用户名: 密码: 验证码:
基于电磁拓扑的矩形腔孔缝耦合分析与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息技术的快速发展,电子系统自身及其所处的电磁环境日趋复杂.复杂电子系统的电磁耦合是当前电磁兼容领域中的研究热点,本文基于电磁拓扑理论和方法对矩形腔孔缝耦合进行了分析与计算.主要工作如下:
     1.基于Maxwell方程推导了一种新的双导线传输线耦合模型,这是一种关于散射电压和散射电流的耦合模型.用解析方法证明了在解决场线耦合问题时这个新的耦合模型与Agrawal、Taylor以及Rachidi耦合模型是等价的.
     2.提出了计算矩形腔孔缝耦合的转移函数法.在孔缝等效磁流已知的情况下,利用并矢格林函数法、标量波函数法和位函数法等三种方法获得了内转移函数,并且证明了这三种方法得到的内转移函数是相同的.为得到矩形腔外部散射场,利用位函数法获得了外转移函数.为确定转移函数中的等效磁流,对于窄缝,采用了等效磁偶极子法;对于宽缝,采用了三角脉冲函数法.从而得到了内外场的转移关系式.通过数值比较,验证了转移函数法的有效性.
     3.对于带孔缝单层内置传输线矩形腔问题,提出了计算终端响应的两种方法.一种是基于转移函数的缝线耦合Agrawal耦合模型法,另一种是基于传输线拓扑网络的缝线耦合网络BLT方程法.通过数值方法验证了Agrawal耦合模型法与网络BLT方程法的有效性.
     4.对于带孔缝双层内置传输线矩形腔问题,提出了计算终端响应的两种方法.这两种方法均基于传输线拓扑网络,分别是EMT1法和EMT2法. EMT1方法是利用网络BLT方程、内腔的耦合场以及Agrawal耦合模型计算内置传输线响应的方法. EMT2方法是先用网络BLT方程求外腔体内的响应电压再用网络BLT方程求内置传输线响应的方法.两种方法的数值结果进行比较后,结果非常吻合.
     5.研究了带多孔缝矩形空腔模型和带多孔缝内置传输线矩形腔模型的电磁交互作用,提出了基于转移函数的线性叠加法和基于电磁拓扑的多步迭代算法.
With the fast development of the electric information technology, the electricsystems themselves and the electromagnetic environment have become more andmore complex. Nowadays, the electromagnetic coupling of complicated electric sys-tems has become an interesting and hot issue in the area of electromagnetic com-patibility. In this thesis, coupling analysis and computation of a rectangular cavitywith apertures are studied based on the electromagnetic topology method. Themain results are included as follows.
     1. A new transmission line coupling model is deduced from Maxwell’s equa-tions. It is a kind of coupling model with respect to the scattered voltages andcurrents. Using analytical method, the equivalence among this new coupling model,the Agrawal, Taylor and Rachidi coupling models for solving feld-to-line couplingproblems is proved.
     2. A method of the transfer functions is proposed to compute aperture couplingof a rectangular cavity. On the assumption that aperture equivalent currents areknown, expressions of the internal transfer functions are generated by the methodof the dyadic Green’s functions, the method of the scalar wave functions and thatof the potential functions, respectively. The equivalence among these three kinds ofexpressions is proved. We still use the method of the potential functions to obtainexpressions of the external transfer functions for obtaining the scattered electromag-netic feld outside the cavity with apertures. In order to determine the equivalentcurrents on the aperture, the equivalent magnetic dipole method is developed forthin aperture, while the triangular and pulse functions method is developed for thickaperture. Consequently, the transfer formulation between the external and internalfeld is obtained. Numerical comparisons are given to demonstrate the validity ofthe method of transfer functions.
     3. For aperture coupling problems of a single layer rectangular shielding cavityand a two-wire transmission line inside it, the terminal responses are estimated bytwo methods. One is the Agrawal coupling model method of the aperture to trans-mission line coupling based on the transfer functions. Another is the network BLT equation method of the aperture to transmission line coupling based on transmissionline topological networks. Numerical examples are given to demonstrate the valid-ity of the Agrawal coupling model method and that of the network BLT equationmethod.
     4. For aperture coupling problems of a double layer rectangular shielding cavityand a two-wire transmission line inside the inner cavity, two methods are proposedto compute the terminal responses including the methods of EMT1and EMT2,based on the transmission line topological network. EMT1involves the network BLTequation, the internal coupling feld inside the inner cavity and the Agrawal couplingmodel to compute the terminal responses of the line in the inner cavity. EMT2usesone network BLT equation to calculate the response voltages at one point in theouter cavity and another network BLT equation to compute the terminal responsesof the line inside the inner cavity. Simulation results based on these two methodsare in close agreement.
     5. Electromagnetic interaction of an empty multiaperture rectangular cavityand that of a muliaperture rectangular cavity and a two-wire transmission line in-side it are investigated. The linear superposition method based on the transferfunctions and the multistep iterative algorithm based on electromagnetic topologyare proposed.
引文
[1] Bethe H A. Theory of difraction by small holes[J]. Physical Review Second Series,1944,66:163-182.
    [2] Tesche F M, Ianoz M V, Karlsson T. EMC: Analysis Methods and ComputationalModels[M]. New York: John Wiley and Sons,1997.
    [3] McDonald N. Simple approximations for the longitudinal magnetic polarizabilitiesof some small apertures[J]. IEEE Transaction on Microwave Theory and Techniques,1988,36(7):1141-1144.
    [4] Harrington R F, Mautz J R. A generalized network formulation for aperture prob-lem[J]. IEEE Transactions on Antennas and Propagation, AP-24,1976:870-873.
    [5]袁宁,聂小春,梁昌洪.有限厚导电平板上任意缝隙的耦合特性分析[J].电波科学学报,1999,14(3):261-268.
    [6] Auckland D T, Harrington R F. Electromagnetic transmission through a flled slitin a conducting plane of fnite thickness, TE case[J]. IEEE Microwave Theory Tech-niques, MTT-26,1978:499-505.
    [7] Auckland D T, Harrington R F. A nonmodal formulation for electromagnetic trans-mission through a flled slot of arbitrary cross-section in a thick conducting screen[J].IEEE Microwave Theory and Techniques, MTT-28,1980:548-555.
    [8] Mendez H A. Shielding theory of enclosed with apertures[J]. IEEE Transactions onElectromagnetic Compatibility,1978,20(2):296-305.
    [9] Robinson M P, Benson T M, Christopoulos C, Dawson F J, et al. Analytical formula-tion for the shielding efectiveness of enclosures with apertures[J]. IEEE Transactionson Electromagnetic Compatibility,1998,40(3):240-249.
    [10] Dehkhoda P, Tavokoli A, Moini R. An efcient and reliable shielding efectivenessevaluation a rectangular enclosure of fnite wall thickness and with numerous smallapertures[J]. Progress in Electromagnetics Research,2008,86:341-355.
    [11] Dehkhoda P, Tavokoli A, Moini R. Fast calculation of the shielding efectivenessfor of a rectangular enclosure with numerous apertures[J]. IEEE Transactions onElectromagnetic Compatibility,2008,50(1):208-212.
    [12]饶育萍,宋航,周东方.窄缝耦合的快速估算法[J].强激光与粒子束,2008,20(8):1327-1332.
    [13]张旭锋,李颖,倪谷炎等.有孔腔体屏蔽效应分析的混合模型[J].电波科学学报,2011,26(1):25-29.
    [14] Barkeshli K, Volakis JL. Electromagnetic scattering from an aperture formed by arectangular cavity recessed in a ground plane[J]. Journal of Electromagnetic Wavesand Application,1991,5:715-734.
    [15] Deshpande M D. Electromagnetic Field Penetration Studies[R]. NASA TechnicalPaper, National Aeronautics and Space Administration, Jun.2000.
    [16] Yang T. Coupling onto radio frequency components enclosed within canonical struc-tures[D]. A dissertation for the PhD in the university of Michigan,2006.
    [17]王建国.高功率微波脉冲孔缝耦合的理论和数值研究[D].西安:西安电子科技大学,1997.
    [18] Lin M, Nuebel J, Drewniak J L, et al. EMI from cavityModes of Shielding Enclosures-FDTD Modeling and Measurements[J]. IEEE Transactions on ElectromagneticCompatibility,2000,42(1):29-38.
    [19] Zhang L S, Guo C J, Ding J. Simulations and analysis with FDTD method foraperture coupling properties in shielding cavity[C]. ICIEA2009, Xi’an, China, May25-272009:1753-1756.
    [20] Wallyn W, Zutter D D, Rogier H. Prediction of the shielding and resonant behaviorof multisection enclosures based on magnetic current modeling[J]. IEEE Transac-tions on Electromagnetic Compatibility,2002,44:130-138.
    [21] Siah E S, Sertel K, Volakis J L. Coupling studies and shielding techniques for elec-tromagnetic penetration through apertures on complex cavities and vehicular plat-forms[J]. IEEE Transactions on Electromagnetic Compatibility,2003,45(2):245-256.
    [22] Suresh Kumar T R, Venkatesh C. Shielding efectiveness comparison of rectangularand cylindrical enclosures with rectangular and circular apertures using TLM mod-eling[C]. Applied Electromagnetics Conference(AEMC), Kolkata, India, Dec.14-16,2009:1-4.
    [23] Steenbakkers L W, Goeje de M P, Catrysse J. The infuence of slots and holes onthe shielding efciency of a housing[C].10th International Symposium EMC, Zurich,Switzerland, Mar.1993:469-474.
    [24]夏志勇,王辉,胡新等.带开孔金属腔体内部耦合场强分布的实验研究[J],河北大学学报,2010,30(5):481-593.
    [25]谢海燕.瞬态电磁拓扑理论及其在电子系统电磁脉冲效应中的应用[D].北京:清华大学,2010.
    [26] Park Y M, Lee Y J, Chung Y S. Electromagnetic feld penetration analysis of a rect-angular aperture-backed cavity based on combination of electromagnetic topologyand mode matching[J]. Electromagnetics,2009,29:447-462.
    [27] Baum C E. How to think about EMP interaction[C]. Proceedings of the1974SpringFULMEN Meeting, Kirtland AFB, Apr.1974:12-23.
    [28] Tesche F M, Morgan M A, Fishbine B, et al. Internal Interaction Analysis: Topo-logical Concepts and Needed Model Improvements[J]. Interaction Notes, Note248,Oct.1975.
    [29] Tesche F M. Topological concepts for internal EMP interaction[J]. IEEE Trans.Antennas Propagat., Jan.1978, AP-26(1):60-64.
    [30] Parmantier J P, Gobin V, Issac F, et al. An application of the electromagnetictopology on the test-bed aircraft, EMPTAC[J]. Interaction Notes, Note506,1993.
    [31] Parmantier J P, Gobin V, Issac F, et al. ETE III: Application of the electromagnetictopology theory on the EMPTAC[J]. Interaction Notes, Note527,1996.
    [32] Parmantier J P. First realistic simulation of efects of EM coupling in commericialaircraft wiring[J]. Computing and Control Engineering Jounal,1998,9(2):52-66.
    [33] Wilson J R, Kirawanich P, Islam N E. Integration of Electromagnetic TopologyConcept and Measurement for High Power Radio-Frequency Interaction Study[C].AMEREM Meeting, Albuquerque, New Mexico, USA, Jul.9-14,2006.
    [34] Islam N E. Application of advanced concepts and techniques in electromagnetictopology based simulations: cripte and related codes[R]. Final Technical Report,University Missouri of Columbia, Dec.2008.
    [35] Baum C E. The theory of the electromagnetic interference and reference data[J].Interaction Notes, Note478, Dec.1989.
    [36] Baum C E. The theory of electromagnetic interference control[M]. U.K.: OxfordUniversity Press,1990:87-101.
    [37] Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Pro-ceedings of the IEEE.1992,80(6):789-817.
    [38] Baum C E. Electromagnetic Topology for the Analysis and Design of Complex Elec-tromagnetic Systems[J]. Fast Electrical and Optical Measurements, Eds. ThompsonJ.E., Luessem L.H., Dordrecht, Netherlands: Martinus Nijhof,1986:467-547.
    [39] Lee K S H. EMP interaction: principles, techniques and reference data[M]. NewYork: Hemisphere Publishing Corporation,1986.
    [40] Tesche F M, Liu T K. Application of multi-conductor transmission line networkanalysis to internal interaction problems[J]. Electromagnetics,1986,6(1):1-20.
    [41] Tesche F M. Introduction to concepts of electromagnetic topology as applied toEMP interation with systems, in interaction between EMP, lightning and staticelectricity with air craft and missile avionics systems[J], NATO/AGARD LectureSeries Publication,1986:144.
    [42] Baum C E, Liu T K, Tesche F M. On the analysis of general multi-conductortransmission line networks[J]. Interaction Notes, Note350,1978.
    [43] Baum C E. Electromagnetic topology: A formal approach to the analysis and designof complex electronic systems[C]. Proceeding of the4th Symposium and TechnicalExhibition on EMC, Zurich,1981:209-214.
    [44] Parmantier J P, Alliot J C, Labaune G, et al. Electromagnetic coupling on complexsystems: topological approach[J]. Interaction Notes, Note488,1990.
    [45] Tesche F M, Liu T K. User manual and code description for QV7TA: a generalmulticonductor transmission line analysis code[R]. LuTech, Inc. Report, Aug.1978.
    [46] Parmantier J P. Numerical coupling models for complex systems and results[J].IEEE Transactions on Electromagnetic Compatibility,2004,46(3):359-367.
    [47] CRIPTE Code Users Guide[Z]. ESI/ONERA, France,1997.
    [48] CRIPTE User’s Manual: Research Version[Z]. ESI/ONERA, France,2003.
    [49] Paletta L, Parmantier J P, Issac F, et al. Susceptibility analysis of wiring in a com-plex system combining a3-D solver and a transmission-line network simulation[J].IEEE Transactions on Electromagnetic Compatibility,2002,44(2):309-317.
    [50] Islam N E, Kirawanich P. Model development and verifcation of the CRIPTE codefor electromagnetic coupling[R]. Final Report, ECE department university of NewMexico,2005.
    [51] Baum C E. Extension of the BLT equation into time domain[J]. Interaction Notes,Note553,1999.
    [52] Tesche F M. On the analysis of a transmission line with nonlinear terminationsusing the time dependent BLT equation[J]. IEEE Transactions on ElectromagneticCompatibility,2007,49(2):427-433.
    [53] Tesche F M. Development and use of the BLT equation in the time domain asapplied to a coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility,2007,49(1):3-11.
    [54] Besnier P, Degauque P. Electromagnetic topology: investigations of nonuniformtransmission line networks[J]. IEEE Transactions on Electromagnetic Compatibility,1995,37(2):227-233.
    [55] Baum C E. Generalization of the BLT equation[J]. Interaction Notes, Note511,1995.
    [56] Steinmetz T, Nitsch J. Analysis of complex systems with cables using electromag-netic topology[C]. Proceedings of15th International Wroclaw Symposium on EMC,Poland,2000:225-229.
    [57] Tesche F M, Butler C M. On the addition of EM feld propagation and couplingefects in the BLT equation[J]. Interaction Notes, Note588,2004.
    [58] Tesche F M, Keen J, Bulter C M. Example of the use of the BLT equation for EMfeld propagation and coupling calculations[J]. The Radio Science Bulletin,2005,312(1):32-48.
    [59] Kirawanich P, Yakura S J, Islam N E. Simulating large electrical systems for wide-band pulse interactions using the topological modular junction concept[J]. IEEETransactions on Plasma Science,2008,36(2):435-442.
    [60] Kirawanich P, Gunda R, Kranthi N S, et al. Methodology for interference analysisusing electromagnetic topology techniques[J]. Applied Physics Letters,2004,84(15):2949-2951.
    [61]倪谷炎,罗建书,李传胪.线-面传输线Taylor与Agrawal模型解的比较[J].国防科技大学学报,2007,29(5):111-116.
    [62]王万金.基于电磁拓扑的印制电路板电磁辐射与耦合计算[D].长沙:国防科学技术大学,2008.
    [63] Ni G Y, Yan L, Yuan N C. Time-domain analytic solutions of two-wire transmissionline excited by a plane-wave feld[J]. Chinese Physics B,2008,17(10):3629-3634.
    [64] Qin Y J, Liu P G, He J G. A Novel Hybrid Method for Solving the Response ofNon-uniform Transmission Line Network[C]. PIERS2010, Xi’an, China, Mar.22-26,2010:1306-1310.
    [65]李高升,覃宇建,刘培国等.电磁拓扑结合积分方程求解电磁脉冲传播问题[J].现代电子技术,2010,23:10-16.
    [66]张旭锋.传输线理论及电磁兼容计算的半解析方法研究[D].长沙:国防科学技术大学,2011.
    [67]林竟羽,周东方,毛天鹏等.电磁拓扑分析中的BLT方程及其应用[J].信息工程大学学报,2004,5(2):118-121.
    [68]翁凌霞,牛忠霞,林竟羽等.运用BLT方程研究高功率微波的电磁干扰[J].强激光与粒子束,2005,17(8):1272-1276.
    [69] Song H, Hou D, Zhou D, et al. Modeling of electromagnetic topology in analysinghigh power microwave efect on shielding system[C]. Proceedings of the IEEE Inter-national Conference on Automation and Logistics,2008:2878-2883.
    [70]谢彦召,王赞基,王群书等.地面附近高架线缆HEMP响应计算的Agrawal和Taylor模型比较[J].强激光与粒子束,2005,17(4):575-580.
    [71]谢彦召,王赞基,王群书等.架空多导体传输线缆的电磁脉冲响应计算[J].清华大学学报,2006,46(4):449-452.
    [72] Xie H, Wang J, Sun D, et al. Transient electromagnetic topology and its experimen-tal validation[J]. Progress In Electromagnetics Research Letters,2011,25:185-195.
    [73]谢莉,雷银照.架空传输线在电偶极子激励下的瞬态电磁响应[J].电工技术学报,2009,24(4):6-13.
    [74]谢莉,雷银照.电气系统中多导体传输线的瞬态电磁响应[J].电工技术学报,2010,25(5):190-194.
    [75]李许东,王庆国,周星.线缆网络中的电磁脉冲传输[J].信息与电子工程,2011,9(4):467-471.
    [76]李许东,王庆国,周星等.典型传输线网络对电磁脉冲的响应规律研究[J].微波学报,2011,27(5):84-88.
    [77]闫哲.电磁脉冲孔耦合及其电磁拓扑模型[D].哈尔滨:哈尔滨理工大学,2008.
    [78]柳海明,王国栋.基于电磁拓扑理论的场线耦合分析与仿真[J].铁路计算机应用,2011,20(4):43-46.
    [79] Parmantier J P. EM topology and cable networks. A series of lectures in HPE2007,Bonascre, France, Dec.2-8,2007.
    [80] Baum C E. Including apertures and cavities in the BLT formalism[J]. Electromag-netics,2005,25(7-8):623-635.
    [81] Kirawanich P., Gleason D, Cornell A, et al. Analysis of feld through apertures by ap-plying transmission line matrix method to electromagnetic topology simulations[C].2005International Symposium on Electromagnetic Compatibility,2005,3:883-887.
    [82] Kirawanich P, Tzeremes G, Christodoulou C, et al. Electromagnetic wave penetrat-ing through apertures comparison of electromagnetic topology technique with FDTDmethod[J]. IEEE Antennas and Wireless Propagation Letters,2005,4:151-154.
    [83] Kirawanich P, Kranthi N, Islam N E, et al. Electromagnetic topology-based analysisof coupling through small aperture on cables of communication systems[J]. Electro-magnetics,2005,25:589-602.
    [84] Kirawanich P, Islam N E, Yakura J. Electromagnetic topology simulations for ca-ble coupling with a radiating dipole at an aperture[C].2006IEEE InternationalSymposium on Electromagnetic Compatibility,2006,3:632-635.
    [85] Kirawanich P, Yakura S J, Christodoulou C, et al. An Electromagnetic TopologyMethod for Cable Interactions Using a Radiating Dipole at Apertures[J]. IEEEAntennas and Wireless Propagation Letters,2006,5:220-223.
    [86] Kirawanich P, Kranthi N S, Gunda R, et al. Simulating the response of semi-shieldedsystems: electromagnetic topology technique[M]. Ultra-Wideband Short-Pulse Elec-tromagnetics XII, Kluwer Academic Publishers,2006.
    [87] Kanyou Nana R, Dickmann S, Sabath F. Electromagnetic feld vulnerability of com-plex systems-an application of EM topology[J]. Advances in Radio Science,2008,6:273-277.
    [88] Patier L, Gobin V, Bonnet P, et al. Aperture models in domain decompositionmethod for coupled-cavity systems[C]. ICEAA2009, Torino, Italy, Sep.14-18,2009:477-480.
    [89] Parmantier J P, Degauque P. Topology based modeling of very large systems[M].Modern Radio Science, J. Hamelin, Ed. Oxford, U.K.: Oxford University Press,1996:151-177.
    [90] Tzeremes G, Kirawanich P, Christodoulou C, et al. Transmission lines as radiatingantenna in sources aperture interactions in electromagnetic topology simulations[J].IEEE Antennas and wireless propagation letters,2004,3:283-286.
    [91] Parmantier J P. An efcient technique to calculate ideal junction scattering param-eters in multiconductor transmission line networks[J]. Interaction Notes, Note536,1998.
    [92] Tesche F M, Liu T k. Application of multiconductor transmission line network anal-ysis to internal problems[J]. Electromagnetics,1986,6(1):1-20.
    [93] Ianoz M, Nucci C A, Tesche F M. Transmission line theory for feld-to-transmissionline coupling calculations[J]. Electromagnetics,1988,8(2-4):171-211.
    [94] Tesche F M. Comparison of the transmission line and scattering models for comput-ing the HEMP response of overhead cables[J]. IEEE Transaction on ElectromagneticCompatibility,1992,34(2):93-99.
    [95] Taylor C D, Satterwhite R S, Harrison C W. The response of a terminated two-wireransmission line excited by a nonuniform electromagnetic feld[J]. IEEE TransactionAntennas Propagation,1965,13:987-989.
    [96] Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductortransmission lines excited by a nonuniform electromagnetic feld[J]. IEEE Transac-tion Electromagnetic compatibility,1980,22:119-129.
    [97] Rachidi F. Formulation of the feld-to-transmission line coupling equations in termsof magnetic excitation feld[J]. IEEE Transactions on Electromagetic Compatibility,1993,35(3):404-407.
    [98]余同彬,周璧华.近地长电缆对高空电磁脉冲晚期部分的响应[J].强激光与粒子束,2003,15(2):1237-1240.
    [99]黄聪顺,周启明.高空电磁脉冲作用下地面电缆屏蔽层感应电流的数值模拟[J].强激光与粒子束,2003,15(9):905-908.
    [100]孙蓓云,周辉,谢彦召.两种高空核爆电磁脉冲电缆耦合效应的比较[J].强激光与粒子束,2002,14(6):901-904.
    [101] Nucci C A, Rachidi F. On th Contribution of the electromagnetic feld componentsin feld-to-transmission line interaction[J]. IEEE Transactions on ElectromagneticCompatibility,1995,37(4):505-508.
    [102]倪谷炎,罗建书,李传胪. Taylor与Agrawal模型的解析求解与模型比较[J].强激光与粒子束,2007,19(9):1521-1525.
    [103] Plonsey R, Collin R E. Principles and applications of electromagnetic felds[M]. NewYork: McGraw-Hill,1961.
    [104] Bladel J V. Electromagnetic felds[M]. New York: McGraw-Hill,1964.
    [105]徐立勤,曹伟.电磁场与电磁波理论[M].北京:科学出版社,2006.
    [106] Perez R. Handbook of electromagnetic compatibility[M]. New York: AcademicPress,1995.
    [107] Ushida H. Fundamentals of coupled lines and multiwire antennas[M]. Sendi: SasakiPress,1967.
    [108] Kirawanich P, Islam N E, Yakura S J. An electromagnetic topology approach:crosstalk characterization of the unshielded twisted-pair cable[J]. Progress in Elec-tromagnetics Research,2006,58:285-299.
    [109] Konefal T, Dawson J F, Marvin A C, et al. A fast multiple mode intermediatelevel circuit model for the prediction of shielding efectiveness of a rectangular boxcontaining a rectangular aperture[J]. IEEE Transactions on Electromagnetic Com-patibility,2005,47(4):678-691.
    [110]杨儒贵.高等电磁理论[M].北京:高等教育出版社,2008:310-312.
    [111]周希朗,电磁理论中的应用数学基础[M].南京:东南大学出版社,2006:23-180.
    [112] Kirawanich P, Kranthi N S, Islam N E. Modeling external interference on systemsusing electromagnetic topology technique[C]. Electromagnetic Compatibility, EMC2004. International Symposium,2004:804-808.
    [113] Kirawanich P, Kranthi N, Islam N E. Electromagnetic topology-based analysis ofcoupling through small aperture on cables of communication systems[J]. Electro-magnetics,2005,25:589-602.
    [114] Harrington R F, Mautz J R. Characteristic modes for aperture problems[J]. IEEETransaction on Microwave Theory and Techniques,1985,33(6):500-505.
    [115] Yuan X, Harrington R F, Mautz J R. The pseudo-image method for computing theelectromagnetic feld that penetrates into a cavity[J]. Arch. Elektron. Uebertragung.,1987,41(5):307-317.
    [116] Wang T, Harrington R F, Mautz J R. Electromagnetic scattering from and trans-mission through arbitrary apertures in conducting bodies[J]. IEEE Transactions onAntennas and Propagation,1990,38(11):1805-1814.
    [117] Harrington R F, Mautz J R. Electromanetic coupling through apertures by the gen-eralized admittance approach[J]. Computer Physics Communications,1991,68:19-42.
    [118] Azaro R, Caorsi S, Donelli M, et al. A circuital approach to evaluating the elec-tromagnetic feld on rectangular apertures backed by rectangular cavities[J]. IEEETransaction on Microwave Theory and Techniques,2002,50(10):2259-2266.
    [119]汪柳平,高攸纲.有孔矩形腔的屏蔽效能及其对谐振抑制研究[J].电波科学学报,2008,23(3):560-564.
    [120] Baum C E. A time-domain view of choice of transient excitation waveforms forenhanced response of electronic systems[C]. Proceedings of the International Con-ference on Electromagnetics in Advanced Applications (ICEAA01), Turin, Italy,Sep.10-14,2001:181-184.
    [121] Bohl J. High power microwave hazard facing smart ammunitions[J]. System Designand Assessment Notes, Note35,1995.
    [122] Lovetric J, Wilburs A T M, Zwamborn A P M. Microwave interaction with a per-sonal computer: Experiment and modeling[C]. Proceedings of13th InternationalZurich Symposium on Electromagnetic Compatibility, Zurich, Switzerland, Feb.16-18,1999:203-206.
    [123]向振宇,谭志良.天线耦合干扰对系统电磁效应的电磁拓扑分析[J].装备环境工程,2010,7(5):111-114.
    [124] Azaro R, Caorsi S, Donelli M, et al. Evaluation of the efects of an external in-cident electromagnetic wave on metallic enclosures with rectangular apertures[J].Microwave Opt. Technol. Letter,2001,28(5):289-293.
    [125]陈伟华,张厚,杨宇军.电磁脉冲对双层屏蔽腔的孔洞耦合特性研究[J].辐射防护,2007,20(5):286-290.
    [126] Song H, Zhou D F, Lin J Y, et al. Analysis of coupling efciency for the double layershielding cavity with aperture[C]. Proceedings of2008China-Japan Joint MicrowaveConference,2008:44-47.
    [127]宋航,周东方,侯德亭等.估算双层屏蔽腔体窄缝耦合的混合方法[J].强激光与粒子束,2008,20(11):1892-1898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700