磷酸二铵对单混种植条件下超高产大豆农艺性状和生理生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以超高产品种辽豆14、中黄35和普通品种辽豆11为试材,分别在不同磷酸二铵施肥和密度处理下进行了光合生理,养分吸收,根系形态及活力,籽粒产量形成规律,物质生产及转化效率的比较研究,探讨不同产量潜力大豆品种在单一和混合种植条件下对肥密响应的差异性,试图为不同产量潜力大豆群体生产的高产高效栽培管理提供理论依据,研究结果如下:
     1磷酸二铵对超高产大豆光合生理的影响
     开花期至鼓粒期,超高产品种保持了较高的叶色值和光合速率,且叶色值和光合速率在生育后期下降幅度较小。增施磷酸二铵和增加种植密度均使超高产品种具有较普通品种更高的叶色值和光合速率,而普通品种则在不施肥和低密度处理下才具有较高的光合速率。与单播相比,混播时品种间叶色值和光合速率的差异更大。
     从日变化来看,超高产品种光合日变化未出现“午休”现象。施肥量和种植密度的增加,提高了超高产品种和普通品种各时段的光合速率,超高产品种的增幅较大。10点之后,超高产品种的光合速率均高于普通品种,差异在高肥和高密度处理下较大,而混播时这种差异更明显。
     从光响应曲线来看,随施肥量的增加,超高产品种在每个光强点上的光合速率均提高,而普通品种的光合速率有所下降;增加种植密度使超高产品种和普通品种在每个光强点上的光合速率均下降。当光强大于200μmol m-5s-1时,增施磷酸二铵和增加种植密度均使超高产品种的光合速率高于普通品种,高肥和中密度处理下差异更明显。
     2磷酸二铵对超高产大豆养分吸收的影响
     施用磷酸二铵可以提高超高产大豆荚皮和籽粒含氮量,而使营养器官的含氮量下降。随着磷酸二铵施用量的增加,超高产品种各器官的含磷量均增加,其中荚皮和籽粒的含磷量在200mg/kg磷酸二铵处理下表现最高;而普通品种根系和茎秆的含磷量随施肥量增加有所下降。施肥量增加时,除超高产品种的荚皮含钾量提高外,超高产品种和普通品种各器官的含钾量均下降。增施肥量的条件下,超高产品种的养分百分含量普遍高于普通品种,品种间差异随施肥量增加而增大,单播时差异更大。
     随着种植密度的增加,超高产大豆籽粒的含氮量有所提高,而不同品种大豆各器官的含磷量和含钾量均有所下降。种植密度增加的条件下,超高产品种的养分百分含量普遍高于普通品种,中密度处理下品种间差异较大。
     施用磷酸二铵可以促进超高产品种各器官氮素积累量的提高,在200mg/kg磷酸二铵处理下表现最高;而施肥量的提高降低了普通品种的氮积累量。随着磷酸二铵施用量的增加,超高产品种除茎秆外,各器官磷积累量均提高;普通品种叶片和籽粒的磷积累量也增加。随施肥量增加,超高产品种的茎秆、叶片、荚皮和籽粒的钾积累量增加,而普通品种各器官的钾积累量下降。中肥和高肥水平下,超高产品种的养分百分积累量普遍高于普通品种,品种间差异随施肥量增加而增大,单播时差异更大。
     随着种植密度的增加,超高产品种和普通品种大豆各器官的氮、磷、钾积累量均有所下降,其中普通品种的下降幅度较大。3株/盆的密度下,超高产品种的氮、磷、钾积累量较普通品种低,品种间差异在混播时较大;6株/盆和9株/盆的种植密度下,超高产品种的养分百分含量普遍高于普通品种,高密度处理下品种间差异更大。
     施用磷酸二铵对大豆氮、磷的利用效率和氮、磷收获指数影响较大,而对钾素利用效率和钾素收获指数影响较小。增施磷酸二铵的条件下,超高产品种的氮、磷、钾利用效率和养分收获指数普遍高于普通品种,品种间差异在高肥处理和混播时较大。不同种植密度下,超高产品种的养分利用效率和养分收获指数普遍高于普通品种,品种间差异随密度增加而增大,而这种差异在高密度和混播条件下更大。3磷酸二铵对超高产大豆根系性状的影响
     增施磷酸二铵提高了超高产品种的根长、根表面积、根体积和根干重,但使普通品种的根系形态性状有所下降。中肥和高肥水平下,超高产品种的根系形态性状高于普通品种,高肥和混播条件下这种优势更大。随种植密度增加,超高产品种和普通品种的根系形态性状和根干重下降。中密度和高密度水平下超高产品种的根系性状指标较高,品种间差异在高密度和混播时更明显。
     增施磷酸二铵提高了混播时超高产品种的根系活力和伤流量,但使普通品种的伤流量有所下降。中肥和高肥处理下,超高产品种的根系活力和伤流量均高于普通品种,且品种间伤流量的差异随施肥量的增加而增大。增加种植密度使超高产品种和普通品种的根系活力和伤流量下降。不同密度水平下,超高产品种的根系活力和伤流量均高于普通品种,且品种间伤流量的差异随密度的增加而增大,混播时这种差异更明显。
     不同施肥水平下,增施磷酸二铵使超高产品种鼓粒期的伤流成分含量较普通品种高。不同密度处理下,开花期超高产品种的伤流成分在中密度水平下较高,鼓粒期品种间伤流成分含量差异不明显。
     4磷酸二铵对超高产大豆农艺性状和产量的影响
     不同肥密处理下,超高产品种具有较低的株高和结荚高度,而茎粗和单株荚数均大于普通品种。增施磷酸二铵促进了各品种大豆株高、茎粗和单株荚数的生长,其中超高产品种的增幅较大。随着种植密度的增加,各品种茎粗和单株荚数有所降低,降幅随密度增加而增大,其中普通品种的降幅最大。
     施用磷酸二铵和提高种植密度的条件下,超高产品种的粒茎比和经济系数均高于普通品种,品种间粒茎比的差异随密度增加而加大。中肥、高肥、中密度和高密度处理下,超高产品种的粒茎比和经济系数较对照有所提高,而普通品种则下降。
     不施肥和低密度处理下,超高产品种的籽粒产量较普通品种低,但随着磷酸二铵施用量和种植密度的增加,超高产品种的籽粒产量均显著高于普通品种,且品种间差异随施肥量和密度的增加而增大。
Two super-high-yield soybean cultivars Liaodou14, Zhonghuang35, and one common cultivar Liaodou11were used in the pot experiment to investigate the effects of different diammonium phosphate(DAP) levels, plant density and population types(single seeding and mixed seeding) on soybean photosynthetic characteristic, nutrition accumulation, root character and yield in2012and2013. This trial intended to provide theoretical basis for soybean super-high-yielding cultivation. The main results showed as follows:
     1Effect of DAP on photo-physiology of super-high-yield soybean
     Leaf greenness and photosynthetic rate of super-high-yielding cultivar were higher than those of common cultivar from flowering stage to seed filling stage, and the decreasing ranges of these traits were small. Leaf greenness and photosynthetic rate of super-high-yielding cultivar were showed an increasing tendency with the increment of DAP levels and plant density, while common cultivar kept higher photosynthetic rate under Omg/kg level and3plants/pot treatment. The differences of leaf greenness and photosynthetic rate between soybean cultivars were more obviously at mixed seeding.
     Under different DAP and plant density treatments, the diurnal variation photosynthesis of super-high-yield cultivar did not appear "noontime snooze" at seed filling stage. Photosynthesis of two cultivars were increased with diammonium phosphate level and plant density added. Overall, the photosynthesis of super-high-yield cultivar was higher than that of common cultivar after10o'clock and the difference was obviously under200mg/kg and9plants/pot treatments, especially at mixed seeding.
     Light response curves of super-high-yield cultivar were increased with diammonium phosphate level enhanced, but not common cultivar. In another hand, the light response curves of two cultivars both decreased with plant density added. Photosynthetic rate of super-high-yielding cultivar was higher than that of common cultivar when light intensity was above200μmol m-2s-1, and the difference was higher under200mg/kg and6plants/pot treatments,
     2Effect of DAP on nutrient uptake of super-high-yield soybean
     The content of N was relatively high in pod wall and seed of super-high-yield cultivar but decreased in vegetable organs under fertilization treatment. The content of P of super-high-yield cultivar was raised with diammonium phosphate level enhanced, especially the P content of pod wall and seed at200mg/kg level. However, the P content of root and stem of common cultivar was declined with fertilizing amount added. The content of K of two cultivars was decreased with diammonium phosphate level enhanced, except pod wall of super-high-yield cultivar. Generally the K content of super-high-yield cultivar was higher than that of common cultivar, and the difference was increased with fertilizing amount added, especially single seeding.
     On condition that plant density increased, the seed N content of super-high-yield cultivar was increased, but P content and K content of two cultivars was declined. Generally the N, P and K content of super-high-yield cultivar was higher than that of common cultivar, especially under6plants/pot treatment.
     N accumulation in every part of super-high-yield cultivar was increased with diammonium phosphate level increased, especially under200mg/kg treatment, while the N accumulation of common cultivar was decreased in that condition. With the fertilizing amount enhanced, P accumulation in every part of super-high-yield cultivar was increased except stem, as well as leaf and seed of common cultivar. K accumulation of stem, leaf, pod wall and seed of super-high-yield cultivar was increased with diammonium phosphate level enhanced, but not the common cultivar. In the case of adding fertilizing amount, the N, P and K accumulation of super-high-yield cultivar was higher than that of common cultivar, and the difference between two cultivars grew with diammonium phosphate level enhanced, especially under single seeding treatment.
     On condition that plant density increased, the N, P and K accumulation in every part of two cultivars was decreased, particularly the common cultivar. The N, P and K accumulation of super-high-yield cultivar was higher than that of common cultivar under6plants/pot and9plants/pot treatments, and the difference between two cultivars was larger at9plants/pot treatment.
     There existed a obviously effect of diammonium phosphate on N, P use efficiency (NUE, PUE) and N, P harvest index (NHI, PHI) of two soybean cultivars, but smaller on K use efficiency (KUE) and K harvest index (KHI). Generally, the N, P, K use efficiency and N, P, K harvest index of super-high-yield cultivar was higher than that of common cultivar, while the difference was larger at200mg/kg and mixed seeding treatments.
     Under different plant density, the nutrient use efficiency and nutrient harvest index were higher than those of common cultivar, while the difference was increased with plant density increased, especially at9plants/pot and mixed seeding treatments.
     3Effect of DAP on root character of super-high-yield soybean
     The root length, root surface, root volume and root dry weight of super-high-yield cultivar was increased with fertilization treatment, but the result was opposite of common cultivar. On condition that fertilizing amount increased, the root morphology character of super-high-yield cultivar was well, especially at200mg/kg and mixed seeding treatments.
     The root morphology character and root dry weight of two cultivars were declined with plant density decreased, and the root morphology character of super-high-yield cultivar was higher than those of common cultivar under6plants/pot and9plants/pot treatments, especially at mixed seeding.
     The root vigor and root bleeding of super-high-yield cultivar at mixed seeding treatment was enhanced with fertilizing amount increased, but not the bleeding of common cultivar. On condition that fertilizing amount increased, the root vigor and root bleeding of super-high-yield cultivar were well, and the difference between two cultivars was larger at highest fertilization level.
     The root vigor and root bleeding of two cultivars were declined with plant density decreased. Generally, the root vigor and root bleeding of super-high-yield cultivar was higher than those of common cultivar under different plant density, and the difference was increased with plant density increased, particularly at mixed seeding.
     Bleeding components of super-high-yield cultivar at seed-filling stage were higher than those of common cultivar under abundant fertilizing amount. At blooming stage, the bleeding components of super-high-yield cultivar were higher under6plants/pot treatment, and there was no difference between two cultivars at seed-filling stage.
     4Effect of DAP on agronomic traits and yield of super-high-yield soybean
     Plant height and height of lowest pod of super-high-yield cultivar were shorter than those of common cultivar, while the stem diameter and pod number per plant of super-high-yield cultivar were more. Fertilization treatment promoted the height, stem diameter and pod number per plant of two cultivars, especially super-high-yield cultivar. The stem diameter and pod number per plant of soybean was decreased with plant density declined, and the decline range of common cultivar was larger.
     With fertilizing amount and plant density increased, the seed-stem ratio and economic coefficient of super-high-yield cultivar were higher than those of common cultivar, while the difference of seed-stem ratio between two cultivars was increased with plant density increased. Compared with check, the seed-stem ratio and economic coefficient of super-high-yield cultivar were larger, but not the common cultivar.
     Under contrast, seed yield of common cultivar was higher, however with fertilizing amount and plant density increased, seed yield of super-high-yield cultivar was significant higher than that of common cultivar, and the difference was increased with fertilization level and plant density increased.
引文
1.毕远林.1999.大豆干物质积累与氮、磷、钾吸收与分配的研究.大豆科学,18(4):331-335.
    2.蔡柏岩,葛蓄萍,祖伟.2008a.磷素水平对不同大豆品种产量和品质的影响.植物营养与肥料学报,14(1):65-70.
    3.蔡柏岩,葛著萍,祖伟.2008b.不同基因型大豆磷素吸收特性比较研究.土壤通报,39(3):607-611.
    4.常耀中.1978.大豆高产规律及栽培技术.中国农业科学,3:18-22.
    5.陈禹章.1963.全国大豆主产区大豆增花保荚研究工作会议资料汇编,128-136.
    6.程素贞,罗孝荣.1990.大豆对钼与氮、磷、钾的吸收分配动态及相互关系的初步研究.大豆科学,9(3):241-246.
    7.崔世友,喻德跃.2007.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析.作物学报,33(5):744-750.
    8.崔世友,喻德跃.2006.大豆产量改良中生物量、收获指数的研究及展望.大豆科学,25(1):62-72.
    9.董钻,谢甫绨.1996.大豆氮磷钾吸收动态及模式的研究.作物学报,22(1):89-95.
    10.董钻.2001.大豆产量生理.北京:中国农业出版社.pp:63-115.
    11.董钻.1988.大豆养分吸收和施肥效果试验初报.中国油料,1:56-62.
    12.傅金民,董钻.1987.大豆根系生长与产量的关系.大豆科学,6(4):261-279.
    13.傅金民.1994,夏大豆群体光合特性的研究.大豆科学,13(1):16-21.
    14.甘银波.1996.氮肥管理对两个菜用大豆品种固氮和产量的影响.中国油料,18(1):34-37.
    15.高辉远,邹琦程,炳篙.1992.大豆光合日变化的不同类型及其影响因素.大豆科学,11(3):219-225.
    16.高辉远,邹琦程,炳篙.1992.田间大豆及盆栽大豆光合日变化的比较.八一农学院学报,15(2):74-79.
    17.龚振平,沈昌蒲,赵福华.2000.大豆肥田机制的研究n.常规技术条件下大豆根系动态.大豆科学,19(4):351--355.
    18.贺振昌.1982.高产大豆营养与施肥的探讨.中国农业科学,1:68-70.
    19.胡根海,章建新,唐长青.2002.北疆春大豆生长动态及干物质积累与分配.新疆农业科学,9(5):264-267
    20.黄中文,赵团结,盖钧镒.2009.大豆不同产量水平生物量积累与分配的动态分析.作物学报,35(8):1483-1490.
    21.蒋工颖,董钻.1989.大豆养分吸收动态及施肥效果研究.作物学报,15(2):167-173.
    22.金剑,刘晓冰,王光华.2002.大豆Glycine max(L.) Merrill根系研究进展..大豆科学,21(3):224-227.
    23.李曼.2010.不同施氮量对大豆根系生理指标的影响..现代农业,5:42-44.
    24.李鸣雷.2007.不同有机肥对大豆植株性状、品质和产量的影响.西北农林科技大学学报,35(9):67-72.
    25.李绍曾,楚奎锡.1985.大豆亩产五百斤的生育规律及综合技术措施.中国油料,3:37-40,76.
    26.李星华.1987.夏大豆叶部性状变异性及其与产量关系的初步探讨..山东农业科学,(1):10-13
    27.李永孝,崔如,丁发武,李佩瑛,王法宏,赵经荣.1992.夏大豆植株氮、磷、钾含量与水肥的关系.作物学报,18(6):463-474.
    28.李永孝.1992.夏大豆光合速率与叶龄及水肥条件的关系.大豆科学,11(1):36-42.
    29.廖其兴.1995.根系研究法评述..世界农业,(7):23-24
    30.刘克礼.2004.大豆对氮、磷、钾的平衡吸收动态的研究..中国油料作物学报,26(1):51-54.
    31.刘丽君.2005.氮肥对大豆结瘤及叶片氮素积累的影响..东北农业大学学报,36(2):133-137.
    32.刘晓冰,金剑,张秋英,杨恕平,王光华,李艳华.2001.不同大豆基因型氮素积累运转研究简报..大豆科学,20(4):298-301.
    33.刘玉库.2006.大豆氮素营养研究进展.杂粮作物,26(3):200-203.
    34.卢增辉.1994.夏大豆亩产262.1kg生理指标研究..大豆科学,13(3):185-192.
    35.鲁剑巍,陈防,张竹青,刘冬碧,李剑夫,陈健.2005.磷肥用量对油菜产量,养分吸收及经济效益的影响.中国油料作物学报,27(1):73-76.
    36.乔云发,韩晓增.2011.长期定量施肥对大豆根系形态和根瘤性状的影响..大豆科学,30(1):119-122.
    37.邱强.2008.不同株型大豆品种的不同种植密度对产量的影响..吉林农业科学.33(3):11-13.
    38.沈玉芳,李世清,邵明安.2008.水肥不同层次组合对冬小麦(Triticumaestivum L)氮磷养分有效性和产量效应的影响..生态学报,28(6):2698-2706.
    39.史占忠.1989.大豆植株全氮磷钾含量变化分析.大豆科学,8(4):369-374.
    40.孙广玉,何庸,张荣华,张代平.1996.大豆根系生长和活性特点的研究..大豆科学,15(4):317-320.
    41.孙庆泉,胡昌浩,董树亭.2003.我国不同年代玉米品种生育全程根系特性演化的研究..作物学报,29(5):641-645.
    42.孙太靖.2004.大豆植株氮素积累与转运动态的研究.东北农业大学学报,35(5):517-521.
    43.汪自强,董明远.1996.不同钾水平下春大豆品种的钾利用效率研究.大豆科学,15(8):202-207.
    44.汪自强.1997.不同供钾水平下春大豆的磷积累和利用.中国油料,19(2):38-41.
    45.王法宏.1990.大豆抗旱性品种特性的研究.莱阳农学院学报,7(3):196-199.
    46.王芳,刘鹏,朱靖文.2004.镁对大豆根系活力叶绿素含量和膜透性的影响.农业环境科学学报,23(2):235-239.
    47.王海英.2008.施肥对不同来源大豆品种氮素积累分配的影响.大豆科学,27(5):814-818.
    48.王金陵,杨庆凯,吴宗璞.1999.中国东北大豆..黑龙江科学出版社,哈尔滨,541
    49.王立刚.2004a.大豆氮素积累、分配与转移规律的研究.作物杂志,5:20-22.
    50.王立刚.2007.大豆对磷素吸收规律的研究.大豆科学,26(1):30-35.
    51.王连铮.1966.大豆氮磷营养的初步研究.植物生理学通讯,33-41.
    52.王庆成,程云环.2004.土壤养分空间异质性与植物根系的觅食反应.应用生态学报,5(6):1063-1068.
    53.魏建军,张力,杨相昆,张占琴,曹敏建.2013.超高产大豆氮磷钾吸收分配动态及模式的研究.大豆科学,29(3):413-419.
    54.吴冬婷,张晓雪,龚振平,马春梅,张磊.2012.磷素营养对大豆磷素吸收及产量的影响.植物营养与肥料学报,18(3):670-677.
    55.吴明才,肖昌珍,郑普英.1999.大豆磷素营养研究.中国农业科学,32(3):59-65.
    56.肖亦农,谢甫绨,肖万欣.2011.不同肥密处理对超高产大豆氮素吸收和产量的影响.大豆科学,30(5):.769-776
    57.谢甫绨.2008.不同肥密处理对超高产大豆辽豆14的影响.大豆科学,27(1):61-66.
    58.徐本生.1989.夏大豆的干物质积累和氮磷钾吸收分配动态的研究.大豆科学,8(1):47-54.
    59.徐国伟,杨立年,王志琴,刘立军,杨建昌.2008.麦秸还田与实地氮肥管理对水稻氮磷钾吸收利用的影响.作物学报,34(8):142-1434.
    60.徐宪斌.1995.密度施肥量与大豆产量的关系.耕作与栽培,2:78-79.
    61.严君,韩晓增,王守宇.2010.不同施氮量及供氮方式对大豆根瘤生长及固氮的影响.江苏农业学报,26(1):75-79.
    62.杨方人.1987.旱作大豆高产综合技术对根系发育及生理功能影响的研究.大豆科学,6(3):225-229.
    63.杨加银,徐海风.2006.播期、密度对菜用大豆鲜荚产量及性状的影响.大豆科学,25(2):185-187
    64.杨庆凯.1981.大豆粒茎比和其他农艺性状相关的研究.东北农学院学报,1:56-59.
    65.于洪久.2009.种植密度对大豆光合生理及产量的影响.大豆科学,28(6):1115-1118.
    66.张富厚.2006.不同种植密度对亚有限大豆主要性状的影响.河南农业科学,12:44-45,50.
    67.张含彬,任万军,杨文钰,伍晓燕,王竹,杨继芝.2007.不同施氮量对套作大豆根系形态与生理特性的影响.作物学报,33(1):107-112.
    68.张秋英.2003.水肥耦合对大豆光合特性及产量品质的影响.干旱地区农业研究,21(1):47-50.
    69.张伟,谢甫绨,张惠君,宋显军,王海英.2007.超高产大豆品种辽豆14号的冠层特性与产量性状研究. 中国农业科学,40(11):2460-2467.
    70.张伟.2006.株行距和种植密度对高油大豆农艺性状及产量的影响.大豆科学,25(3):283-287.
    71.张兴梅,蔡德利,王法清,辛刚.2004.不同大豆品种在养分吸收及产量上的比较.土壤肥料,3:41-42.
    72.张性坦.1996.夏大豆诱处4号公顷产4500kg生理指标研究.中国农业科学,29(6):46-54.
    73.章建新.2005.施氮对高产春大豆氮素吸收分配的影响.大豆科学,24(1):38-42.
    74.赵力汉.1993.施氮对大豆生长发育的影响.吉林农业大学学报,15(1):12-16,99.
    75.赵丽琴,吉光明,邓永贵,焦峰.2005,施肥对大豆吸收氮磷钾的影响.黑龙江八一农垦大学学报,17(3):29-31.
    76.赵双进,张孟臣,杨春燕,王文秀.2003.栽培因子对大豆生长发育及群体产量的影响.中国油料作物学报,25(2):48-51.
    77.赵双进.1999.追肥时期对夏大豆植株养分和株型性状及产量的影响.中国农业科学,32(增刊):112-116.
    78.赵玉臣,严红.1989.大豆吸收氮、磷、钾的营养规律及其对产量、品质效应的研究.土壤通报,1:34-36.
    79.赵政文.1994.南方春大豆不同生育期干物质积累与氮磷钾含量的变化.大豆科学,13(1):53-60.
    80.郑洪兵.2008,大豆在遗传改良过程中某些农艺性状演化的研究进展.吉林农业科学,33(2):13-16,22.
    81.周欣.2006.东北半干旱区不同肥力条件下大豆叶片光合速率、气孔阻力的变化.灌溉排水学报,25(6):34-35.43.
    82.Afza R et al.1987.Effects of delayed soil and foliar N fertilization on yield and N2 fixation of soybean. Plant Soil,97:361-368.
    83.Bhangoo M S and Albritton D J.1972. Effect of Fertilizer Nitrogen, Phosphorus, and Potassium on Yield and Nutrient Content of Lee Soybeans.Agron. J,64:743-746.
    84.Bharati M P et al.1986. Soybean Response to Tillage and Nitrogen, Phosphorus, and Potassium Fertilization. Agron.J,78:947-950.
    85.Board J.2000.Light Interception Efficiency and Light Quality Affect Yield Compensation of Soybean at Low Plant Populations.Crop Sci,40:1285-1294.
    86.Borges R and Mallarino A P.2000.Grain Yield, Early Growth, and Nutrient Uptake of No-Till Soybean as Affected by Phosphorus and Potassium Placement.Agron. J,92:380-388.
    87.Brian R and Board J E.2003.Identification of Soybean Cultivars That Yield Well at Low Plant Populations.Crop Sci,43:234-239.
    88.Chien S H et al.1993.Effect of phosphate rock sources on biological nitrogen fixation by soybean. Fertilizer Res,34:153-159.
    89.Costa C,Dwyer L M,Hamilton R I,et al.2000.A sampling method for measurement of large root systems with scanner-based image analysis.Agronomy Journal,92:621-627.
    90.Eaglesham A R J et al.1983,Fertilizer-N effects on N2 fixation by cowpea and soybean.Agron. J,75: 61-66.
    91.Frederick J R et al.1991.Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water-deficit.Field Crops Res,27:71-82.
    92.Gregory J et al.2006.Tillage and Phosphorus Management Effects on Crop Production in Soils with Phosphorus Stratification.Agron. J,98:430-435.
    93.Hanway J J and Weber C R.1971b.Accumulation of N, P, and K by Soybean (Glycine max (L.) Merrill) Plants. Agron. J,63:406-408.
    94.Hanway J J and Weber C R.1971a.N, P and K percentages in soybean plant.Agron J,63:286-290.
    95.Harper J E and Cooper R L.1971.Nodulation response of soybeans (Glycine max L. Merr.) to application rate and placement of combined nitrogen.Crop Sci,11:438-440.
    96.Hoggard A L et al.1978.Effect of Plant Population on Yield and Height Characteristics in Determinate Soybeans.Agron J,70:1070-1072.
    97.Jahangir A.A, Mondal R.K, Nada K, Sarker M.A.M, Moniruzzaman M, Hossain M.K.2009.Response of different level of nitrogen and phosphorus on grain yield, oil quality and nutrient uptake of soybean. Bangladesh J. Sci. Ind. Res,44(2):187-192.
    98.Jones G D, Lutz J A and Smith T J.1977. Effects of Phosphorus and Potassium on Soybean Nodules and Seed Yield.Agron. J,69:1003-1006.
    99.Lueschen W E and Hicks D R.1977.Influence of plant population on field performance of three soybean cultivars.Agron. J,69:390-393.
    100.Mehetre S S,Shinde R B,Borle U M,et al.1997.Correlation and path analysis studies of partitioning in root growth and yield characters in soybean (Glycine max (L.) Merrill).Crop Research Hisar,13(2): 415-422.
    101.Mitchell R.L. Russell W.J.1971.Root development and rooting patterns of soybeans Glycine max(L.) Merrill evaluated under field conditions.Agron. J.,63:313-3161
    102.Morita S.1993.Root system distribution and its possible relation to yield in rice. Low-input sustainable crop production systems in Asia,371-377
    103.Morrison M J.2000.Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada.Agron. J,92:780-784.
    104.Nelson K A et al.2005. Response of No-Till Soybean [Glycine max (L.) Merr.] to Timing of Preplant and Foliar Potassium Applications in a Claypan Soil.Agron. J,97:832-838
    105.Ojima,M, R Kawashimal.1968.Studies on seed production of soybeanl V1V arietal differences in photosynthetic rate of soybean.Crop Science,7:667-6751
    106.Okamoto, Jun ABE, Junko Yamagishi.2000.Bleeding rate of field growth maize with reference to root system development.Jpn.J. Crop. Sci.,69(1):80-851
    107.Osaki M., Shinano T., Matsumoto M., et al.1997.A root-shoot interaction hypothesis for high productivity of field crops. Soil Science and Plant Nutrition,43:1079-1084.
    108.Ramon G L and Hanway J J.1976.Foliar Fertilization of Soybeans During the Seed-filling Period.Agron J,68:653-657.
    109.Sawyer J E et al.2002.General guide for crop nutrient recommendation in Iowa.Iowa State Univ. Ext., Ames. Publ. Pm-1688(rev.),231-235.
    110.Sharma U.C, Datta M, Vikas Sharma.2011.Effect of Applied Phosphorus on the Yield and Nutrient Uptake by Soybean Cultivars on Acidic Hill Soil. Open Journal of Soil Science,1,45-48.
    111.Shiraiwa T and Hashikawa U.1995.Accumulation and partitioning of nitrogen during seed filling in old and modern soybean cultivars in relation to seed production. Jpn. J,Crop Sci,64:754-759.
    112.Silberbush M. Barber S.A.1985.Root growth, nutrient uptake and yield of soybean cultivars grown in the field.Communications in soil science and plant analysis,16(1):119-127
    113.Singh P, Singh V, Khurana O.P.1997.Effect of phosphorus and manganese on yield, concentration and uptake of nutrients by soybean. Ann Agric.Res,18(2):248-251.
    114.Specht,J E. Hume, D J. Kumudini S.V.1999.Soybean yield potential-a genetic and physiological perspective.Crop Science,39:1560-15701
    115.Starling M E et al.1998.Starter nitrogen and growth habit effects on late-planted soybean.Agron. J,90: 658-662.
    116.Taylor R S et al.2005.Nitrogen Application Increases Yield and Early Dry Matter Accumulation in Late-Planted Soybean.Crop Sci,45:854-858.
    117.Vamerali T,Saccomani M,Bona S,et al.2003.A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids.Plant Soil,255:157-167.
    118.Wells R.1991.Soybean Growth Response to Plant Density:Relationships among Canopy Photosynthesis, Leaf Area, and Light Interception.Crop Sci.31:755-761.
    119.Wood C W et al.1993.Nitrogen fertilizer effects on soybean growth, yield, and seed composition..Prod. Agric,6:354-360.
    120.Yamaguchi J,Tanaka A.1990.Minimum space for root development without mechanical stress for obtaining a high yield of rice.Soil Sci Plant Nutr,36(3):515-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700