被氧化生成含氧官能团,使碳纤维表面的无序度增加。随着处理程度的提高,无定形碳等结构被氧化刻蚀掉,石墨碳的含量增加,无序度减小。所以R值先增大后减小。ID2/IG和ID3/IG与R有着相同的变化规律。随着处理程度的增加,碳纤维的线密度、断裂伸长率和拉伸强度均有所下降,层间剪切强度先升高后降低。在该实验条件下,通电量小于160C/g时,电化学处理对碳纤维拉伸强度的损伤小于5%,层间剪切强度可以提高39.6%。过度氧化产生的薄弱片层、裂纹等会大大降低碳纤维的拉伸强度和层间剪切强度。
     采用循环伏安法来研究电解质种类、温度、浓度等对碳纤维表面电化学特性的影响。研究发现在较小的扫描范围里,电解液中水没有电解不产生活性氧,碳纤维表面没有被氧化,不产生氧化反应电流。电解体系中析氧反应产生的活性氧是碳纤维表面被氧化的前提。扫描速度会影响到水的析氢、析氧反应和碳纤维表面的氧化反应电流强度,扫描速度与电流强度正相关。碳纤维在不同的电解质水溶液中的循环伏安曲线形状不同,说明碳纤维表面的电化学特性不同。碳纤维在强酸性的硫酸电解液中可以观察到两个氧化反应极限电流,而在强碱性的氢氧化钠电解液中没有观察到氧化反应极限电流。主要原因是在酸性的电解液中碳纤维表面比较容易被氧化,氧化电流比较明显,阴极扫描还原电流比较大,表面生成的氧化产物比较多。另外电解液的碱性增加,循环伏安曲线会朝低电位方向移动,水析氧反应开始电压减小,析氧反应剧烈,使碳纤维表面氧化反应电流在循环伏安曲线上难以观察。温度和浓度都会影响碳纤维表面电化学特性。电解液温度会影响电解液中水的析氧析氢反应以及碳纤维表面氧化反应的难易程度和反应速度。电解液浓度不会对水的析氧析氢反应以及碳纤维表面氧化反应的难易程度产生影响,但是会影响反应速度。
     通过对在不同电解质溶液中电化学处理前后碳纤维表面元素和含氧官能团变化的分析,发现五种电解质的氧化能力不同。五种电解质的氧化能力顺序为:NH4H2PO4>H2SO4>(NH4)2HPO4>NH4HCO3>NaOH。通过对在不同电解质溶液中电化学处理前后碳纤维表面微观结构的分析,发现碱性电解液在较低的电流密度时R值就能达到比较高的值,之后随着电流密度的增加R值减小。酸性电解液在较高的电流密度R值比较大。通过对在NH4H2PO4、NH4HCO3和(NH4)2HPO4三种铵盐溶液中处理后碳纤维拉伸强度及其复合材料层间剪切强度的分析,发现电化学处理造成碳纤维拉伸强度降低主要是因为刻蚀作用,在酸性电解液中主要是电化学氧化刻蚀,在碱性电解液中主要是物理刻蚀。拉伸强度与拉曼光谱参数有着密切的联系。R值较大时,刻蚀作用比较强,拉伸强度降低的幅度比较大。层间剪切强度既与表面含氧官能团有关,也与表面粗糙度有关。最终选择的工艺参数:以NH4H2PO4为电解质时选择的电流密度为160C/g,以NH4HCO3和(NH4)2HPO4为电解质时选择的电流密度为80C/g。
In the production process of PAN based carbon fibers, there are some surface treatment processes such as finish process before collapsing, finish process before heat setting, electrochemical surface modification. Study on surface treatment process helps us to enable the production process to be smooth and improve the performance of the final carbon fibers. This paper focused on finish process in PAN based carbon fibers precursor production and electrochemical surface modification process in carbon fibers reprocessing, and the major contents include:(1) Through the influence of finish oil on fiber structure and performance in different stages of the production of carbon fibers, the influence of the types of finish oil and oil rate on collapsing and oxidative stabilization process were studied.(2) The effect of electrochemical surface modification process on the surface properties of carbon fibers, and carbon fiber composite material interface properties. The electrochemical modification mechanism was also studied in this paper.
     Three kinds of silicone oil were used as finish oil respectively before collapsing and heat setting. Control oil rate by changing the oil concentration, and the effect of finish oil on the PAN based carbon fibers production process were studied. It was found that finish oil rate ought directly proportional to finish oil concentration. During finish process before collapsing, it was relatively small that finish oil rate increased with the increase of the oil concentration, and the used oil concentration was high. During finish process before heat setting, it was relatively obvious that finish oil rate increased with the increase of oil concentration, and the used oil concentration was low. The influence of finish oil on PAN fibers after collapsing and the precursor was mainly the change of the apparent characteristics. When the finish oil rate was appropriate, it could effectively avoid adhesion and fusion between filaments, reduce broken filaments and improve the antistatic performance of fibers and integrity, etc. Finish oil rate not only affected the apparent characteristics of stabilized fibers, but also the mechanical properties and crystal structure. Finish oil could improve the degree of aromatization, decrease the mechanical performance of the stabilized fibers. Finish oil could hinder the pyrolysis reaction and reduce heat flow during oxidative stabilization process. As the finish oil rate increased, the block effect were higher. The use of finish oil would increase the mechanical properties of carbon fibers, but high finish oil rate would have the opposite effect. Compared to carbon fibers made from unfinished precursor, after using#1,#2and#3finish oils, when the finish oil rate was1%, the tensile strength of the carbon fibers respectively increased by4.5%,5.4%and8.2%.#3finish oil was use to produc high-performance carbon fibers. The finish oil rate of PAN fibers after collapsing was0.4%, and the finish oil rate of precursor was1%.
     NH4H2PO4agueous solution was used as electrolyte, and carbon fibers was electrochemical modified with different treatment intensity. Surface morphology, surface chemical properties, surface color, surface microstructure structure, tensile strength of carbon fibers and ILSS of CFRP were investigated. It was found that the carbon fibers surface groove deepened and the surface became uneven. With the increase of treatment intensity, thin skin layer of carbon fibers was etched into flake, then the exposed layer continued to be etched. When the treatment intensity was higher, the carbon fibers surface appeared deep cracks. Carbon fibers surface appeared longitudinal crack parallel to the fiber axis, bamboo-like crack perpendicular to the fiber axis or spiral crack with a certain angle to fiber axis after excessive oxidation. The regular crack was associated with the carbon fibers surface and internal structure and defect. After electrochemical surface treatment, the carbon content of the carbon fibers surface decreased, oxygen and oxygenated functional group increased. With the increase of electricity passing through the fiber bundle, the content of carbon, oxygen, and oxygenated functional group changed rapidly at first and then remained almost constant. With the increase of treatment intensity, the color of the carbon fiber surface changed, which was related with unsaturated oxygenated functional group generated in electrochemical surface modification process. These unsaturated functional groups worked together to form multiple conjugated chromophores. With the change of treatment intensity, the content of each surface functional groups changed and the absorbed wavelength of light changed, so the appeared color of the carbon fibers would change. D band and G band separated to a certain extent in the first-order Raman spectra after electrochemical modification treatment, which indicated that the surface microstructure changed. The edge of microcrystalline graphite flake layer on the carbon fibers surface was etched. Big graphite crystallite was etched into small graphite crystallite. Crystallite size decreased and disorder graphite lattice increased. Aliphatic structure, olefins structure and crystallite structure edge carbon were oxidized to generate oxygenated functional group. With the increase of treatment intensity, R increased firstly and then decreased. Linear density, elongation at break and tensile strength decreased. ILSS of CFRP increased at first, then decreased.When the electricity was160C/g, tensile strength of carbon fibers decreased by5%and ILSS of CFRP increased by39.6%. The weak layer and crack could reduce the tensile strength and ILSS obviously.
     Cyclic voltammetry was used to study the electrochemical behavior of carbon fiber under different experimental conditions in different electrolyte aqueous solution. The influence of the types of electrolyte, temperature and concentration on anodic oxidation reaction were studied. It was found that the scan range was different in different electrolyte aqueous solution, which was mainly determined by the pH of the electrolyte. As the pH value increases, the scan range moved toward the direction of the lower potential. In the smaller scan range, the water in the electrolyte did not produce reactive oxygen, so the carbon fibers surface was not oxidized. There was no oxidation reaction electricity. If only the oxygen evolution reaction of water happened, the carbon fibers surface can be oxidized. Oxygen evolution reaction of water was the precondition of the carbon fibers surface oxidation reaction. Scan rate had a positive relationship with surface oxidation reaction, hydrogen evolution and oxygen evolution reaction current intensity. CV curve was different in different electrolytes, which showed that the mechanism of carbon fibers surface oxidation reaction was different. Two oxidation limiting current could be observe in strong acid sulfate electrolyte, however there was oxidation limiting current in strong alkaline sodium hydroxide electrolyte. On the one hand, it was related to the pH of electrolyte. On the other hand it was because the carbon fibers surface could be easily oxidized in acidic electrolyte. The oxidation and reduction current were obvious, which showed that more surface oxidation products were generated. Temperature and the concentration would affect anodic oxidation reaction. Electrolyte temperature could affect the difficulty and reaction speed of the oxygen evolution reaction of water and oxygen reaction of carbon surface. The electrolyte concentration would not affect the difficulty of the oxygen evolution reaction and oxygen reaction of carbon fibers surface, however it could affect the reaction rate.
     Through the analysis of carbon fibers surface element content and functional groups before and after treated in different electrolytes, it was found that oxidation ability of the five electrolytes was different. The oxidation ability order of the five electrolytes was NH4H2PO4>H2SO4>(NH4)2HPO4>NH4HCO3>NaOH2Through the analysis of surface microstructure treated in different electrolyte, it was found that R could achieve high value at low current density in alkaline electrolyte, then R value decreasesd with the increase of the current intensity. R value was large at higher current density in acidic electrolyte. Through the analysis of the tensile strength of carbon fibers and ILSS of CFRP before and after treated in NH4H2PO4, NH4HC03and (NH4)2HPO4, the main reason of the decrease of carbon fibers tensile strength was the etching effect. Electrochemical oxidation etching mainly occurred in acidic electrolyte. Physical etching mainly occurred in alkaline electrolyte. The tensile strength of carbon fibers had a close relation with R value. When R value was larger, etching effect was stronger, and the tensile strength decrease rapidly. ILSS of CFRP had a close relation with surface chemical properties and surface roughness of carbon fibers. The optimum current density was160C/g in NH4H2PO4electrolyte. The optimum current density was80C/g in NH4HCO3and (NH4)2HPO4electrolyte.
引文
[1]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [2]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [3]王成国,朱波.聚丙烯腈基碳纤维[M].北京:科学出版社,2011.
    [4]郭玉明,冯志海,王金明.高性能PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7,17.
    [5]丁新波,晏雄.碳纤维的生产及应用现状[J].纺织导报,2004,(6):69-73.
    [6]赵稼祥.世界碳纤维现状与进展[J].玻璃钢/复合材料,2003,(2):40-43.
    [7]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用[J].机械制造与自动化,2004,33(4):41-43.
    [8]马刚峰,李峰,徐泽夕,李存生.聚丙烯腈基碳纤维研究进展[J].现代纺织技术,2011,(3):58-60,64.
    [9]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展(2)[J].高科技纤维与应用,2010,35(1):43-46,52.
    [10]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展(3)[J].高科技纤维与应用,2010,35(2):29-33.
    [11]金立国.我国碳纤维工业现状和碳纤维应用[J].合成纤维,2009,(10):1-6,18.
    [12]姜润喜.碳纤维的发展现状[J].合成技术及应用,2010,25(1):28-33.
    [13]Edie DD. The effect of processing on the structure and properties of carbon fibers[J]. Carbon, 1998,36(4):345-362.
    [14]Zhang WX, Liu J, Wu G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon,2003,41(14):2805-2812.
    [15]Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability,2007,92(8):1421-1432.
    [16]Dale G, Desai P, Abhiraman AS. Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers[J]. Carbon,1988,26(3):403-411.
    [17]Gupta AK, Paliwal DK, Bajaj P. Acrylic precursors for carbon fibers[J]. Macromolecular Chemistry and Physics,1991, C31 (1):1-89.
    [18]Zhao YQ, Wang CG, Yu MJ, Cui CS, Wang QF, Zhu B. Study on monomer reactivity ratios of acrylonitrile/acid in aqueous deposited copolymerization system initiated by ammonium persulfate[J]. Journal of Polymer Research,2009,16(4):1572-8935.
    [19]Bajaj P, Sreekumar TV, Sen K. Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids[J]. Journal of Applied Polymer Science,2001,79(9): 1640-1652.
    [20]Ji BH, Wang JH, Wang CG, Wang YX. Study on the formation process of PAN as-spun fiber[J]. Journal of applied polymer science,2008,108:328-333.
    [21]Wang CG, Dong XG, Wang QF. Effect of coagulation on the structure and property of PAN nascent fibers during dry jet wet-spinning[J]. Journal of polymer research,2009,16:719-724.
    [22]林治涛,朱波,林雪,谢奔,吴益民,王强.致密化工艺对PAN纤维结构和性能的影响研究[J].功能材料,2012,43(15):2006-2008.
    [23]Dunham MG, Edie DD. Model of stabilization for PAN-based carbon fiber precursor bundles[J]. Carbon,1992,30(3):435-450.
    [24]Ogawa H, Saito K. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index[J]. Carbon,1995,33(6):783-788.
    [25]Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibres[J]. Polymer, 1999,40(20):5531-5543.
    [26]Gupta A,Harrison IR.New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon,1997,35(6):809-818.
    [27]Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A. Characterization of commercially available PAN-based carbon fibers[J]. Pure and Applied Chemistry,1986, 58(3):455-468.
    [28]刘杰,李佳,王雷,梁节英.预氧化温度对聚丙烯腈纤维皮芯结构形成的影响[J].北京化工大学学报,2006,33(1):41-45.
    [29]Wu GP, Lu CX, Ling LC, Hao AM, He F. Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers[J]. Journal of Applied Polymer Science,2005,96(4): 1029-1034.
    [30]林治涛,朱波,林雪,陈保磊,韩荣桓,李永威.上油率对碳纤维生产中聚丙烯腈原丝和预氧丝结构和性能的影响[J].功能材料,2013,44(s2):289-292.
    [31]Ji MX, Wang CG, Bai YJ, Yu MJ, Wang YX. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization[J]. Polymer Bulletin,2007,59(4): 527-536.
    [32]季敏霞,王成国.聚丙烯腈基碳纤维制备过程中微观结构的演变[J].材料导报,2007,2(5):111-114
    [33]Jing M, Wang CG, Bai YJ, Zhu B. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600℃[J]. Polymer Degradation and Stability,2007,92(9):1737-1742.
    [34]Wang S, Chen ZH, Ma WJ, Ma QS. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber[J]. Ceramics International,2006,32(3):291-295.
    [35]Zielke U, Hiittinger KJ, Hoffman WP. Surface-oxidized carbon fibers:Ⅰ. Surface structure and chemistry[J]. Carbon,1996,34(8):983-998.
    [36]Zielke U, Hiittinger KJ, Hoffman WP. Surface-oxidized carbon fibers:Ⅱ. Chemical modification[J]. Carbon,1996,34(8):999-1005.
    [37]Zhang RL, Huang YD, Liu L, Tang YR, Su D, Wu LW. Effect of emulsifier content of sizing agent on the surface of carbon fibres and interface of its composites[J]. Applied Surface Science,2011,257(8):3519-3523.
    [38]Zhang RL, Huang YD, Su D, Liu L, Tang YR. Influence of sizing molecular weight on the properties of carbon fibers and its composite[J]. Material and Design,2012,34:649-654.
    [39]张淑斌,王浩静.碳纤维原丝用油剂的研究进展[J].化工新型材料,2010,38(7):35-38.
    [40]贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用,2004,29(5):1-5.
    [41]Hiromi A. Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same[P]. WO 2009060834, 2009-05-14.
    [42]Tanaka F, Yamamoto Y. Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber[P]. WO 2006070706,2006-06-07.
    [43]Okabe Y. Oil solution for acrylic fiber for using in the manufacture of carbon fiber and method for manufacture for carbon fiber using the same[P]. WO 2007066517,2007-06-14.
    [44]田中文彦,山本泰正.炭素绒维前躯体用油劑およひ炭素織維前軀体[P].特開2007039866,2007-02-15.
    [45]猿山秀夫,山崎藤己.炭素織維製造用前驅体線維製造方法[P].特開昭63-203878,1988-08-23.
    [46]张喜强,张庆怀,王俊.新型腈纶油剂ASY-2在聚丙烯腈基碳纤维上的应用[J].精细石油化工进展,2001,2(4):28-29.
    [47]杨茂伟,王成国,王延相,王启芬,刘焕章.PAN湿法纺丝工艺与纤维性能相关性研究[J].材料导报,2006,20(20):156-158.
    [48]郭雅明,李常清,靳玉伟,黄清清,茹越,徐樑华.PAN纤维致密性与油剂渗透的相关性研究[J].北京化工大学学报,2010,37(3):83-86.
    [49]孙金峰,陈杰,刘伟凌,朱伟平,吴永兴.PAN原丝性能对碳纤维强度影响的探讨[J].高科技纤维与应用.2006,31(2):37-41.
    [50]贾文杰,王成国,王强.油剂在聚丙烯腈基碳纤维中的应用[J].塑料工业,2004,32(8):55-57.
    [51]贾文杰.高性能聚丙烯腈原丝制备工艺优化[D].硕士学位论文,山东大学,2005.
    [52]贺福.硅油剂及其硅污染[J].高科技纤维与应用,2010,35(6):10-17.
    [53]俞玉芳.NaSCN二步法腈纶含油率控制的探讨[J].金山油化纤,2002,4(21):16-18.
    [54]王雪飞,邹瑞芬,朱小龙,张永刚,杨建行.油剂对碳纤维生产中聚丙烯腈原丝预氧化过程的影响[J].高科技纤维与应用,2010,36(6):9-12.
    [55]张淑斌,王浩静.油剂处理对PAN原丝热性能的影响[J].高科技纤维与应用,2009, 34(5):26-29.
    [56]杨茂伟,王成国,王延相,何东新,朱波.聚丙烯腈原丝的预氧化过程研究[J].合成纤维工业,2005,28(6):5-8.
    [57]Jin DB, Huang Y, Liu X L,Yu YZ. The influences of silicone finishes on thermooxidative stabilization of PAN precursor fibers[J]. Journal of materials science,2004,39:3365-3368.
    [58]殷永霞,沃西源.碳纤维表面改性研究进展[J].航天返回与遥感,2004,25(1):51-54.
    [59]Li B, Zhang CR, Cao F, Wang SQ, Chen B, Li JS. Effects of fibers surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Materials Science and Engineering:A,2007,471(1-2):169-173.
    [60]Lee WH, Lee JG, Reucroft PJ. XPS study of carbon fiber surface treated by thermal oxidation in a gas mixture of O2/(O2+N2)[J]. Applied Surface Science,2001,171(1-2):136-142.
    [61]Osbeck S, Bradley RH, Liu C, Idriss H, Ward S. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres[J]. Carbon,2011, 49(13):4322-4330.
    [62]Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior[J]. Materials Science and Engineering A,2005,408(1-2): 269-273.
    [63]Fukunaga A, Ueda S, Nagumo M. Air-oxidation and anodization of pitch-based carbon fibers[J]. Carbon,1999,37(1-2):1081-1085.
    [64]Wu ZH, Pittman CU, Jr, Gardner SD. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon,1995,33(5):597-605.
    [65]Zhang GX, Sun SH, Yang DQ, Dodelet JP, Sacher E. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment[J]. Carbon,2008,46(2):196-205.
    [66]Yuan H, Wang CG, Zhang S, Lin X. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite[J]. Applied Surface Science,2012,259(15):288-293.
    [67]Basova YV, Hatori H, Yamada Y, Miyashita K. Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544.
    [68]张敏,朱波,于美杰,魏晗兴,赵越.聚丙烯腈基碳纤维电化学改性研究现状与展望[J]. 材料导报,2010,24(5):6-10.
    [69]汪萍,姜勇刚.碳纤维的电化学氧化处理研究进展[J].高科技纤维与应用,2005,30(3):12-14.
    [70]Delamar M, Desarmotb G, Fagebaumec O, Hitmic R, Pinsonc J, Saveantc JM. Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts:Application to carbon epoxy composites[J]. Carbon,1997,35(6):801-807.
    [71]Lv P, Feng YY, Zhang P, Chen HM, Zhao NQ, Feng W. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers[J]. Carbon,2011,49(14):4665-4673.
    [72]Boccaccini AR, Cho J, Roether JA, Thomas BJC, Mina EJ, Shaffer MSP. Electrophoretic deposition of carbon nanotubes[J]. Carbon,2006,44(15):3149-3160.
    [73]Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC. Multiscale carbon nanotube carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir,2007,23(7):3970-3974.
    [74]An Q, Rider AN, Thostenson ET. Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon,2012,50(8):4130-4143.
    [75]Guo JH, Lu CX, An F. Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite[J]. Journal of Materials Science, 2012,47(6):2831-2836.
    [76]Guo JH, Lu CX. Continuous preparation of multiscale reinforcement by electrophoretic deposition of carbon nanotubes onto carbon fiber tows[J]. Carbon,2012,50(8):3101-3103.
    [77]郭云霞,刘杰,梁节英.电化学改性对PAN基碳纤维表面状态的影响[J].复合材料学报,2005,22(3):49-54.
    [78]Pittman CU, Jiang W, Yue ZR, Gardner S, Wang L, Toghiani H, Leon y Leon CA. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon 1999,37(11):1797-1807.
    [79]Pittman CU, Jiang W, Yue ZR, Leon y Leon CA. Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation[J]. Carbon,1999,37(1): 85-96.
    [80]吴庆,陈惠芳,潘鼎.炭纤维表面处理综述[J].炭素,2000,37(1):21-25.
    [81]李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱[J].光谱学与光谱分析,2007,27(11):2249-2253.
    [82]贺福.用拉曼光谱研究碳纤维的结构[J].高科技纤维与应用,2005,30(6):20-25.
    [83]Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD. Raman microprobe studies on carbon materials. Carbon,1994,32(8):1523-1532.
    [84]刘鸿鹏,吕春祥,李永红,杨禹,李开喜,贺福.电化学表面处理PAN基炭纤维的表面性能研究[J].新型炭材料,2005,20(1):39-44.
    [85]郭云霞,刘杰,梁节英.电化学改性对PAN基碳纤维表面状态的影响[J].复合材料学报,2005,22(3):49-54.
    [86]Knight DS, White WB. Characterization of diamond films by Raman spectroscopy[J]. Journal of Materials Research,1989,4(2):385-393.
    [87]Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA. General equation for the determination of the crystallite size of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16): 1-3.
    [88]时东霞,刘宁,杨海强,高聚宁,江月山,庞世瑾.聚丙烯腈基碳纤维的表面结构研究[J].电子显微学报,1997,16(6):733-735.
    [89]Masanori N, Shimizu K. Effects of electrolyte on the structure of pyrolytic graphite surfaces in anodic oxidation [J]. Journal of Materials Science,1992,27 (5):1207-1211.
    [90]Nakahara M, Sanada Y. Modification of pyrolytic graphite surface with plasma irradiation[J]. Journal of Materials Science,1993,28 (5):1327-1333.
    [91]Nakahara M, Katagiri YN, Shimizu K. Anodic oxidation effects on pyrolytic graphite surfaces in acid [J]. Journal of Materials Science,1991,26 (4):861-864.
    [92]曹海琳,黄玉东,张志谦NH4HCO3溶液中PAN基碳纤维电化学改性机理[J].复合材料学报,2004,21(3):22-27.
    [93]Steven DG, Chakravarthy SKS, Glyn LB, He GR. Surface characterization of carbon fibers using angle-resolved XPS and ILSS[J]. Carbon,1995,33(5):587-595.
    [94]Kozlowski C, Sherwood PMA. X-ray photoelectron spectroscopic studies of carbon fibre surfaces vii-electrochemical treatment in ammonium salt electrolytes[J]. Carbon,1986,24(3): 357-363.
    [95]Sarac AS, Springer J. Electrografting of 3-methyl thiophene and carbazole random copolymer onto carbon fiber:characterization by FTIR-ATR, SEM, EDX[J]. Surface and Coating Technology,2002,160(2-3):227-238.
    [96]侯永平,王浩静,王红飞.阳极氧化对PAN基高模碳纤维表面的影响[J].化工新型材料,2007,35(4):79-86.
    [97]房宽峻,蔡玉青,戴瑾瑾,王菊生.影响电化学氧化后碳纤维表面官能团含量的因素[J].青岛大学学报,1998,13(2):12-14.
    [98]曹海琳,黄玉东,张志谦,姚旺.电解液对PAN-基碳纤维电化学改性效果的影响[J].材料科学与工艺,2004,12(1):24-28.
    [99]Yumitori S, Nakanishi Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:Part1. Comparison between H2SO4 and NaOH solutions[J]. Composites Part A,1996,27(11):1051-1058.
    [100]Yumitori S, Nakanishi Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:Part2. Comparative study of three alkaline solutions[J]. Composites PartA,1996,27(11):1059-1066.
    [101]曹海琳,黄玉东,张志谦,孙举涛.磷酸盐溶液中碳纤维表面电化学改性[J].复合材料学报,2004,21(3):28-32.
    [102]刘杰,王春华,连峰,梁节英.碳纤维在不同电解质体系下的电化学表面改性[J].高科技纤维与应用,2012,37(2):14-19.
    [103]Liu J, Tian YL, Chen YJ, Liang JY. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4-H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204.
    [104]张莎,田艳红,张学军,代红蕾,田建军.电化学氧化对高强高模碳纤维表面结构及力学性能的影响,复合材料学报,2012,29(3):1-8.
    [105]房宽峻,蔡玉青,戴瑾瑾,王菊生.电解质浓度对电化学氧化后碳纤维表面基团含量的影响[J].青岛大学学报,1999,14(1):7-10.
    [106]侯永平,王浩静,李东风.PAN基高模碳纤维阳极氧化的表面处理[J].化工进展,2007,26(4):558-562.
    [107]Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU. Surface characterization of electrochemically oxidized carbon fibers. Carbon,1999,37(11):1785-1796.
    [108]Ryu SK, Park BJ, Park SJ. XPS Analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites[J]. Journal of Colloid Interface Science,1999,215(1): 167-169.
    [109]刘杰,王春华,白艳霞,梁节英.碳纤维的电化学表面改性及其表面结构演变[J].北京化工大学学报,2012,39(5):79-86.
    [110]郭云霞,刘杰,梁节英.电化学改性PAN基碳纤维表面及其机理探析[J].无机材料学报,2005,30(3):12-14.
    [111]Fukunaga A, Ueda S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices[J]. Composites Science and Technology,2000, 60(2):249-254.
    [112]Ehrburger P, Donnet JB. Surface and treatment of Carbon Fiber[M].1990.
    [113]Neffe S. Effect of anodic oxidation of PAN-based carbon fibers on the morphological changes of their surfaces[J]. Carbon,1987,25(6):761-767.
    [114]Lin ZT, Zhu B, Lin X, Chen Y, Liu YZ. Study on the mechanism of the anodic oxidation of PAN-based carbon fibers by cyclic voltammetry[J]. Advanced Materials Research,2013, 774-776:832-835.
    [115]曹海琳,黄玉东,张志谦.H3P04溶液中碳纤维表面电化学改性机理研究[J].航空材料学报,2004,24(3):32-35.
    [116]Bismarck A, Kumru ME, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55.
    [117]李海涛,张学军,田艳红.循环伏安法对PAN基高模碳纤维阳极氧化表面处理的研究[J].北京化工大学学报,2010,37(3):58-63.
    [118]姜艳艳,田艳红.电化学合成法修饰高模碳纤维表面[J].宇航材料工艺,2009,(3):68-73.
    [119]韩风,潘鼎,黄永秋.电化学表面处理提高碳纤维复合材料界面性能的机理研究[J].化工新型材料,2000,8(9)20-23.
    [120]韩风,黄永秋,潘鼎.电化学氧化表面处理提高粘胶基碳纤维的界面粘结性能[J].合 成纤维工业,2001,24(4):25-28.
    [121]Lindsay B, Abel ML, Watts JF. A study of electrochemically treated PAN based carbon fibres by IGC and XPS[J]. Carbon,2007,45(12):2433-2444.
    [1]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社.
    [2]Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile[J]. Journal of Polymer Science Part B:Polymer Physics,1983,21(11):2243-2262.
    [1]贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用,2004,29(5):1-5.
    [2]贺福.硅油剂及其硅污染[J].高科技纤维与应用,2010,35(6):10-17.
    [3]贾文杰,王成国,王强.油剂在聚丙烯腈基碳纤维中的应用[J].塑料工业,2004,32(8):55-57.
    [4]贾文杰.高性能聚丙烯腈原丝制备工艺优化[D].硕士学位论文,山东大学,2005.
    [5]杨茂伟,王成国,王延相,王启芬,刘焕章.PAN湿法纺丝工艺与纤维性能相关性研究[J].材料导报,2006,20(20):156-158.
    [6]孙金峰,陈杰,刘伟凌,朱伟平,吴永兴.PAN原丝性能对碳纤维强度影响的探讨[J].高科技纤维与应用.2006,31(2):37-41.
    [7]王雪飞,邹瑞芬,朱小龙,张永刚,杨建行.油剂对碳纤维生产中聚丙烯腈原丝预氧化过程的影响[J].高科技纤维与应用,2010,36(6):9-12.
    [8]张淑斌,王浩静.油剂处理对PAN原丝热性能的影响[J].高科技纤维与应用,2009,34(5):26-29.
    [9]Jin DB, Huang Y, Liu XL, Yu YZ. The influences of silicone finishes on thermooxidative stabilization of PAN precursor fibers[J]. Journal of Materials Science,2004,39(10): 3365-3368.
    [10]Hiromi Aso, et al. Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same[P]. WO 2009060834, 2009-05-14.
    [11]Tanaka Fumihiko, Yamamoto Yatumasa. Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber[P]. WO 2006-070706,2006-06-07.
    [12]Okabe yoshinobu, et al. Oil solution for acrylic fiber for using in the manufacture of carbon fiber and method for manufacture for carbon fiber using the same[P]. WO 2007066517, 2007-06-14.
    [13]田中文彦,山本泰正.炭素織維前躯体用油劑およひ炭素織維前軀体[P].特阴2007-039866,2007-02-15.
    [14]猿山秀夫,山崎蕂己.炭素織維製造用前駆体線維の製造方法[P].特阴昭63-203878,1988-08-23.
    [15]张喜强,张庆怀,王俊.新型腈纶油剂ASY-2在聚丙烯腈基碳纤维上的应用[J].精细石油化工进展.2001,2(4):28-29.
    [16]张淑斌,王浩静.碳纤维原丝用油剂的研究进展[J].化工新型材料,2010,38(7):35-38.
    [17]俞玉芳NaSCN二步法腈纶含油率控制的探讨[J].金山油化纤,2002,4(21):16-18.
    [18]郭雅明,李常清,靳玉伟,黄清清,茹越,徐樑华.PAN纤维致密性与油剂渗透的相关性研究[J].北京化工大学学报,2010,37(3):83-86.
    [19]朱诚身.聚合物结构分析[M].北京:科学出版社,2004.
    [20]林治涛,朱波,林雪,谢奔,吴益民,王强.致密化工艺对PAN纤维结构和性能的影响研究[J].功能材料.2012,43(15):2006-2008.
    [21]林治涛,朱波,林雪,陈保磊,韩荣桓,李永威.上油率对碳纤维生产中聚丙烯腈原丝和预氧丝结构和性能的影响[J].功能材料,2013,44(s2):289-292.
    [22]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [23]Gupta AK, Paliwal DK, Bajaj P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science,1995,58(7): 1161-1174.
    [24]Gupta AK, Paliwal DK, Bajaj P. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile[J]. Journal of Applied Polymer Science,1996,59(12): 1819-1826.
    [25]Kakida H, Tashiro K. Mechanism and kineties of stabilization reactions of polyacrylonitrile and related copolymers III. Comparison among the various types of copolymers at viewed from isothermal DSC thermograms and FT-IR spectral changes[J]. Polymer Journal,1997, 29(7):557-562.
    [26]Bahrami SH, Bajaj P, Sen K. Thermal behavior of acrylonitrile carboxylic acid copolymers[J]. Journal of Applied Polymer Science,2003,88(3):685-698.
    [27]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变[D].博士学位论文,山东大学,2007.
    [28]Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile[J]. Journal of Polymer Science Polymer Physics Edition, 1983,21:2243-2262.
    [29]Mathur RB, Bahl OP, Nagpal KC. Structure of thermally stabilized PAN fibers[J]. Carbon, 1991,29(7):1059-1061.
    [30]Allen RA, Ward IM. An investigation into the possibility of measuring an 'X-ray modulus', and new evidence for hexagonal packing in polyacrylonitrile[J]. Polymer,1994,35(1): 2063-2071.
    [31]Gupta A, Harrison IR. New aspects in the oxidative stabilization of PAN-based carbon fibers[J]. Carbon,1996,34(11):1427-1445.
    [32]Wu GP, Lu CX, Ling LC. Influence of tension on the oxidative stabilization process of polyacrylonitrile fibers[J]. Journal of Applied Polymer Science,2005,19(4):1029-1034.
    [33]Uchida T, Shinoyama 1, Ito Y, Nukuda K. Proceedings of the10th Biennial Conference on Carbon. Pennsylvania, The Ameriean Carbon Committee and Lehigh University,1971.
    [1]Vickers PE, Watts JF, Perruchot C. The surface chemistry and acid-base properties of a PAN-based carbon fibre[J]. Carbon,2000,38(5):675-689.
    [2]Chand S. Review Carbon fibers for composites[J]. Journal of Materials Science 2000; 35(6): 1303-1313.
    [3]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [4]Linsay B, Abelm L, Watts J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS[J]. Carbon,2007,45(12):2433-2444.
    [5]郭云霞,刘杰,梁杰英.电化学改性对PAN基碳纤维表面状态的影响[J].复合材料学报,2005,22(3):49-54.
    [6]Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796.
    [7]张莎,田艳红,张学军,代红蕾,田建军.电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J].复合材料学报,2012,29(3):1-8.
    [8]李昭锐.PAN基碳纤维表面物理化学结构对其氧化行为的影响研究[D].博士学位论文,北京化工大学,2013.
    [9]Johnson DJ. Structure-property relationships in carbon fibres[J]. Journal of Physics D,1987, 20(3):286-291.
    [10]Bennett SC, Johnson DJ, JohnsonW. Strength-structure relationships in PAN-based carbon fibres[J]. Journal of Materials Science,1983,18(11):3337-3347.
    [11]时东霞,刘宁,杨海强,高聚宁,江月山,庞世瑾.聚丙烯腈基碳纤维的表面结构研究[J].电子显微学报,1997,16(6):733-735.
    [12]Barnet FR, Norr MK. Carbon fiber etching in an oxygen plasma[J]. Carbon,1973,11(4): 281-288.
    [13]Steven DG, Chakravarthy SKS, Glyn LB, He GR. Surface characterization of carbon fibers using angle-resolved XPS and ILSS[J]. Carbon,1995,33 (5):587-595.
    [14]Lee WH, Lee JG, Peucroft PJ. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2) [J]. Applied Surface Science,2001,1713(1-2): 136-142.
    [15]刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究[J].化学进展,2004,23(3):282-285.
    [16]Bismarck A, Kumru ME, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55.
    [17]Tuinstra F, Koenig JL. Raman spectrum of graphite[J]. Journal of Chemical Physics,1970, 53(3):1126-1130.
    [18]Knight DS, White WB. Characterization of diamond films by Raman spectroscopy[J]. Journal of Materials Research,1989,4(2):385-393.
    [19]Baldan MR, Almeida EC, Azevedo AF, Goncalves ES, Rezende MC, Ferreira NG. Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index[J]. Applied Surface Science,2007,254(2):600-603.
    [20]Sze S K, Siddique N, Sloan J J, Escribano R. Raman spectroscopic characterization of carbonaceous aerosols [J]. Atmospheric Environment,2001,35(3):561-568.
    [21]李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱[J].光谱学与光谱分析,2007,27(11):2249-2253.
    [22]Jishi RA, Dresselhaus G. Lattiee-dynamieal model for graphite[J]. Physieal Review B,1982, 26:4514-4522.
    [23]Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraetion and Raman spectroscopy[J]. Carbon,2006,44(15):3239-3246.
    [24]Montes-Moran MA, Young RJ. Raman spectroscopy study of HM carbon fibres:effect of plasma treatment on the interfacial properties of single fibre/epoxy composites Part I:Fibre characterisation [J]. Carbon,2002; 40(6):845-855.
    [25]Sadezky A, Muekenhuber H, Grothe H, Niessner R, Posehl U. Raman microspectroscopy of soot and related carbon aceous materials:Spectral analysis and structural information[J]. Carbon,2005,43(8):1731-1742.
    [26]Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD. Effect of various treatments on carbon fiber surfaces studied by raman microprobe spectrometry[J]. Applied Spectroscopy.1998; 52(3):356-360.
    [27]Beny-Bassez C, Rouzaud JN. Scanning electron microscopy[M]. Chicago:SEM Inc, AMF O'Hare,1985.
    [28]Leszek N, Paul W J. Raman spectroscopic characterization of graphite:a re-evaluation of spectra/structure correlation [J]. Carbon,1993,31(8):1313-1317.
    [29]Sze S K, Siddique N, Sloan J J, Escribano R. Raman spectroscopic characterization of carbonaceous aerosols [J]. Atmospheric Environment,2001,35(3):561-568.
    [1]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [2]藤骞昭.电化学测定方法[M].北京:北京大学出版社,1995.
    [3]李海涛.循环伏安法对PAN基高模碳纤维阳极氧化的研究[D].硕士学位论文,北京化工大学,2010.
    [4]李海涛,张学军,田艳红.循环伏安法对PAN基高模碳纤维阳极氧化表面处理的研究[J].北京化工大学学报,2010,37(3):58-63
    [5]Bismarck A, Kumru ME, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systerms[J].Applied surface science,1999,143:45-55.
    [6]Neffe S. Effect of anodic oxidation of PAN-based carbon fibers on the morphological changes of their surfaces[J]. Carbon 1987,25(6):761-767.
    [7]曹海琳,黄玉东,张志谦.NH4HCO3溶液中PAN基碳纤维电化学改性机理[J].复合材料学报,2004,21(3):22-27.
    [8]张莎,田艳红,张学军,代红蕾,田建军.电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J].复合材料学报,2012,29(3):1-8.
    [9]张莎.电化学氧化对高强高模碳纤维表面结构及力学性能的影响[D].硕士学位论文,北京化工大学,2012.
    [10]Basova YV, Hatori H, Yamada Y, Miyashita K. Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544.
    [11]曹海琳,黄玉东,张志谦.H3P04溶液中碳纤维表面电化学改性机理研究[J].航空材料学报,2004,24(3):32-36.
    [1]Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1785-1796.
    [2]Liu J, Tian YL, Chen YJ, Liang JY. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204.
    [3]Qian X, Wang XF, Ouyang Q, Chen YS, Yan Q. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Applied Surface Science,2012,259(15):238-244.
    [4]Fukunaga A, Ueda S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices[J]. Composite Science Technology,2000,60(2):249-254.
    [5]Fitzer E, Jaeger H, Popovska N, Von Sturm F. Anodic oxidation of high modulus carbon fibres in sulphuric acid[J]. Journal of Applied Electrochemical,1988,18(2):178-182.
    [6]Kozlowski C, Sherwood PMA. X-ray photoelectron spectroscopic studies of carbon fibre surfaces vii-electrochemical treatment in ammonium salt electrolytes[J]. Carbon,1986,24(3): 357-363.
    [7]Bismarck A, Kumru ME, Song B, Springer J, Moos E, Karger-Kocsis J. Study on surface and mechanical fiber characteristics and their effect on the adhesion properties to a polycarbonate matrix tuned by anodic carbon fiber oxidation[J]. Composite A,1999,30(12):1351-1366.
    [8]Bismarck A, Kumru ME, Springer J, Simitzis J. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55.
    [9]Pittman CU, Jiang W, Yue ZR, Gardner S, Wang L, Toghiani H. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon,1999,37(11):1797-1807.
    [10]Lindsay B, Abel ML, Watts JF. A study of electrochemically treated PAN based carbon fibres by IGC and XPS[J]. Carbon,2007,45(12):2433-2444.
    [11]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [12]侯永平,王浩静,王红飞.阳极氧化对PAN基高模碳纤维表面的影响[J].化工新型材料,2007,35(4):79-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700