氧化锌纳米结构的制备及光学、磁学、光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种重要的直接带隙半导体材料,禁带宽度3.37eV激子束缚能60meV。由于其宽的带隙、高的激子束缚能、优良的压电性质、大的比表面积和作为半导体的特点,纳米氧化锌在紫外激光器件、光电探测器、日用化工、医药卫生、环境保护等领域具有广阔的应用前景。研究表明,氧化锌纳米结构的性质随相应的制备方法、实验条件表现出很大的差异性。本文重点关注氧化锌纳米结构光致发光、光催化和磁学性质的探讨,并通过相应的实验手段分析了其微观机理,取得了如下重要的实验结果。
     1在ZnO纳米晶中引入缺陷发光中心是制备强的可见光发光ZnO纳米材料的关键。考虑到Mg2+和Zn2+离子半径比较接近和ZnO两性化合物的特点,我们采用共沉淀法在低温条件下制备了Mg掺杂ZnO纳米晶并系统地研究了Mg掺杂对ZnO纳米晶结构、形貌和光致发光性质的影响。实验发现Mg掺杂增强了ZnO纳米晶的绿光发光,当Mg掺杂浓度为20%时,纳米晶的量子产率达到了22.8%。EPR、XRD、Uv-Vis等实验数据表明Mg掺杂在ZnO纳米晶中引入了锌空位(Vzn)和镁填隙(IMg)缺陷,理论分析表明,ZnO纳米晶强的可见光发光来自电子在对应缺陷能级和ZnO价带问的跃迁。
     2 ZnO纳米颗粒的磁学性质随制备条件表现出很大的差异性。为探究缺陷对ZnO纳米颗粒磁学性质的影响,我们采用共沉淀法制备了纯的和不同掺杂比例的Mg、Co掺杂ZnO纳米颗粒,对其做了不同条件的退火处理,探究了掺杂比例、退火条件对其磁学性质的影响。实验发现纯的、Mg掺杂的ZnO纳米颗粒表现出弱的铁磁性,而Co掺杂和Mg、Co共掺杂的ZnO纳米颗粒却表现出顺磁性,氮气条件退火后的Mg掺杂ZnO纳米颗粒表现出较强的铁磁性。理论分析表明,ZnO纳米颗粒的铁磁性与氧缺陷有关,Co2+离子3d电子的非铁磁性交换相互作用强于该实验体系下锌空位、氧空位等缺陷铁磁性交换作用。
     3人的比表面积、少的表面基团是提高ZnO光催化活性的要点,为此我们探索采用简易的煅烧法制备了ZnO纳米颗粒并探究了煅烧条件对其光催化性质的影响,实验发现600℃煅烧条件下制备的ZnO纳米颗粒C轴择优取向生长最佳,这种特殊的结构有比较大的(0001)(0001)表面积,具有最佳的光催化活性,光催化效果也最好。
Znic oxide is a kind of direct bandgap semiconductor whose bandgap is 3.37ev and exciton-banding energy is 60mev. According to its wide bandgap, high exciton-banding energy, fine pizoelectrical property and large specific area, nanosized ZnO has great potential application in ultraviolet lasers, optoelectronic detectors, chemical industry, medical science, environmental protection and so on. Generally, property of ZnO nanomaterial show great difference according to different fabrication method and experimental conditions. In this paper, we focused our attention on photoluminescent, photocatalytic and magnetic property of ZnO nanomaterial. By experiment and theoretical analysis, we get important conclusions as follows:
     1. To prepare strong visible light emitting ZnO namomaterials, we should introduce luminescent vacancies into ZnO nanocrystals. Ionic radius of Mg2+is close to Zn2+and ZnO is amphoteric compound, so we prepared Mg doped ZnO nanocrystals by co-precipitation at low temperature. Convertion of its shape, structure and photoluminescent property by Mg doping is studied. In our investigation, a direct relationship between inhanced green luminescence and Mg doping is detected. When the doping concentration achieves 20%, the quantum yield (QY) of Mg doped ZnO NCs is about 22.8%. From detections by EPR, XRD and Uv-Vis, we found Mg doping introduced VZn and IMg vacancies into ZnO nanocrystals, theoretical analysis demonstrate the inhanced visible luminescence originate from radiative transition between energy levels of the vacancies and valence band of ZnO nanocrystals.
     2. Magnetic property of ZnO nanocrystals varied by experimental condition, in order to investigate role of vacancies in magnetic ZnO NCs, we prepared pure and Mg/Co doped ZnO NCs and investigated magnetic property of them. The samples were prepared by co-precipitation method and annealed in air and N2. We studied variation of magnetic property of the samples with doping concentration and annealing condition. Strangely, pure and Mg dopd ZnO nanocrystals were weakly ferromagnetic but Co doped, Co/Mg co-doped ZnO nanocrystals were paramagnetic. Theoretical and experimental analysis demonstrate the ferromagnetism of pure ZnO NCs may stem from Vo vancancy, paramagnetic interaction of Co2+.ions in our samples was stronger than feeromagnetic interactions of vacancies.
     3. Large surface area, less perssad on the surface is important to inhance photocatalytic property of ZnO NCs. So, we tried to prepare ZnO nanoplates by a simple combustion method and studied its photocatalytic property. The experimental results demonstrate when calcined at 600℃, the as-prepared nanoplates get better C-axis orientation and lead to bigger (0001), (0001) surface area. The as-prepared nanoplates showed good photocatalysis to methyl orange.
引文
[1]Smith T.W., Cheatham R.A., Functional polymers in the generation of colloidal Dispersions of Amorphous. [J] Selenium Macromolecules,1980,13,1203.
    [2]Mees D.R., Pysto W., Tarcha P.J., Formation of Selenium Colloids Using Sodium Ascorbateas the Reducing Agent Colloid. [J] Interface Sci.,1995,170,254.
    [3]A. Henglein, Precursor can be successfully used in a variety of co-ordinationg. [J] Chem. Rev.,1989,89:1861-1873.
    [4]A. Nitzan, L.E.Brus, Can photochemistry be enhanced on rough surfaces? [J] J. Chem. Phys.,1981,74:5321-5322.
    [5]L. Bras, Electronic wave functions in semiconductor clusters:experiment and theory [J], J.Phys.Chem,1986,90:2555-2560.
    [6]A. Hagfeldt, M. Gratzel, Light induced redox reactions in nanocrystalline systems. [J] Chem. Rev.,1995,95:49-68.
    [7]Aleksandra B. D., Yu H.L., Optical properties of ZnO nanostructures. [J] small 2006, 2:944-961.
    [8]Ball P, Garwin L, Science at the atomic scale. [J] nature.1992,355:761-766.
    [9]L. Yiping, G. C. Hdjipanayis, C. M. Sorensenk, et al. Magnetic properties of fine cobalt particles prepared by metal atom reduction. [J] J. Appl. Phys.1990,67:4502-4504.
    [10]Reed M. A., Frensley W. R., Matyi R. J., et al. Realization of a three-terminal resonant tunneling device:The bipolar quantum resonant tunneling transistor. [J] Appl. Phys. Lett. 1989,54:1034-1036.
    [11]Michael H. Huang, Samuel Mao, Henning Feick, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. [J] nature.2001,8:1897-1899.
    [12]J. P. Mondia, R.sharma, J. Schafar, et al. An electrodynamically confined ZnO tetrapod laser. [J] Appl. Phys. Lett.2008.93.121102.
    [13]Jieying Kong, Sheng Chu, Mario Olmedo, et al. Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes. Appl. Phys. Lett.2008.93.132113.
    [14]C. Soci, A:Zhang, B. Xiang, et al. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano lett.2007,7:1003-1009.
    [15]A. K. Mukhopadhyay, P. Mitra,D. Chattopadhyay, et al. Influence of fabrication techniques and doping on hydrogen sensitivity of Znic oxide sensors. [J] Journal of Materials Science Letters.1996,15:431-433.
    [16]C. H. kwon, H. K. Hong, D. H. Yun, et al. Thick film znic oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems. [J] Sensors and Actuators B.1995,25:610-613.
    [17]S. K. Pardeshi, A. B. Patil. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in warter using Znic oxide. [J] Journal of Hazardous Materials.2009, 163:403-409.
    [18]Chen Shifu, Zhao Wei, Zhang Sujian, et al. Preparation, Characterization and Photocatalytic Property of N-containing Znic Oxide powder. [J] Chenmical Engineering Journal.2009.148:263-269.
    [19]武卫莉.纳米复合材料在橡胶工业的应用[J].高师理科.2002,3(22):56.
    [20]祖庸,雷闰盈,王训.纳米ZnO的奇妙用途[J].化工新型材料,2002,30:14-16.
    [21]Eaile S.M., Johnson D.W., eousprecipitation of spherical zinc oxide powders for visitor applications [J]. J.Am.Ceram.Soc.1989,72:2004-2008.
    [22]Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science 2000,287:1019-1022.
    [23]Adams L.K., Lyon D.y., Alvarez P.J. Comparetive eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. [J] water Res.,2006,40:3527-3532.
    [24]Brayner R, Ferrari-lliou R, Brivois N, et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticals colloidal medium. [J] Nano Lett., 2006,6:866-870.
    [25]Zhang L., Jiang Y., Ding Y, et al. Investigation into the antibacterial bahaviour of suspensions of ZnO namoparticals. [J] J.Nanopart.Res.2007.9,479-489.
    [26]Gojova A, Guo B, Kota R.S., et al. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticals:Effect of partical composition. [J] Environ Health Persp.,2007,115:403-409.
    [27]G. Meng, X.D. Fang, Y.K. Zhou, et al. Ultra-low turn-on field from ultra-long ZnO nanowire arreys emitters. [J] Journal of Alloys and Compounds.2010,491:72-76.
    [28]Apurba Dev and Subhadra Chaudhuri, Uniform large-scale, growth of micropatterned arreys of ZnO nanowires synthesized by a surfactant assisted approach. Nanotechnology. 2007,18,175607.
    [29]M.C. Jeong, B.Y. Oh, W. Lee, et al. Comparative study on the growth characteristics of ZnO namowires and thin films by metalorganic chemical vapor deposition (MOCVD). [J] Journal of crystal growth.2004,268:149-154.
    [30]D.Z. Sun, H.J. Sue, N. Miyatake. Optical Property of ZnO Quantum Dots in Epoxy with Controlled Dispeision. [J] J.Phys.Chem.C.2008,12:16002-16010.
    [31]J.Nayak, S.Kimura, S.Nozaki. Enhancement of the visible luminescence from the ZnO nanocrystals by Al and li co-doping. [J] Journal of luminescence.2009,129:12-16.
    [32]S.S. Kurbanov, G.N. Panin, T.W. Kim, et al. Luminescence of ZnO nanocrystals capped with an organic dye. [J] Optics Communication.2007,276:127-130.
    [33]A. Ney, T. Kammermeier, K. Ollefs, et al. Anisotropic paramagnetism of Co-doped ZnO epitaxial films. Phys.Rev.B.2010,81,054420.
    [34]Y.B. Zhang, S. Li, G.K.L. Goh, et al. Hydrothermal epitaxy of ZnO:Co diluted magnetic semiconducting single crystalline films. [J] Appl.Phys.Lett.2008,93,102510.
    [35]W.Yu, L.H. Yang, X.Y. Teng, et al. Influence of structure characteristics on room temperature ferromagnetism of Ni-doped ZnO thin films. [J] J.Appl.Phys.Lett. 2008,103,093901.
    [36]Xu Jiaqiang, Pan Qingyi, et al. Grain size control and gas sensing properties of ZnO gas sensor. [J] Sensors and Actuators B.2000,66:277-279.
    [37]J.F. Chang, H.H. Kuo, I.C.Leu, et al. The effects of thickness and operation temperature on Al:ZnO thin film CO gas sensor. [J] Sensors and Actuators B.2002,84:258-264.
    [38]Brent A. Buchine, William L. Hughes, F. Levent Degertekin, et al. Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts. [J] Nano. Lett.2006,6,6.
    [39]X.D. Wang, J.H. Song, Z.L. Wang. Nanowire and nanobelt arrays of znic oxide from synthesis to properties and to novel devices. [J] J.Marter.Chem.2007,17:711-720.
    [40]Zhong Lin Wang, Jin Hui Song. Piezoelecctric Nanogenerators Based on Znic Oxide Nanowire Arrays. [J] Science.2006,14,312.
    [41]Yong Qin, Xudong Wang, Zhong Lin Wang. Microfiber-nanowire hybrid structute for
    energy scavenging. [J] nature.2009,14,451.
    [42]Y.L.Wu, C.S. Lim, S. Fu, et al. Surface modifications of ZnO quantum dots for bio-imagining. [J] 2007,18,215604.
    [43]Huei Wang, Anna Jeng, James Swanso, et al. Toxicity of Metal Oxide Nanoparticals in Mammalian Cell. [J] Journal of Environmental Science and Health Part A. 2006,41:2699-2711.
    [44]Roberta Brayner, Roselyne Ferrari-lliou. Toxicological Impact Studies Based on Escherichia coli Bacteria in ultrafine ZnO Nanoparticals colloidal medium. [J] Nano Lett.2006,6:866-870.
    [45]U.Ozgur, Y.I.Alivov,C.Lui, A.Teke, M.A.Reshchikov, S.Dogan, V.Avrutin, S.J.Cho, H.Morkoc, J.Appl.Phys 98(2005)041301
    [46]Aleksandra B. Djurisic, Yu. Hang. Leung, Optical Properties of ZnO Nanostructures [J] Small,2006,2,944-961.
    [47]S.J.Pearton, D.P.Norton, K.Ip, et al. Recent progress in processing and properties of ZnO. [J] Progress in Materials Science.2005,50:293-340.
    [48]L. Guo, J.X. Cheng, X.Y. Li, et al. Synthesis and optical properties of crystalline polymer capped ZnO nanorods. [J] Materials Science and Engineering.2001,16:123-127.
    [49]X.Y. Kang, Y. Han, et al. Analysis ZnO varistors prepared from nanoside ZnO precurses. [J] Materials Research Bulletin.1998,33:1703-1708.
    [50]胡昌义,李义华等,稀有金属,2001,25,364.
    [51]Ki-Chul. Kim, Young-Hun. Kang, Young-Sung. Kim. Dependence of substrate temperature of Zn0.8Co0.2O by pulsed DC magnetron sputtering. [J] Current Applied Physics.2008,8,755-757.
    [52]T.C. Kaspar, T. Droubay, S.M. Heald, et al. Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films. [J] New Journal of Physics.2008,10,055010.
    [53]Lyu S.C., Zhang Y, Ruh H, et al. Low temperature growth and photoluminescence of well-aligned znic oxide nanowires. [J] Chemical Physics Letters.2002,363,134-138.
    [54]Y. Lei, W.K. Chim. Highly Ordered Arrays of Metal/Semiconductor Core-Shell Nanoparticals with Tunable Nanostructures and Photoluminescence. [J] J.Am.Chem.Soc.2005,127:1487-1492.
    [55]J. Jie, G. Wang, Q. Wang, et al. Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template. [J] J.Phys.Chem.B.2004,108:11976-11980.
    [56]S. Fullam, D. Cottell, H. Rensmo, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires. [J] Adv. Mater.2000,12:1430-1432.
    [57]周玉,武高辉.材料分析测试技术.[M]哈尔滨:哈尔滨工业大学出版社,1998:8-189.
    [58]J. P. Mondia, R. Sharma, J. Schafer, et.al. An electrodynamically confined single ZnO tetrapod laser [J] Appl. Phys. Lett.2008,93 (3):121102-1-3.
    [59]Y. L. Wu, C. S. Lim, S. Fu, Surface modifications of ZnO quantum dots for bio-imagine [J] Nanotechnology.2007,18 (9),215604-1-9.
    [60]Kyoung-Kook Kim, Sam-dong Lee, Hyunsoo Kim, et.al. Enhanced light extraction efficiency of GaN-based light emitting diodes with ZnO nanorod arrays grown using aqueous solution [J] Appl. Phys. Lett.2009,94 (3),071118-1-3.
    [61]Aleksandra B. Djurisic, Yu. Hang. Leung, Optical Properties of ZnO Nanostructures [J] mall,2006,2,944-961.
    [62]S. A. Studenikin, Michael. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films [J] J. Appl. Phys.2002,91,5060-5065.
    [63]J. Nayak, S. Kimura,.S. Nozaki, Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping [J] J. Lumin.129,12-16 (2009).
    [64]Naoki Ohashi, Naoki Ebisawa, Takashi Sekiguchi, Yellowish-white luminescence in codoped Znic Oxide [J] Appl. Phys. Lett.2005,86 (3),091902-1-3.
    [65]H.Tampo, H.Shibata, K.Maejima, et.al. Strong excitonic transition of MgxZn1-χO alloy. [J]Appl. Phys. Lett.2007,91,261907.
    [66]T.Makino, Y.Furuta, Y.Segawa, et.al. Magneto-optical study of n-type modulation-doped ZnO/MgχZn1-χO single quantum well structures. [J] Phys.Rev.B 2009,80,155333.
    [67]S.Sundar Manoharan, Sonia Arora. Photoluminescent properties of Mg doped ZnO by microwave combustion and microwave polyol method. [J]Material Science and Engineering B 2009,162,68-73.
    [68]Tae Hyun Kim, Jin Jae Park, Sang Hwan Nam, et.al. Fabrication of Mg doped ZnO thin films by laser ablation of Zn:Mg target. [J]Applied Surface Science
    2009,255,5264-5266.
    [69]A.I.Belogorokhov, A.Y.Polyakov, N.B.Smirnov. et.al. Lattice vibrational properties of ZnMgO grown by pulsed laser deposition. [J]Appl. Phys. Lett.2007,90,192110.
    [70]Hui Pan, Yanwu Zhu, Han Sun, et.al. Electroluminescence and field emission of Mg doped ZnO tetrapods. [J] Nanotechnology.2006,17,5095-5100.
    [71]Veera M. Boddu, Dabir S. Viswanath, Stephen W. Maloney, Synthesis and Characterization of Coralline Magnesium Oxide Nanoparticals [J] J.Am.Ceram.Soc. 2008,91,1718-1720.
    [72]C.Lizandara-Pueyo, M.W.E.van den Berg, A. De. Toni, et,al. Nucleation and Growth of ZnO in Organic Solvents-an in Situ Study [J] J. Am. Chem. Soc.2008,130, 16601-16610.
    [73]Lautenschlaeger Stefan, Sann Joachim, Peter J.Klar, et,al. Combinatorial growth of MgχZn1-χO epilayers by chemical vapor deposition. [J] Phys. Status Solidi B 2009,246, 383-386
    [74]Pesika N S, Stebe K J, Searson P C. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra[J]. Advanced Materials,2003,15(15): 1289
    [75]Liqiang Jing, Zili Xu, Jing Shang, et,al. The preparation and characterization of ZnO ultrafine particals [J] Materials Science and Enginnering 2002,332,356-361.
    [76]Aleksandra B. Djurisic, Wallace C.H.Choy, Vellaisamy Arul Lenus Roy, et, al. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures [J] Adv. Funct. Mater.2004,14,856-864.
    [77]K. Vanheusden, C. H. Seager, W. L. Warren, et al. Corralation between photoluminescence and oxygen vacancies in ZnO phosphors [J] Appl. Phys. Lett.1996, 68,403-405.
    [78]S. A. Studenikin, Michael. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films [J] J. Appl. Phys.2002,91,5060-5065.
    [79]Xiang Liu, Xiaohua Wu, Hui Cao, et,al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor dopodition [J] J. Appl. Phys. 2004,95,3141-3147.
    [80]A. Thilderkvist, M. Kleverman, H. G. Grimmeiss, Interstitial magnesium double donor in silicon. [J] Phys. Rev. B.1994,49,16338.
    [81]Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science 2000,287:1019-1022.
    [82]Ki-Chul Kim, Young-Hun Kang, Young Sung Kim. Dependence of substrate temperature of Zn0.8Co0.2O films deposited by pulsed DC magnetron sputtering Current [J]. Appl. Phys.Lett.2008,8:755-757.
    [83]M. Venkatesan, C. B. Fitzgerald, J.G. Lunney, and J.M. D. Coey Anisotropic Ferromagnetism in Substituted Zinc Oxide [J]. Phys. Rev. Lett.2004,93:17.
    [84]Zhihu Sun, Wensheng Yan,Guobin Zhang. Evidence of substitutional Co ion clusters in Zn1-χCoχO dilute magnetic semiconductors [J]. Phys.Rev.B 2008.77:245208.
    [85]Shengqiang Zhou, K. Potzger, G. Talut, H. Reuther, et.al. Fe implanted ZnO: Magnetic precipitates versus dilution [J]. J.Appl.Phys.2008,103:023902.
    [86]Luyan Li, Hui Liu, Xiaoguang Luo, et al. Ferromagnetism in polycrystalline Cr-doped ZnO films:Experiment and theory [J]. Solid State Communications 2008,146: 420-424.
    [87]Jifan Hu, Hongwei Qin, Tianfeng Xue, et.al. Room temperature ferromagnetism of Zno.97Co0.03O pressed nanocrystalline powders [J]. Appl.Phys.Lett 2008,93:022510.
    [88]Ping Che, Weibin Liu, Lin Guoc, et.al. High-temperature ferromagnetism in cobalt-doped ZnO single-crystalline nanorods [J]. Journal of Magnetism and Magnetic Materials 2008,320:2563-2566.
    [89]Y.B.Zhang, S.Li, et al. Hydrothermal epitaxy of ZnO:Co diluted magnetic semiconducting single crystalline films [J]. Appl.Phys.Lett.2008.93:102510.
    [90]B.Sanyal, R.Knut,et,al. Inhomogeneity of Co doped ZnO diluted magnetic semiconductor [J]. Appl.Phys.Lett.2008,103:076131.
    [91]M.S. Martin-Gonzalez, J.F.Fernandez et,al. Insights into the room temperature magnetism of ZnO/Co3O4 mixtures [J]. J.Appl.Phys.2008,103:083905.
    [92]T C Kaspar, T Droubay, S M Heald. et al. Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films [J]. New Journal of Physics 2008,10:055010.
    [93]Bouludenine M, Viart N, Colis S, et al. Antiferromagnetism in bulk Zn1-χCoχO magnetic semiconductors prepared by the coprecipitation technique. [J] Appl.Phys.Lett.2005,87, 052501-052503.
    [94]Park J H, Kim M G, Jang H M, et al. Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. [J] Appl.Phys.Lett.2004,84,1338.
    [95]Deka S, Pasricha R, Joy P A. Experimental comparison of the structural, magnetic, electronic, and optical properties of ferromagnetic and paramagnetic polycrystalline Zn1-χCoχO (x=0,0.05,0.1).[J] Phys.Rev.B.2006,74,033201.
    [96]Sati P, Deparis C, Morhain C, et al. Antiferromagnetic Interactions in Single Crystalline Zn1-χCoχO Thin Films.[J] Phys.Rev.Lett.2007,98,137204.
    [97]Brumage W H. Dorman C F, Quade C R. Temperature-dependent paramagnetic susceptibilities of Cu2+and Co2+as dilute impurities in ZnO. [J] Phys.Rev.B. 2001.63,104411.
    [98]Lawes G, Risbud A S, Ramirez A P, et al. Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO.[J] Phys.Rev.B.2005,71,045201.
    [99]Tuan A C, et al. Epitaxial growth and properties of cobalt-doped ZnO on α-Al2O3 single-crystal substrates. [J] Phys.Rev.B.2004,70,054424.
    [100]Kittilstved K R, Norberg N S, Gamelin D R. Chemical Manipulation of High-ΤC Ferromagnetism in ZnO Diluted Magnetic Semiconductors. [J] Phys.Rev.Lett.2005, 94,147209.
    [101]Venkatesan M, Fitzgerald C B, Lunney J G, et al.Anisotropic Ferromagnetism in Substituted Zinc Oxide. [J] Phys.Rev.Lett.2004,93,177206.
    [102]Hsu H S, Huang J C A, Chen S F, et al. Role of grain boundary and grain defects on ferromagnetism in Co:ZnO films.[J] Appl.Phys.Lett.2007,90,102506.
    [103]Behan A J, Mokhtari A, Blythe H J, et al. Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator. [J] Phys. Rev. Lett.2008,100,047206.
    [104]Kaspar T C, et al. Ferromagnetism and structure of epitaxial Cr-doped anatase TiO2 thin films. [J] Phys.Rev.B.2006,73,155327.
    [105]Z. J. Yan, Y. W. Ma, D. L. Wang, et al. Impact of annealing on morphology and
    ferromagnetism of ZnO nanorods. [J] Appl. Phys. Lett.2008,92,081911.
    [106]Dana A. Schwartz, Nick S. Norberg, Quyen P. Nguyen,et al. Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+and Ni2+Doped ZnO Nanocrystals. [J] J.Am.Chem.Soc.2003,15:13205-13218.
    [107]Lewicki A, Schindler A I, Furdyna J K, et al. Magnetic susceptibility of Zn1-χCoχS and Zn1-χCoχSe alloys. [J] Phys.Rev.B.1989,40,2379.
    [108]Spalek J, Lewicki A, Tarnawski Z, et al. Magnetic susceptibility of semimagnetic semiconductors:The high-temperature regime and the role of superexchange.[J] Phys.Rev.B.1986,33,3407.
    [109]刘学超,施尔畏等.固相反应法制备Co掺杂ZnO的磁性和光学性能研究.[J]物理学报2006,5,55.
    [110]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder.[J] J.Am.Chem.Soc.,1977,99:303-304.
    [111]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders.[J] J.Phys.Chem.,1977,81:1484-1488.
    [112]Y. zheng, L.zheng, Y.zhang, et al. Ag/ZnO heterostructure nanocrystals:synthesis, characterization and photocatalysis. [J] Inorg. Chem.2007,46:6980-6986.
    [113]C. Hu, Y. Lan, J. Qu, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dye and bacreria. [J] J.Phys.Chem.B 2006,110:4066-4072.
    [114]J.F. Lu, Q.W. Zhang, J. Wang, et al. Synthesis of N-doped ZnO by grinding and subsequent heating ZnO-urea mixture. [J] Powder Technol.2006,162:33-37.
    [115]L. Jing, Z. Xu, J. Shang, et al. The preparation and characterization of ZnO ultrafine particles. [J] Mater. Sci. Eng. A.2002,332,356-361.
    [116]J.C.Wang, P. Liu, X.Z. Fu, et al. Relationship between Oxygen Defects and Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes. [J] Langmuir, 2009,25:1218-1223.
    [117]D.Scott Bohle, Carla J.Spina. Cationic and Anionic Surface Binding Sites on Nanocrystalline Zinc Oxide:Surface Influence on Photoluminescence and Photocatalysis. [J] J.Am.Chem.Soc.,2009,131:4397-4404.
    [118]L.P.Xu, Y.L. Hu, C.Pelligra, et al. ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity [J] Chem. Mater. DOI:10.1021
    [119]Aaron Dadd, Allan Mckinley, Takuya Tsuzuki, et al. Tailoring the photocatalytic activity of nanoparticulate zinc oxide by transition metal oxide doping. [J] Materials Chemistry and Physics 2009,114:382-386.
    [120]S.K.Pardeshi, A.B.Patil. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. [J] Journal of Hazardous Materials 2009,163:403-409.
    [121]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006:22,51-55.
    [122]周公度,段连运编著.结构化学基础[M].北京:北京大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700