PEPC和苹果酸与玉米叶片C4光合途径发育的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C4植物玉米的第1-3叶维束鞘细胞叶绿体(BSC)有垛叠的基粒和PS II活性,主要利用Rubisco直接固定C02进行C3光合循环;而4叶以上,叶肉细胞(MC)利用PEPC固定CO2并以苹果酸形式运输到BSC叶绿体,再由Rubisco加入C3循环。这些叶片BSC叶绿体的结构特点是基粒和PS II活性基本消失,很少合成NADPH,因此,这些叶绿体中C3循环的运转需要依赖从叶肉细胞转运的还原力。苹果酸是细胞内多种代谢的联接者和调节者。在玉米C4光合作用中,苹果酸不仅是叶肉细胞向BSC叶绿体输送CO2的载体,还是转移还原力的携带者,在脱羧的同时产生NADPH。所以,苹果酸的脱羧作用影响叶绿体的氧化还原状态,氧化还原状态的变化可能与BSC叶绿体的基粒发育和PS II活性变化有关,可能参与进化和个体发育过程中C4光合途径形成的的调节。为研究PEPC通过苹果酸参与BSC叶绿体发育调节的作用及机制,本文观察了不同碳同化途径玉米叶片的PEPC活性、苹果酸含量和解剖结构,检测了外源苹果酸对玉米和烟草叶圆片及对转C4-PEPC基因水稻活体叶片光合作用的效应,并完成了抑制玉米C4-PEPC基因表达的小RNA克隆和载体构建,为阐明植物C4光合途径形成和BSC分化的机制提供新的思路和理论依据,也为利用转基因技术改造C3作物的光合作用提供参考。主要结果如下:
     1. PEPC活性、苹果酸代谢与维管束鞘细胞分化具有密切关系在本试验中,随着玉米叶片的发育,C4循环关键酶PEPC和NADP-ME等活性也随之增加,维管束鞘细胞叶绿体的C4结构特征越来越明显,内源苹果酸代谢增强,外源苹果酸处理玉米离体叶圆片和根系饲喂水稻抑制叶片的光反应。因此,叶片的PEPC活性和内源苹果酸代谢强度与C4解剖结构的发育具有密切的相关关系。
     2. PEPC和苹果酸在C4植物光合途径发育中的作用机制(1)苹果酸的供应降低叶绿体中NADP的数量,增大NADPH/NADP的比值,阻碍电子传递的进行,促进活性氧的产生;(2)苹果酸的脱羧或脱氢反应改变细胞的氧化还原电位,进而影响PS II的结构和功能;(3)苹果酸脱羧后生成的丙酮酸可能影响细胞的氧化还原电位和PS II的结构。
     3. C4-PEPC在转基因水稻中的作用机制在转C4-PEPC基因的水稻植株中,PEPC基因的表达使苹果酸代谢增强,OAA不均匀进入不同的叶绿体。苹果酸在高还原能力的叶绿体内合成,在低还原能力的叶绿体内脱羧。一部分叶绿体起C4植物MC叶绿体的作用,另一部分起BSC叶绿体的作用,在两种叶绿体之间可以进行C4微循环。
     4.玉米C4-PEPC基因的克隆、载体构建和转入北方粳型超级稻本文以国内玉米优良自交系郑58为材料,分两步克隆了C4型PEPC基因的启动子和其剩余全长序列,片段长7530bp,利用In-fusion技术成功构建了pCAMBIA-1391Z-PEPC载体,利用农杆菌介导法将其转入悬浮培养的北方粳型超级稻沈农265的愈伤组织,获得了PEPC酶活性显著提高的转基因水稻植株。
     5. C4-PEPC基因RNAi载体的构建本研究选择一个C4-PEPC自身的内含子序列作为RNAi干扰的间隔区域,先克隆正向片段与内含子,共475bp,然后与反向片段387bp相连接,成功构建了RNAi植物表达载体p7002-Z-F。但此RNAi载体与用其它序列作为间隔区域载体干扰效果的差异,还有待进一步的研究。
     根据本试验结果可以得出初步结果,PEPC通过合成苹果酸而影响玉米BSC叶绿体的分化和发育。在BSC中,苹果酸脱羧生成丙酮酸,同时产生大量NADPH,消耗NADP。 NADP的减少会抑制线性光合电子传递,并可能导致活性氧的产生,最终改变PS II反应中心的结构。因此,我们推测在植物进化过程中PEPC活性增强并引发大量苹果酸的合成,后者转运到BSC中参与调节BSC叶绿体基粒跺叠的消失及BSC与MC叶绿体分化方向的改变。
In C4plant maize, there are packed thylakoid lamellaes and active PS II in the bundle sheath chlorophasts of the lower position (1-3). Herein the CO2is fixed by Rubisco in C3photosynthetic pathway. But in the upper position leaves (>4), the CO2is initially fixed by PEPC to synthesize malate in mesophyll cells and then transported to chlorophasts in the bundle sheath. Therein, malate is decarboxylated to relaese CO2and fixed by Rubisco in C3photosynthesis. In these BSC chlorophasts, the grana disappears and the activity of PS II is deficient,and NADPH is seldomly produced. Therefore, the supply of the reducing power from MC is necessary for C3cycle. As a linker and regulator in many cell metalsolisms, in the C4photosynthetic cycle of maize, malate is not only the carrier of CO2from MC to BSC but also the transporter of the reducing power to BSC from MC. As decarboxylated, malate produces NADPH in the BSC chloroplasts. As a result, the redox potential is affected by the decarboxylation of malate in these chlorophasts. It may be related to the differentiation of grana and the development of PS II activities in BSC chlorophasts and involves the regulation of C4photosynthetic pathway during the C4plant evolution and individual development. To investigate the function and mechanism of PEPC action via malate synthesis on the development of BSC chlorophasts. In this research, we measured the PEPC activities, malate contents and anatomy of leaves with different carbon assimilation pathway, observed the effect of exogenous malate on light reaction of detached leaves of maize and tobacco and on the photosynthesi of attatched leaves of transgenic PEPC rice, and constructed a plant transformation vector of RNAi for maize C4-PEPC gene. We expected that this study would provide a new thinking and theoretical basis for the exploration on the formation mechanism of C4photosynthetic pathway and the differentiation mechanism of the bundle sheath chlorophasts and also provide reference for the modification of the photosynthetic pathway in C3plants by transgenic technology. The main results are as follows:
     1. Close relationship between PEPC activities, malate metabolism and BSC differentiation. In this study, during the development of maize leaves, the activities of PEPC, NADP-ME, and other photosynthetic enzymes increased, C4anatomy traits were more distinctive, and malate metabolism was enhanced. The light reaction was inhibited in detached leaves of maize in exogenous malate solution and the photosynthesis was affected in attatced leaves in rice leaves fed with exogenous malate via roots. The results showed that there was a close relationship between PEPC activities, malate metabolism and development of C4anatomy.
     2. Mechanism of PEPC and malate action in the development of photosynthetic pathway in plants.(1) during malate treatment, in the chloroplasts, the amount of NADP decreased and the ratio of NADPH/NADP increased, resulting in the inhibition of electron transport and the production of reactive oxygen species;(2) the decarboxylation and dehydrogenation reaction of malate changed BSC redox state and then imposed effects on the differentiation of the structure and function of PS Ⅱ;(3) pyruvic acid produced by malate decarboxylation may affect cell redox state and the structure of PS Ⅱ.
     3. Mechanism of C4-PEPC action in transgenic rice. In the leaves of transgenic rice, the expression of PEPC gene enhanced the malate metabolism. OAA generated by PEPC was unevenly transported into different chloroplasts and impoesd a different effect on the redox state of different chloroplast.Malate produced in high reducing power chloroplasts and decarboxylated in low reducing power chloroplasts. A part of chloroplasts played the role of mesophyll chloroplasts in C4plants and the other part took a role of BSC chloroplasts.The micro cycle of C4photosynthesis run between these two types of chloroplasts.
     4. Cloning, plant expression vector construction of C4-PEPC gene from maize and the transformation into northern super japonica rice. In this study, the promotor and full-length sequence of C4-PEPC gene were cloned by two-step PCR from the maize inbred line Zheng58. The whole fragment length was7530bp. The pCAMBIA-1391Z-PEPC vector was attained by ligation to form linear vector using In-Fusion technology. The transformation of the maize C4-PEPC gene into northern super japonica rice was mediating by agrobacterium. The dramatic increase of PEPC activities was detected in the transgenic rice leaves.
     5. Construction of plant transformation vector of RNAi for maize C4-PEPC gene. A intron segments of C4-PEPC gene was selected to be RNAi sequence. At first, the forward gene segments and intron were cloned to475bp. Then it was ligated reverse gene segments (387bp). Finally, a plant transformation vector of RNAi (p7002-Z-F) was constructed succesfully. Because this interval sequence of RNAi vector was different from others, the effect of RNA interference effect needed to further explore.
     According to the results, we could make a preliminary conclusion. The PEPC played a role in the differentiation and development of BSC chlorophasts in maize via malate metabolism. In BSC, malate was decarboxylated to produce pyruvic acid and NADPH which consumed the NADP in cloroplasts. The deficiency of NADP might inhibit the linear electron transport and led to the generation of reactive oxygen species, which resulted in the change in the structure of PSII reaction centers. Thus we proposed that PEPC activities increased during plant evolution and synthesized more malate. Which was transported into BSC and participated in the regulation on the disappearance of grana stack and the chlorophast differentiation in BSC differring from MC chloroplasts.
引文
1.陈绪清,张晓东,梁荣奇,张立全,杨凤萍,曹鸣庆.2004.玉米C4型pepc基因的分子克隆及其在小麦的转基因研究.科学通报,49(19):1976-1982.
    2.陈景治,陈冬兰,吴敏贤,施教耐.1981.高粱和小麦叶片苹果酸酶某些特性比较.植物生理学报,7(4):345-350.
    3.程玉祥,柳参奎.2007.水稻NADP-苹果酸酶的原核表达、纯化和抗体制备.植物生理学通讯,43(5):847-851.
    4.崔国瑞,张立军,李振华,崔震海,朱延姝.2009.植物C4光合途径的形成及其影响因素.植物生理学通讯,45(7):711-720.
    5.崔震海,宋超,胡凯,朱延姝,张立军.2009.外源苹果酸对C3与C4植物叶片光合放氧的影响.2009中国植物生理学会全国学术会议论文摘要汇编,70.
    6.范亚丽,阮颖,李进,杜培粉,姚远颋,刘春林.2008.玉米淀粉分支酶基因SBEⅡb的克隆与过表达载体的构建.中国农学报,24(4):72-75.
    7.龚春梅,宁蓬勃,王根轩,梁宗锁.2009.C3和C4植物光合途径的适应性变化和进化.植物生态学报,33(1):206-221.
    8.郭志鸿,张金文,王蒂,陈正华.2008.RNA干扰技术创造高直链淀粉马铃薯材料.中国农业科学,41(2):494-501.
    9.韩凯,翁建峰,郝转芳,李新海,李明顺,张德贵,白丽,张世煌,薛吉全,谢传晓.2012.一种快速高效构建植物表达载体的方法.玉米科学,20(1):61-66.
    10.黄雪清,焦德茂,迟伟,古森本.2002.转C4光合酶基因水稻的C02交换和荧光特性.植物学报,44(4):405-412.
    11.贾永光,张立军,刘淳,宋超,崔震海,朱延姝.2009.丙酮酸磷酸双激酶及其基因结构.植物生理学通讯,45(3):306-311.
    12.焦德茂,匡廷云,李霞,戈巧英,黄雪清,郝乃斌,白克智.2003.转PEPC基因水稻具有初级C02浓缩机制的生理特点.中国科学(C辑).33(1):33-39.
    13.焦德茂,李霞,黄雪清,迟伟,匡廷云,古森本.2001.转PEPC水稻的光合和叶绿素荧光特性.科学通报,46:414-418.
    14.冀宇奇,张立军,弓雪,崔震海,胡凯.2011.粳型超级稻胚性细胞悬浮系的建立及植株再生.江苏农业科,9(3):31--34.
    15.李斌,陈冬兰,施教耐.1987.高粱NADP苹果酸脱氢酶的纯化及其分子特性.植物生理学报,13(2):113-121.
    16.李奇科,陶刚,邱又彬,邱礽,迟胜起,朱英,刘作易.2009.马铃薯Y病毒CP基因RNAi载体构建与干涉效果测定.基因组学与应用生物学,28(3):460-464.
    17.李鹏民,高辉远,Reto J.Strasser.2005快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理学与分子生物学学报,31(6):559-566.
    18.李振华,张立军,崔振海,朱延姝,樊金娟,阮燕晔,汪澈.2009.玉米C4型NADP-ME的生物信息学分析.生物技术通报,3:61-64.
    19.李卫华,郝乃斌,戈巧英,张其德.1999.C3植物中C4途径的研究进展.植物学通报,16(2):97-106.
    20.申娟,曹刚强,梁秋霞,刘贺梅.2010.粳稻成熟胚愈伤组织诱导及其分化培养体系的建立.郑州大学学报(理学版),42(3):119-124.
    21.宋超,张立军,贾永光,崔国瑞,崔震海,朱延姝.2009.植物的苹果酸代谢和转运.植物生理学通讯,45(5):419-428.
    22.宋涛,张小娟,苑中原.2013.转PEPC&PPDK双基因水稻灌浆期的光合生理特性.江苏农业科学,41(1):58-61.
    23.王晨,尉亚辉,吴丽园1997. NADP-苹果酸酶活性变化及其在CAM运行中的调节.两北植物学报,17(2):200-204.
    24.王晓云,毕玉芬.2006.植物苹果酸脱氢酶研究进展.生物技术通报,4:44-47.
    25.唐海萍,刘书润.内蒙古地区的C4植物及其生态地理特性的研究.1999.植物学报:英文版,41(4):420-424.
    26.魏锦城.1994.水稻叶片生育过程中RubisCO活性与光合、光呼吸的关系.植物生理学报,20(3):285-292.
    27.项友斌,梁竹青,高明尉,舒庆尧,叶恭银,成雄鹰,I.Altosaar.1999农杆菌介导的苏云金杆菌抗虫基因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达.生物工程学报,15(4):494-500.
    28.尹庆良,刘世强.1994.水稻细胞悬浮系及其单细胞培养的研究.沈阳农业大学学报,25(4):366-372.
    29.曾晓珊,戴良英,刘雄伦,王国梁2007.dsRNA介导植物基因沉默及其应用。生命科学,19(2):132-138.
    30.张方,迟伟,金成哲.2003.高粱C4型磷酸稀醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育.科学通报,48(14):1542-1546.
    31.张付芸,陈伟霞,刘子渲,李保云,梁荣奇.2011.小麦SSⅡ-A基因片段的克隆及其RNAi表达载体的构建.中国农学通报,27(7):50-54.
    32.张智奇,种维瑾,王少鸥.1990.水稻胚性与非胚性愈伤组织的鉴别.上海农业科技,2:40-41.
    33.赵胡,陈丽梅.2007.植物有效利用磷素营养有机酸代谢途径基因工程研究进展.中国农学通报,23(1):33-37.
    34.赵文明,杨万年.2007.一种改进的烟草悬浮继代方法.植物生理学通讯,43(3):613-614.
    35. Agarie, S., Miura, A., Sumikura, R., Tsukamoto, S., Nose, A., Arima, S., Matsuoka, M. and Miyao-Tokutomi, M.,2002. Over expression of C4 PEPC caused 02-insensitive photosynthesis in transgenic rice plant. Plant Sci.,162:257-265.
    36. Akhani, H., Ghasemkhani, M., Chuong, S.D., Edwards and G.E.,2008. Occurrence and forms of Kranz anatomy in photosynthetic organs and characterization of NAD-ME subtype C4 photosynthesis in Blepharis ciliaris (L.) B. L. Burtt (Acanthaceae). J. Exp. Bot.,59(7):1755-65.
    37. Allaway, W.G.,1973. Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta,110:63-70.
    38. Allen, S. and Raven, J.A.,1987. Intracellular pH regulation in Ricinus communis grown with ammonium or nitrate as N source:the role of lung distance transport. J. Exp. Botany,38:580-96.
    39. Amoah, B.K., Wu, H., Sparks, C. and Jones, D.,2001. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. Exp. Bot.,51:1135-1142.
    40. Aoyagi, K. and Bassham, J.A.,1986. Appearance and accumulation of C4 carbon pathway enzymes in developing wheat leaves. Plant Physiol.,80:334-340.
    41. Aoyagi, K. and Bassham, J. A.,1986. Appearance and accumulation of C4 carbon pathway enzymes in developing maize leaves and differentiating maize A188 callus. Plant physiol.,80(2),322-333.
    42. Artus,N.and Edwards, G.,1985. NAD-malic enzyme from plants. FEBS Lett,182:225-233.
    43. Backhausen, J.E., Kitzmann, C. and Scheibe, R.,1994. Competition between electron acceptors in photosynthesis:regulation of the Malate valve during CO2 fixation and nitrite reduction. Photosynth. Res.,42:75-86.
    44. Bandyopadhyay, A., Datta, K., Zhang, J., Yang, W., Raychaudhuri, S., Miyao, M. and Datta, S.K., 2007.Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Science,172:1204-1209.
    45. Birktoft,J.J.,Bradshaw, R.A and Banaszak, L.J.,1987.Structure of porcine heart cyto-plasmic Malate dehydrogenase combimg X-ray diffraction and chemical sequence data in structural stu-dies. Biochemistry USA,26:2722-2734.
    46. Brautigam, A., Hofmann-Benning, S., Weber, A.P.M.,2008. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol., 148:568-579.
    47. Brown, R. H. and Hattersley, P. W.,1989. Leaf anatomy of C3-C4 species as related to evolution of C4 photosynthesis. Plant physiol.,91(4),1543-1550.
    48. Brown, W.V.,1975. Variations in anatomy, associations and origins of Kranz tissue. Amer. J. Bot.,62 (4):395-402.
    49. Casati, P., Drincovich, M.F., Edwards, G.E. and Andreo, C.S.,1999. Malate metabolism by NADP-Malic enzyme in plant defense. Photosynth. Res.,61:99-105.
    50. Chang, C., Wang, Z.C., Quan, C.Y., Cheng, H., Cheng, S.X., Zhang, X.Z. and Zhuo, R.X.,2007. Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. Journal of Biomaterials Science, Polymer Edition,18:1591-1599.
    51. Chang, K. and Roberts, J. K..,1989. Observation of cytoplasmic and vacuolar Malate in maize root tips by 13C-NMR spectroscopy. Plant physiol.,89(1):197-203.
    52. Chen, H.X., Li, W.J., An, S.Z. and Gao, H.Y.,2004. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetic,42:117-122.
    53. Cheng, M., Fry, J.E., Pang, S.Z., Zhou, H.P., Hironaka, C.M., Duncan, D.R., Conner, T.W. and Wan, Y.C.,1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115:971-980.
    54. Comai, L., Baden, C.S. and Harada, J.J.,1989b. Deduced sequence of a malate synthase polypeptide encoded by a subclass of the gene family. J. Bio. Chem.,264 (5):2778-2782.
    55. Comai, L., Dietrich, R.A., Maslyar, D.J., Baden, C.S. and Harada, J.J.,1989a. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell, 1:293-300.
    56. Cornah, J.E., Germain, V., Ward, J.L., Beale, M.H. and Smith, S.M.,2004. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J. Biol. Chem.,279 (41):42916-42923.
    57. Cousins, A.B., Adam, N.R., Wall, G.W., Kimball, B.A., Pinter Jr, P.J., Ottman, M.J., Leavitt, S.W. and Webber, A.N.,2003. Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J. Exp. Bot.,54:1969-1975.
    58. Cousins, A.B., Baroli, I., Badger, M. R., Ivakov, A., Lea, P. J., Leegood, R. C. and von Caemmerer, S., 2007. The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiology,145(3),1006-1017.
    59. Cousins, A.B., Pracharoenwattana, I., Zhou, W.X., Smith, S.M. and Badger, M.R.,2008. PeroxisoMal Malate dehydrogenase is not essential for photorespiration in arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.Plant Physiol.,148:786-795.
    60. Crecelius, F., Streb, P. and Feierabend, J.,2003. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves. J. Exp. Bot.,54 (384):1075-1083.
    61. Crespo, H.M., Frean, M., Cresswell, C.F. and Tew, J.,1979. The occurrence of both C3 and C4 photosynthetic characteristics in a single Zea mays plant. Planta,147:257-263.
    62. Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M. and Bohnert, H.J.,1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715-25; Winter K.1985. Crassulacean metabolisms. In Photosynthetic Mechanisms and the Environment, ed. J Barber, NR Baker, pp,329-87, Amsterdam:Elsevier.
    63. Dai, Z., Ku, M.S.B and Edwards, G.E.,1993. C4 photosynthesis (the CO2-concentrating mechanism and photorespiration). Plant Physiol.,103(1),83-90.
    64. Dai, Z., Ku, M.S.B. and Edwards, C.E.,1995. C4 Photosynthesis. The Effects of Leaf Development on the CO2-Concentrating Mechanism and Photorespiration in Maize. Plant Physiol.,107:815-825.
    65. Day, D.A. and Hanson, J.B.,1977. Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol,59:630-635.
    66. Detarsio,E., Alvarez, C.E, Saigo, M., Andreo, C.S. and Drincovich, M.F.,2007. Identification of domains involved in tetramerization and Malate inhibition of maize C4-NADP-Malicenzyme.J. Bio. Chem.,282:6053-6060.
    67. Duffus, C.M. and Rosie, R.,1973. Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp. Planta,114:219-226.
    68. Edwards, E.J. and Smith, S.A.,2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. U.S.A.,107(6):2532-2537.
    69. Edwars, G.E., Ku, M.S.B. and Hatch, M.D.,1982. Photosynthesis in Panicum milioides,a species with reduced photorespiration. Plant Cell Physiol.,23:1185-1195.
    70. Engelmann, S., Blasing, O. E., Gowik, U., Svensson, P. and Westhoff, P.,2003. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—a gradual increase from C3 to C4 characteristics. Planta,217(5),717-725.
    71. Fernie, A.R.and Martinoia, E.,2009. Malate. Jack of all trades or master of a few? Phytochemistry,70: 828-832.
    72. Finkemeier, I., Konig, A.C., Heard, W., Nunes-Nesi, A., Pham, P.A., Leister, D., Fernie, A.R. and Sweetlove, L.J.,2013. Transcriptomic Analysis of the Role of Carboxylic Acids in Metabolite Signaling in Arabidopsis Leaves. Plant Physiol.,162(1):239-253.
    73. Fukayama, H., Imanari, E., Tsuchida, H., Izui, K. and Matsuoka, M.,2000.In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol.,41:s112.
    74. Fukayama, H., Tsuchida, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Lee, B.H., Hirose, S., Toki, S., Ku, M.S.B., Makino, A., Mastuoka, M., Miyao, M., and Miyao, M.,2001. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant physiol.,127(3),1136-1146.
    75. Furumoto, T., Izui, K., Quinn, V., Furbank, R. T. and von Caemmerer, S.,2007. Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C4 species Flaveria bidentis. Plant physiol.,144(4),1936-1945.
    76. Gallardo, F, Miginiac-Maslow, M., Sangwan, R., Decottignies, P., Keryer, E., Dubois, F., Bismuth E., Galvez, S., Sangwan-Norreel, B., Gadal P. and Cretin, C.,1995. Monocotyledonous C4 NADPC-malate dehydrogenase is efficiently synthesized,targeted to chloroplasts and processed to an active form in transgenic plants of the C3dicotyledon tobacco. Planta,197:324-32.
    77. Gehlen, J., Panstruga, R., Smets, H., Merkelbach, S., Kleines, M., Porsch, P., Fladung, M., Becker, I., Rademacher T., Hausler R.E. and Hirsch, H.J.,1996. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant molecular biology,32(5), 831-848.
    78. Gerhardt, R., Stitt, M. and Heldt, HW.,1987. Subcellular metabolite levels in spinach leaves. Plant Physiol.,83:399-407.
    79. Gerst, U., Schonknecht, G. and Heber, U.,1994. ATP and NADPH as the driving force of carbon reduction in leaves in relation to thylakoid energization by light. Planta,193:421-429.
    80. Gietl, C.,1992. Partitioning of Malate dehydrogenase isoenzymes into glyoxysomes, mitochondria, and chloroplasts. Plant Physiol.,100:557-559.
    81. Gonzalez, D.H., Iglesias, A.A. and Andeo, C.S.,1984. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate:effect of pH. Journal of Plant Physiol.,116, 425-429.
    82. Grula, J.W. and Hudspeth, R.L.,1987. The phosphoenolpyruvate carboxylase gene family of maize. In JL Key, L McIntosh, eds, Plant Gene Systems and Their Biology. Liss, New York, pp 207-216
    83. Gutlitz, R.G.H., Lamb, P.W. and Mathsse, A.G.,1987. Involvement of carrot cell surface proteins in attachment of Agrobacterium tumefaciens. Plant Physiol.,83:564-575.
    84. Hague, D.R., Uhler, M. and Collins, P.D.,1983. Cloning of cDNA for pyruvate, Pi dikinase from maize leaves. Nucleic Acids Research,11(14):4853-4865
    85. Hatch, M.D. and Slack, C. R.,1966. Photosynthesis by sugar-cane leaves. Biochem. J.,101:103-111.
    86. Hattersley, P. W.,1982.813 Values of C4 Types in Grasses. Functional Plant Biology,9(2):139-154.
    87. Hausler, R.E., Hirsch, H.J., Kreuzaler, F. and Peterhansel, C.,2002. Over-expression of C4-cycle enzymes in transgenic C3 plants:a biotechnological approach to improve C3-photosynthesis. J. Exp. Bot.,53:591-607.
    88. Hausler, R.E., Rademacher, T., Jun, L., Lipka, V., Fischer, K.L., Schubert, S., Kreuzaler, F., Hirsch, H-J.,2001. Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J. Exp. Bot.,52:1785-1803.
    89. Hedley, C.L., Harvey, D.M. and Keely, R.J.,1975. Role of PEP carboxylase during seed development in Pisum sativum. Nature,258:352-354.
    90. Hedrich, R. and Marten, I.,1993. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J,12 (3):897-901.
    91. Heineke, D., Riens. B., Grosse, H., Hoferichter, P., Peter, U., Flugge, U. and Heldt, H.W.,1991. Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol.,95,1131-1137.
    92. Holaday, A.S. and Chollet, R.,1983. Photosynthetic/photorespiratory carbon metabolism in the C3-C4 intermediate species, Moricandia arvensis and Panicum milioides. Plant Physiol.,73:740-745.
    93. Hoffland, E., Van de Boogard, R., Nelemans, J. and Findenegg, G.,1992. Biosynthesis and root exudation of citric and Malic acids in phosphate-starved rape plants. New Phytol.,122:675-680.
    94. Hoffmann, T., Kalinowski, G. and Schwab, W.,2006. RNAi-induced silencing of gene expression in strawberry fruit (Fragariax ananassa) by agroinfiltration:a rapid assay for gene function analysis. The Plant Journal,48(5),818-826.
    95. Horling, F., Lamkemeyer, P., Konig, J., Finkemeier, I., Kandlbinder, A., Baier, M. and Dietz, K.J.,2003. Divergent light-, ascorbate-, and oxidative stressdependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol.,131:317-325.
    96. Hudspeth, R.L., Grula, J.W., Dai, Z., Edwards, G.E. and Ku, M.S.B.,1992. Expression of Maize Phosphoenolpyruvate Carboxylase in Transgenic Tobacco:Effects on Biochemistry and Physiology. Plant Physiol.,98(2):458-464.
    97. Imsande, J., Berkemeyer, M., Scheibe, R., Schumann, U., Gietl, C. and Palmer, R.G,2001.A soybean plastid-targeted NADH-Malate dehydrogenase:cloning and expression analysis. Am. J. Bot.,88: 2136-2142.
    98. Ishida, Y., Sato, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T.,1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium Tumefaciens. Nature Biotech.,14: 745-750.
    99. Ishimaru, K., Ichikawa, H., Matsuoka, M., and Ohsugi, R.,1997.Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Science,129:57-64.
    100. Izui, K., Kawamura, T., Okumura, S. and Toh, H.,1992.MolecμLar evolution of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize. In:Murata N (ed) Research in Photosynthesis. Dordrecht:Kluwer Academic Publishers,Vol III, pp 827-830.
    101. Jenner, H.L., Winning, B.M., Millar, A.H., Tomlinson, K.L., Leaver, C.J. and Hill, S.A.,2001. NAD-malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol.,126: 1139-1149.
    102. Jiao, D.M., Li, X., Huang, X.Q., Chi, W., Kuang, T.Y. and Ku M.S.B.,2001. Characteristics of CO2 assimilation of photosynthesis and chlorophyll fluoresence in PEPC transgenic rice plants. Chinese Science Bulletin,46:413-418.
    103. Jiao, J.A.,1991. Chollet R. Post-translational regulation of phosphoenolpyruvate carboxalse in C4 and Crassulean acid metabolism plants. Plant Physiol.,95:981-985.
    104. John, T., Takeshima, H., Tsuzukf,T., Setoyama, C., Shimada, K., Tanase, S., Kuramitsu, S., Kagamiyama, H. and Morino, Y.,1987.Cloning and sequence analysis of cDNAs encoding mamMalian cytosolic Malate dehydrogenase Comparison of the amino acid sequences of mamMalian and bacterial Malate dehydrogenase.J. Biol. Chem.,262,15127-15131.
    105. Kai, Y., Matsumura, H. and Izui, K.,2003. Phosphoenolpyruvate carboxylase:three-dimensaional structure and molecular mechanism. Arch. Biochem. Biophy.,414:170-179.
    106. Kiirats, O., Lea, P.J., Franceschi, V R. and Edwards, G. E.,2002. Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiol.,130(2),964-976.
    107. Kirchanscki, S.J.,1975.The ultrastuctural development of the dimorphic plastids of Zea Mays L. Amer. J. Bot.,62(7):695-705.
    108. Kogami H., Shono M., Koike T., Yanagisawa S., Izui K., Sentoku N., Tanifuji S., Uchimiya H. and Toki S.,1994. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Research,3(5):287-296.
    109. Kohler, B. and Raschke, K.,2000. The delivery of salts to the xylem. Three types of anion conductance in the plasMalemma of the xylem parenchyma of roots of barley. Plant Physiol.,122(1): 243-254.
    110. Kromer, S. and Scheibe, R.,1996. Function of the chloroplastic malate valve for respiration during photosynthesis. Biochem. Soc. Trans.,24:761-766.
    111. Ku, M.S.B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M. and Matsuoka, M.,1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol.,17:76-80.
    112. Ku, M.S.B., Cho, D., Ranade, U., Hsu, T.P., Li, X., Jiao, D.M., Ehleringer, J., Miyao, M. and Matsuoka M.,2000. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In:Sheehy J, Mitchell PL and Hardy B (Eds.). Redesigning Rice Photosynthesis to Increase Yield, pp 193-204. Elsevier/IRRI, Amsterdam/Oxford.
    113. Kurkdjian, A. and Guern, J.,1989. Intracellular pH:measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol.Biol.,40:271-303.
    114. Langdale, J.A.and Nelson, T.,1991. Spatial regulation of Photosynthetic Development in C4 Plants.Trends in Genetics,7(6):191-196.
    115. Lee, N., Wang, Y., Yang, J., Ge, K., Huang, S., Tan, J. and Testa, D.,1991. Efficient transformation and regeneration of rice small cell groups. Proc Nail Acad Sci. USA,88:6389-6393.
    116. Lee, M., Choi, Y., Burla, B., Kim, Y.Y., Jeon, B., Maeshima, M., Yoo, J.Y., Martinoia, E. and Lee, Y., 2008. The ABC transporter AtABCB 14 is a Malate importer and modulates stomatal response to CO2. Nat Cell Biol.,10(10):1217-23.
    117. Leech, R.M., Rumsby, M.G. and Thomson, W.W.,1973. Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol.,52(3),240-245.
    118. Lepiniec, L., Keryer, E., Philippe, H., Gadal, P. and Cretin, C.,1993.Sorghum phosphoenolpyruvate carboxylase gene family:structure.function and molecular evolution. Plant Mol. Biol.,21(3):487-502.
    119. Lipka, V., Hausler, R.E., Rademacher, T., Li, J., Hirsch, H.J. and Kreuzaler, F.,1999.Solanum tuberosum double transgenic expressing phosphoenolpyruvate carboxylase and NADP-malic enzyme display reduced electron requirement for CO2 fixation. Plant Sci,144:93-105.
    120. Magnin, N.C., Cooley, B.A., Reiskind, J.B., Bowes, G.,1997, Regulation and Localization of Key Enzymes during the Induction of Kranz-Less, C,-Type Photosynthesis in Hydrilla vertkillata. Plant Physiol.,115:1681-1689.
    121. Martinoia, E. and Rentsch, D.,1994. Malate compartmentation-responses to a complex metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol.,45:447-467.
    122. Matsuoka, M. and Minami, E.,1989. Complete structure of the gene for phosphoenolpyruvate carboxylase from maize.Eur J Biochem,181(3):593-598.
    123. Matsuoka, M., Kyozuka, J., Shimamoto, K. and Kano-Murakami, Y.,1994. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). The Plant Journal,6(3),311-319.
    124. Merkelbach, S., Gehlen, J., Denecke, M., Hirsch, H.J. and Kreuzaler, F.,1993. Cloning, sequence analysis and expression of a cDNA encoding active phosphoenolpyruvate carboxylase of the C3 plant Solantum tuberosum. Plant Molecular Biology,23:881-888.
    125. Meyer, A.J. and Fricker, M.D.,2002. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol.,130:1927-1937.
    126. Miszalski, Z., Niewiadomska, E., Slesak, I., Liittge, U., Kluge, M. and Ratajczak, R.,2008. The effect of irradiance on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L.exposed to salinity stress. Plant Biology,3(1):17-23.
    127. Monson, R.K.,1999. The origins C4 genes and evolutionary pattern in the C4 metabolic phenotype. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego:Academic Press,377-410.
    128. Muller, C., Scheible, W.R., Stitt, M. and Krapp, A.,2001. Influence of Malate and 2-oxoglutarate on the NIA transcript level and nitrate reductase activity in tobacco leaves. Plant, Cell & Environment, 24(2),191-203.
    129. Musrati, R.A., Kollarova, M., Mernik, N. and Mikulasova, D.,1998. Malate dehydrogenase: distribution,function and properties. Gen Physiol Biophys,17(3):193-210.
    130. Nimmo, H.G.,2000.The regulation of phosphoenolpyruvate carboxylase in CAM plants.Trends in Plant Science,5:75-80.
    131. Nimmo, H.G.,2003. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch. Biochem. Biophys.414:189-196.
    132. Ohwaki, Y. and Hirata, H.,1992. Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in rools. Soil Sci. Plant Nutr.,38:235-43.
    133. Orij, R., Postmus, J., Ter Beek, A., Brul, S. and Smits, G. J.,2009. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology,155(1),268-278.
    134. Outlaw, W.H. and Jr, Lowry, O.H.,1977. Organic acid and potassium accumulation in guard cells during stomatal opening. Proc. Natl. Acad. Sci. USA.,74:4434-4438.
    135. Palmer, J.M.,1976. The organization and regulation of electron transport in plant mitochondria. Annu. Rev. Plant Physiol.,27:133-157.
    136. Parvathi, K. and Raghavendra, A.S.,1997. Both rubisco and phosphoenolpyruvate carboxylase are beneficial for stomatal function in epiderMal strips of Commelina benghalensis. Plant Sci.,124: 153-157.
    137. Perchorowicz, J.T. and Gibbs, M.,1980. Carbon dioxide fixation and related properties in sections of the developing green maize leaf. Plant Physiol.,65(5),802-809.
    138. Pfannschmidta, T., Allenb, J.F. and Oelmullera, R.,2001. Principles of redox control in photosynthesis gene expression. Physiol. Plant,112:1-9.
    139. Poetsch, W., Hermans, J. and Westhoff, P.,1991. Multiple cDNAs of phosphoenolpyruvate carboxylase in the C4 dicot Flaveria trinervia. FEBS Lett.,292(1-2):133-136.
    140. Raven, J.A. and Farquhar, G.D.,1981. Methylammonium transport in Phaseolus vulgaris leaf slices. Plant Physiol.,67:859-863.
    141. Rebeille, F. and Hatch, M.D.,1986. Regulation of NADP-Malate dehydrogenase in C4 plants:effect of varying NADPH to NADP ratios and thioredoxin redox state on enzyme activity in reconstituted systems. Arch. Biochem. Biophys.,249(1):164-70.
    142. Renne, P., Dresen, U., Hebbeker, U., Hille, D., Flugge, U.I., Westhoff, P. and Weber, A.P.M.,2003. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J.,35: 316-331.
    143. Rothermel, B.A and Nelson, T.,1989.Primary structure of the maize NADP-dependent Malicenzyme. J. Bio. Chem.,264:19587-19592.
    144. Rumpho, M.E., Ku, M.S.B., Cheng, S.H. and Edwards, G.E.,1984. Photosynthetic Characteristics of C3-C4 Intermediate Flaveria Species. Plant Physiol,75,993-996.
    145. Rustin, P. and Lance, C.,1986. Malate metabolism in leaf mitochondria from the Crassulacean acid metabolism plant Kalanchoe blossfeldiana poelln. Plant Physiol.,81:1039-1043.
    146. Rustin, P., Moreau, F. and Lance, C.,1980.Malate oxidation in plant mitochondria via Malic enzyme and the cyanide- insensitive electron transport pathwayl.Plant Physiol.,66:457-462.
    147. Sage, R.F., Li, M.R. and Monson, R.K.,1999a. The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK, eds. C4 plant biology. San Diego, CA, USA:Academic Press,551-584.
    148. Sambrook, J., Fritsch, E.F. and Maniatis, T.,1989. Molecular cloning:a laboratory manual.3nd, Cold Spring Harbor,:Cold Spring Harbor Laboratory Press,19-22.
    149. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H.,2004. A wheat gene encoding an aluminum-activated Malate transporter. The Plant Journal,37(5),645-653.
    150. Scheibe, R.,2004.Malate valves to balance cellular energy supply. Physiol. Plant,120:21-26.
    151. Scheibe, R.,1991. Redox-Modulation of Chloroplast Enzymes A Common Principle for Individual Control. Plant physiol.,96(1),1-3.
    152. Schneidereit, J., Hausler, R.E., Fiene, G., Kaiser, W.M., Weber, A.P.M.,2006. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J.,45:206-224.
    153. Schreiber, U., Schliwa, W. and Biger, U.,1986. Continuous recording of photochemical and nonphotochemical chlorophyll florescence quenching with a new type of modμLation fluoremeter. Photosynth. Res.,10:51-62.
    154. Smith, R.G., Gauthier, D.A., Dennis, D.T. and Turpin, D.H.,1992. Malate and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol.,98:1233-1238.
    155. Song, C.P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D.W., Jagendorf, A., and Zhu, J.K.,2004. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,101(27),10211-10216.
    156. Speer, M. and Kaiser, W.M.,1991. Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol.,97:990-997.
    157. Srivastava, A., Guisse, B., Greppin, H. and Strasser, R.J.,1997. Regulation of antenna structure and electron transport in PS Ⅱ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP. Biochimica et Biophysica Acta,1320:95-106.
    158. Strasser, B.J. and Strasser, R.J.,1995. Measuring fast fluorescence transients to address environmental questions:The JIP—test. In:Mathis P.(Ed.), Photosynthesis:from Light to Biosphere. Dordrecht: KAP Press,5,977-980.
    159. Strasser, R.J. and Srivastava, A.,1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology,61,32-42.
    160. Strasser, R.J., Tsimilli-Michael, M. and Srivastava A.,2000. The fluorescence transient as a tool to characterise and screen photosynthetic samples. In:Yunus M., Pathre U., Mohanty E (Eds.), Probing Photosynthesis:mechanisms, regulation and adaptation. London:Taylor & Francis,445-483.
    161. Sugiyama, T.,1973. Purification, molecular, and catalytic properties of pyruvate phosphate dikinase from the maize leaf. Biochemistry,12(15),2862-2868.
    162. Svensson, P., Blsing, O.E. and Westhoff, P.,2003. Evolution of C4 phosphoenolpyruvate carboxylase.Archives of Biochemistry and Biophysics,414,180-188.
    163. Takabayashi, A., Kishine, M., Asada, K., Endo, T. and Sato, F.,2005. Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proceedings of the National Academy of Sciences of the United States of America,102(46), 16898-16903.
    164. Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M. and Honda, H.,2000. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta,211: 265-267.
    165. Tanabe, M., Izui, K. and Toriyama, K.,2000.Production and analysis of transgenic C3-C4,intermediate Moricandia arvensis expressing a maize C4 phosphoenolpytuvate carboxylase gene.Plant Bio-technology,17(2):93-98.
    166. Taniguchi, M., Taniguchi, Y., Kawasaki, M., Takeda, S., Kato, T., Sato, S., Tabata, S., Miyake, H. and Sugiyama, T.,2002. Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Environ.,43:706-717.
    167. Taniguchi, Y., Nagasaki, J., Kawasaki, M., Miyake, H., Sugiyama, T., Taniguchi, M.,2004. Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol.,45:187-200.
    168. Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., Sudoh, S., Tsuchida, H., Sasaki, H., Fukayama, H. and Miyao, M.,2008. Overproduction of C4 photosynthetic enzymes in transgenic rice plants:an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot, 59(7):1799-1809.
    169. Thomas, M., Cretin, C., Keryer, E., Vidal, J. and Gadal, P.,1987. Photocontrol of sorghum leaf phosphoenolpyruvate carboxylase. Characterization of messenger RNA and of photoreceptor. Plant Physiol.,85:243-246.
    170. Tsuchida, H., Tamai, T., Fukayama, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Nishizawa, Y., Lee, B.H., Hirose, S., Toki, S., Ku M.S.B., Matsuoka, M. and Miyao, M.,2001. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol 452:138-145.
    171. Ueno, O., Samejima, M., Muto, S. and Miyachi, S.,1988. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara:Expression of C4 and C3 modes in contrasting environments. Proc. Nadl. Acad. Sci. USA.,85:6733-6737.
    172. Van Beusichem, M.L., Kirby, E.A. and Baas, R.,1988. Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiol.,86: 914-921.
    173. Voznesenskaya, E.V., Franceschi, V.R., Kiirats, O., Freitag, H., Edwards, G.E.,2001. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature,414:543-546.
    174. Wang, Y.M., Xu, W.G., Hu, L., Zhang, L., Li, Y. and Du, X.H.,2012. Expression of Maize Gene Encoding C4-Pyruvate Orthophosphate Dikinase (PPDK) and C4-Phosphoenolpyruvate Carboxylase (PEPC) in Transgenic Arabidopsis. Plant Molecular Biology Reporter,30(6),1367-1374.
    175. Weber, A., Menzlaff, E., Arbinger, B., Gutensohn, M., Eckerskorn, C. and Flugge, U.I.,1995. The 2-oxoglutarate/malate translocator of chloroplast envelopemembranes:molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochem., 34:2621-2627.
    176. Weiner, H. and Heldt, H. W.,1992. Inter-and intracellular distribution of amino acids and other metabolites in maize (Zea mays L.) leaves. Planta,187(2),242-246.
    177. Westhoff, P.and Gowik, U.,2004. Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins:a case study with the genus Flaveria. Annals of Botany,93(1),13-23.
    178. Wielopolska, A., Ellacott, G. and Smith, N.,2003. Custom knock-outs with hairpin RNA-mediated gene silencing. In Plant Functional Genomics (pp.273-286). Humana Press.
    179. Williams, L.E. and Kennedy, R.A.,1978. Photosynthetic carbon metabolism during leaf ontogeny in Zea mays L.:enzyme studies. Planta,142:269-274.
    180. Winter, K., Usuda, H., Tsuzuki, M., Schmitt, M., Edwards, G.E.,Thomas, R.J., and Evert, R.F.,1982. Influence of nitrate and ammonia on photosynthetic characteristics and leaf anatomy of Moricandia arvensis. Plant Physiol.,70:616-625.
    181. Woo, K.C., Flugge, U.I. and Heldt, H.W.,1987. A two-translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Physiol., 84:624-632.
    182. Ziegler, H.,1975. Nature of substances in phloem. In Encyclopedia of Plant Physiology. Vol. I: Transport in Plants, ed. MH Zimmermann, JA Milburn, pp.57-100. Berlin:Springer-Verlag.535 pp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700