基于苯多酸配体的金属有机配合物的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用过渡金属或稀土金属离子与具有多官能团的有机配体,通过配位键驱动自组装得到配位化合物一直是超分子化学研究中的活跃领域。由于配位化合物在光电、磁性、氧化还原催化、离子交换、气体吸附、分离纯化、分子识别等方面具有广泛的应用,配位化学家和晶体工程学家致力于配位化合物的设计和合成,筛选出一些良好的特殊功能材料,并且发现了许多新颖的拓扑结构类型,同时掌握了一些自组装过程中影响化合物最终结构的因素,如溶剂、配体构型、温度等,以期达到控制合成的目的。
     在过去的几十年中,共平面的羧酸类配体由于强的配位能力以及配位的多样性在晶体构筑过程中被广泛应用。研究表明,配体的构型和金属离子的配位模式对晶体结构有重要影响,对配体结构的简单修饰即可改变自组装产物的结构。本论文选用一系列具有空间位阻效应的非共面羧酸为主配体,掺杂咪唑类、吡啶类、或螯合的邻菲啰啉配体作为辅助配体,通过配位键或超分子弱作用与金属离子组装合成新颖的配位化合物,进一步探讨了各种因素对化合物最终结构的影响,并测定了它们的气体吸附、荧光等性能。主要做了以下工作:综述了羧酸的配位化学,以羧酸配体为主与过渡金属或稀土金属离子在水/溶液热条件下组装合成了14个新颖的配位化合物:Cu4(OH)2(SO4)(HBTC)2(bpy)·bpy(1)、Cu1.5(H2O)(TMBTC)(bpy)·0.5H2O (2)、Cd2(H2O)5(TMBTC)(bpy)2·NO3·3H2O (3)、Ni(BITMB)(TMIPA)·2H2O (4)、Zn(BITMB)(IPA)·H2O (5)、Zn2(BITMB)2(HIPA)2(IPA)·H2O(6)、Zn(TBDC1)0.5(TBDC2)0.5 (7)、Er(BDC)1.5(dmf)(H2O) (8)、Tm(BDC)1.5(dmf)(H2O) (9)、Er2(BDC)3(phen)2·3H2O (10) Tm(TBDC)1.5(dmf)(H2O)·2H2O (11)、Er2(TBDC)3(phen)2·4dm·2H2O (12)、Tm(BDC)1.5(H2O)·0.5dmf-C2H5OH·2H2O (13) Tm4(BDC)6(H2O)2(dmf)2·4dmf·2H2O (14)。
     单晶X-射线衍射分析表明:化合物1为三维三重穿插结构;化合物2为三维二重穿插结构、3为三维结构、4为一维链状结构、5为二维层状穿插结构、6为三维孔道结构、7是基于二核SBU构筑的三维(3,5)-连接拓扑网络结构、8和9均属于三维二重穿插结构、10-14属于三维非穿插网状结构。其中,化合物1和2是利用共面的和非共面的羧酸配体而得到不同的结构;化合物4、5、6是利用一种具有顺式-或反式-结构的咪唑类柔性配体,通过溶剂或金属控制得到配体构型和维度均不相同的化合物;化合物7通过粉末衍射证实,可通过二维双层状结构MOF-47直接转换获得;化合物8、9为异质同晶结构;化合物10-12是利用空间位阻效应得到的非穿插的镧系金属有机框架物;化合物13-14则是利用一维棒状单元组装得到的非穿插微孔金属有机框架物。同时,对化合物3、5-7做了固态荧光谱学的测试,化合物12-14做了气体吸附性质的测试,化合物1-8、12、13做了热重测试分析。
     以上金属-有机配合物不仅为超分子及金属-有机复合材料化学增添了新的内容,而且为寻找、筛选金属-有机复合材料提供了新的途径。
Investigation on the coordination complexes constructed by transition metals or lanthanide ions and ligands with muti-functional groups through coordinative bonds is an active research field in recent years. Due to the wide applications of coordination complexes in photoelectricity, magnetic material, redox catalysis, ion exchange, adsorption, separation, and molecular recognition etc., much attention has been devoted to the design and synthesis of novel kinds of structural topologies and compounds with special properties. It is important to master the factors influencing the structure of the coordination complex, such as solvent, conformations of ligands and temperature etc., so that we can control the formation of the complexes.
     In the past several decades, planar carboxylate ligands have been widely studied because of their strong coordination ability and varieties of coordination modes. As known, the ligand conformation and coordination geometries of the metal ion have signifinant influence on the final structures of a MOF, and a little change of the ligand may result in new topological complexes. In this thesis, we try to synthesize novel coordination complexes by the use of carboxylic acids or combination with imidazole/pyridine/phenanthroline ligands assembling with metal ions through coordinative bonds or supramolecular weak interactions and to study the factors influencing the final structures and properties. The coordination chemistry of carboxylate ligands has been reviewed. The assembly reactions of rigid benzene-muti-carboxylate and and N-donor ligands with metal ions have yielded 14 novel coordination complexes: Cu4(OH)2(SO4)(HBTC)2(bpy)·bpy (1), Cu1.5(H2O)(TMBTC)(bpy)·0.5H2O (2), Cd2(H2O)5(TMBTC)(bpy)2·NO3·3H2O (3), Ni(BITMB)(TMIPA)·2H2O (4), Zn(BITMB)(IPA)·H2O (5), Zn2(BITMB)2(HIPA)2(IPA)·H2O(6), Zn(TBDC1)0.5(TBDC2)0.5 (7), Er(BDC),.5(dmf)(H2O) (8), Tm(BDC)1.5(dmf)(H2O) (9), Er2(BDC)3(phen)2-3H2O (10), Tm(TBDC)1.5(dmf)(H2O)·2H2O (11), Er2(TBDC)3(phen)2·4dmf-2H2O (12), Tm(BDC)1.5(H2O)0.5dmf·C2H5OH·2H2O (13), Tm4(BDC)6(H2O)2(dmf)2·4dmf·2H2O (14).All complexes have been determined by single-crystal X-ray diffraction. Complex 1 is three-dimensional three-fold interpenetrated complex; complexes 2 possesses three-dimensional two-fold interpenetrated structure; complexes 3 belongs to three-dimensional architecture; complexes 4 is one-dimensional chain; complex 5 belongs to two-dimensional interpenetrated layers; complexes 6 is three-dimensional porous framework; complexes 7 possesses three-dimensional framework with a rare (3,5)-connected net based on a dinuclear SBU; complex 8 and 9 are both three-dimensional structures with two-fold interpenetrating nets; complexes 10-14 belong to three-dimensional non-interpenetrated lanthanide-organic framework. In complexes 1 and 2, the different geometries of the carboxylate ligands (planarity and nonplanarity) induced two different assembly units. The flexible BITMB adopts syn or anti conformations in the complexes 4,5,6 which can be controlled by the presence or lack of water in the reaction, moreover, the dimensionality of the product can be controlled by the ligand conformation of BITMB. Complex 7 can be transformed from a previously reported 2D double layer (MOF-47) by liberating the coordinated water and dmf molecules, which was confirmed by X-ray powder diffraction. Complexes 8 and 9 are isostructural; complexes 10-12 apply organic ligands containing large hindrance groups to prevent the formation of interpenetration; while complexes 13-14 use in-situ reactions generated rod-shaped SBUs to improve final framework, with non-interpenetrated porous nets. Complexes 3,5-7 have been characterized by fluorescent spectra and gas sorption studies have been done for complexes 12-14; complexes 1-8,12 and 13 have been measured by TGA.
     The results reported herein demonstrate that the use of non-plannar polybenzenecarboxylate ligands as precursors to bind transition metal or lanthanide metal ions, is a new approach for the formation of novel supramolecular networks with interesting physical properties.
引文
[1]陈小明,蔡继文.单晶结构分析原理与社践-第二版.北京:科学出版社,2007.
    [2]孙为银.配位化学.北京:化学工业出版社,2004.
    [3]J.-M. Lehn, J. L. Atood, L. E. D. Davies, D. D. MacNicol, F. Vogtle, Comprehensive Supramolecular Chemistry. Ed. Vol.1-11 Pergamon, 1996.
    [4]J.-M. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Ed. Engl.1988,27,89
    [5]H. Tsukube, Armed crown ether complexes in supramolecular assembly, Coord. Chem. Rev. (Thematic Issue),1996,148,1
    [6]J. M. Timko, S. S. Moore, D. M. Walba, P. C. Hiberty, D. J. Cram, Host-Guest Complexation.2. Structural Units That Control Association Constants Between Polyethers and tert-Butylammonium Salts, J.Am. Chem. Soc.1977,99,4207
    [7]J.-M. Lehn,超分子化学:概论和展望.北京:北京大学出版社,2002
    [8]刘育,张衡益.纳米超分子化学——从合成受体到功能组装体.北京:北京工业出版社化学与应用出版中心,2004.
    [9]章慧.配位化学:原理与应用.北京:化学工业出版,2009.45-60.
    [10]游效曾.配位化合物的结构和性质.北京:科学出版社,1992.10-46.
    [11]孙道峰.新型含羧基及磺酸基配体超分子化合物的设计合成、结构解析及性能研究.中国科学院研究生博士学位论文.2003,06.
    [12]J. Maddox, Crystals from first principles, Nature,1988,335, 201.
    [13]G. M. J. Schmidt, Photodimerization in the solid state, Pure Appl. Chem.,1971,27,647.
    [14]J. M. Lehn, Supramolecular Chemistry:Concepts and Perspectives, VCH, Weinheim,1995.
    [15]J. Bernstein, R. J. Davey and J.O. Henck, Concomitant Polymorphs, Angew. Chem., Int. Ed.,1999,38,3441.
    [16]J. D. Dunitz and J. Bernstein, Disappearing Polymorphs, Acc. Chem. Res.,1995,28,193.
    [17]K. Tanaka and F. Toda, Solvent-Free Organic Synthesis, Chem. Rev.,2000,100,1025.
    [18]L. R. Macgillivray, J. L. Reid and J. A. Ripmeester, Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates, J. Am. Chem. Soc.,2000,122,7817.
    [19]J. Xiao, M. Yang, J. W. Lauher and F. W. Fowler, A Supramolecular Solution to a Long-Standing Problem:The 1,6-Polymerization of a Triacetylene, Angew. Chem., Int. Ed.,2000, 39,2132.
    [20]J. J. Kane, R. F. Liao, J. W. Lauher and F. W. Fowler, Preparation of Layered Diacetylenes as a Demonstration of Strategies for Supramolecular Synthesis, J. Am. Chem. Soc.,1995, 117,12003.
    [21]G. R. Desiraju, Supramolecular Synthons in Crystal Engineering-A New Organic Synthesis, Angew. Chem., Int. Ed. Engl.,1995,34,2311.
    [22]G. R. Desiraju, Crystal Engineering:the Design of Organic Solids, Elsevier, Amsterdam,1989.
    [23]M. C. Etter, Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds, Acc. Chem. Res.,1990,23,120.
    [24]A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York,1977.
    [25]T. Miyoshi, T. Iwamoto and Y. Sasaki, The structure of catena-μ-ethylenediaminecadmium(Ⅱ) tetracyanoniccolate(Ⅱ) dibenzene clathrate:Cd(en)Ni(CN)4.2C6H6, Inorg. Chim. Acta, 1972,6,59.
    [26]S. R. Batten, B. F. Hoskins and R. Robson, Structures of [Ag(tcm)], [Ag(tcm)(phz)1/2] and [Ag(tcm)(pyz)] (tcm= tricyanomethanide, C(CN)3 phz= phenazine, pyz= pyrazine), New J. Chem.,1998,22,173.
    [27]M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(11) and 4,4'-Bipyridine, J. Am. Chem. Soc.,1994,116,1151.
    [28]R. W. Gable, B. F. Hoskins and R. Robson, A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4'-bipyridine)zinc hexafluorosilicate, J. Chem. Soc., Chem. Commun.,1990,1677.
    [29]K. Biradha, D. Dennis, V. A. Mackinnon, C. V. K. Sharma and M. J. Zaworotko, Supramolecular Synthesis of Organic Laminates with Affinity for Aromatic Guests:A New Class of Clay Mimics, J. Am. Chem. Soc.,1998,120,11894.
    [30]S. Belanger, M. H. Keefe, J. L. Welch and J. T. Hupp, Rapid derivatization of mesoporous thin-film materials based on Re(I) zinc-porphyrin'molecular squares':selective modification of mesopore size and shape by binding of aromatic nitrogen donor ligands, Coord. Chem. Rev.,1999,192,29.
    [31]M. J. Zaworotko, Crystal engineering of diamondoid networks, Chem. Soc. Rev.,1994,23,283.
    [32]C. S. Hong, S. K. Son, Y. S. Lee, M. J. Jun, and Y. Do, High-Dimensional Manganese(Ⅱ) Compounds with Noncovalent and/or Covalent Bonds Derived from Flexible Ligands: Self-Assembly and Structural Transformation, Inorg. Chem.1999, 38,5602-5610.
    [33]M. Maekawa, H. Konaka, Y. Suenaga, T. Kuroda-Sowa, M. Munakata, A variety of one-, two-and three-dimensional copper(Ⅰ) and silver(I) co-ordination polymers assembled by 1,4-bis(4-pyridyl)butadiyne and 1,4-bis(2-pyridyl)butadiyne, J. Chem. Soc., Dalton Trans.2000,4160-4166.
    [34]M. L. Tong, S. L. Zheng, X. M. Chen, Self-Assembly of Two-and Three-Dimesional Coordination Networks with Hexamethylenetetramine, Chem. Eur. J.2000,20,3729-3738.
    [35]F. A. Cotton, E. V. Dikarev, and M. A. Petrukhina, Syntheses and Crystal Structures of "Unligated" Copper(Ⅰ) and Copper(Ⅱ) Trifluoroacetates, Inorg. Chem.2000,39,6072-6079.
    [36]A. Neels, H. Stoeckli-Evans, A. Escuer, and R. Vicente, Ten-Membered Rings of Coppers Interconnected by 2,5-Bis(2-pyridyl)pyrazine and Acetate Groups:Synthesis, Crystal Structure, and Magnetic Properties of the Two-Dimensional Polymer catena-(Octakis(μ2-acetato)[2,5-bis(2-pyridyl)pyrazine] tetracopper(Ⅱ)), Inorg. Chem.1995,34,1946-1949.
    [37]B. D. Alleyne, H. A. Hosein, H. Jaggernauth, L. A. Hall, A. J. P. White, and D. J. Williams, First Row Transition Metal Complexes of 1-Methylcyclobutenedione, a Monosubstituted Squarate Ligand, Inorg. Chem.1999,38,2416-2421.
    [38]S. I. Noro, S. Kitagawa, M. Kondo, K. Seki, A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4'-bipyridine)2}n], Angew. Chem. Int. Ed.2000,39, 2081-2084.
    [39]Y. C. Liang, R. Cao, W. P. Su, M. C. Hong, W. J. Zhang, Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(IId) Coordination Polymers by Hydrothermal Reaction, Angew. Chem. Int. Ed.2000,39,3304-3307.
    [40]C. Serre, F. Millange, J. Marrot, and G. Ferey, Hydrothermal Synthesis, Structure Determination, and Thermal Behavior of New
    Three-Dimensional Europium Terephthalates:MIL-51LT,HT and MIL-52 or Eu2n(OH)χ(H2O)y(O2C-C6H4-CO2)z (n=Ⅲ, Ⅲ, Ⅱ; χ= 4, 0,0; y=2,0,0; z=1,1,2), Chem. Mater.2002,14,2409-2415.
    [41]R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, and Q. Shi, Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid, Inorg. Chem.2002,41, 2087-2094.
    [42]J. D. Ranford, J. J. Vittal and D. Q. Wu, Topochemical Conversion of a Hydrogen-Bonded Three-Dimensional Network into a Covalently Bonded Framework, Angew. Chem. Int. Ed.,1998, 37,1114.
    [43]D.-X. Xue, W.-X. Zhang, X.-M. Chen and H.-Z.Wang, Single-crystal-to-single-crystal transformation involving release of bridging water molecules and conversion of chain helicity in a chiral three-dimensional metal-organic framework, Chem. Commun.,2008,1551.
    [44]P. Zhu, W. Gu, L.-Z. Zhang, X. Liu, J.-L. Tian and S.-P. Yan, A Rare Thermally Induced Single Crystal to Single Crystal Transformation from a 2D Chiral Coordination Polymer to a 3D Chiral Coordination Polymer, Eur. J. Inorg. Chem.,2008,2971.
    [45]O. M. Yaghi, H. L. Li, and, and T. L. Groy, Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid, J. Am. Chem. Soc.1996,118, 9096-9101.
    [46]M. Eshel, A. Bino, I. Felner, D. C. Johnston, M. Luban, and L. L. Miller, Polynuclear Chromium(Ⅲ) Carboxylates.1. Synthesis, Structure, and Magnetic Properties of an Octanuclear Complex with a Ring Structure, Inorg. Chem.,2000,39,1376-1380.
    [47]S. B. Marr, R. O. Carvel, D. T. Richens, H. Lee, M. Lane, and P. Stavropoulos, Comparison between Iron and Ruthenium Reagents Mediating GifⅣ-Type Oxygenation of Cyclohexane, Inorg. Chem., 2000,39,4630-4638.
    [48]R. Kuhlman, G. L. Schimek, and J. W. Kolis, An Extended Solid from the Solvothermal Decomposition of Co(Acac)3:Structure and Characterization of Co5(OH)2(O2CCH3)8·2H2O, Inorg. Chem. 1999,38,194-196.
    [49]B. L. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O'Keeffe, and O. M. Yaghi, Cu2(ATC)·6H2O:Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC:1,3,5,7-Adamantane Tetracarboxylate), J. Am. Chem. Soc.2000,122,11559-11560.
    [50]H. X. Zhang, B. S. Kang, A. W. Xu, Z. N. Chen, Z. Y. Zhou, A. S. C. Chan, K. B. Yu, C. Ren, Supramolecular architectures from the self-assembly of trans-oxamidato-bridged dicopper(Ⅱ) building blocks and phenyldicarboxylates, J. Chem. Soc., Dalton Trans.2001, 2559-2566.
    [51]J. Tao, M. L. Tong, J. X. Shi, X. M. Chen, S. W. Ng, Blue photoluminescent zinc coordination polymers with supertetranuclear cores, Chem. Commun.2000,2043-2044.
    [52]H. L. Li, C. E. Davis, T. L. Groy, D. G. Kelley, and O. M. Yaghi, Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3-6CH3OH (BDC= 1,4-Benzenedicarboxylate), J. Am. Chem. Soc.1998,120, 2186-2187.
    [53]H. L. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature,1999,402,276-279.
    [54]M. Edgar, R. Mitchell, A. M. Z. Slawin, P. Lightfoot, Solid-State Transformations of Zinc 1,4-Benzenedicarboxylates Mediated by Hydrogen-Bond-Forming Molecules, P. A. Wright, Chem. Eur. J. 2001,23,5168-5175.
    [55]M. E. Braun, C. D. Steffek, J. Kim, P. G. Rasmussen, O. M. Yaghi,
    1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks, Chem. Commun.,2001,2532-2533.
    [56]O. R. Evan, W. B. Lin, Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks, Acc. Chem. Res. 2002,35,511-522.
    [57]S. V. Kolotuchin, P. A. Thiessen, E. E. Fenlon, S. R. Wilson, C. J. Loweth, S. C. Zimmerman, Self-Assembly of 1,3,5-Benzenetricarboxylic (Trimesic) Acid and Its Analogues, Chem. Eur. J.1999,5,2537-2547.
    [58]C. Livage, N. Guillou, J. Marrot, and G. Ferey, Construction of Two-and Three-Dimensional Coordination Polymers from Cobalt Trimesate, Chem. Mater.2001,13,4387-4392.
    [59]Y. H. Liu, H. L. Tsai, Y. L. Lu, Y. S. Wen, J. C. Wang, and K. L Lu, Assembly of a Robust, Thermally Stable Porous Cobalt(Ⅱ) Nicotinate Framework Based on a Dicobalt Carboxylate Unit, Inorg. Chem.2001,40,6426-6431.
    [60]L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature,2001,414,353-358.
    [61]Argonne National Lab., Proceedings of the DOE Hydrogen Storage Materials Workshop, August 14-15,2002.
    [62]Basic Research Needs for the Hydrogen Economy Report on the Basic energy Sciences Workshop on Hydrogen Production Storage and Use Mildred Dresselhaus, July,2003.
    [63]S. S. Kaye, J. R. Long, Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M=Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc.,2005,127,6506-6507.
    [1]B. L. Chen, M. Eddaoudi, S. T. Hyde, M. OOKeeffe and O. M. Yaghi, Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores, Science,2001,291,1021.
    [2]S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, A Chemically Functionalizable Nanoporous Material [Cu 3(TMA)2(H2O)3]n, Science,1999,283,1148.
    [3]Z.Q.Wang, V. C. Kravtsov and M. J. Zaworotko, Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra, Angew. Chem., Int. Ed.,2005,44,2877.
    [4]O. M. Yaghi, C. E. Davis, G. M. Li, H. L. Li, Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(Ⅱ)-Benzenetricarboxylate Network, J. Am. Chem. Soc.,1997, 119,2861.
    [5]D. F. Sun, Y. X. Ke, D. Collins, G. A. Lorgan, H.-C. Zhou, Construction of Robust Open Metal-Organic Frameworks with Chiral Channels and Permanent Porosity, Inorg. Chem.,2007,46, 2725.
    [6]A. W. vander Made, R. H. vander Made, A Convenient Procedure for Bromomethylation of Aromatic Compounds. Selective Mono-, Bis-, or Trisbromomethylation, J. Org. Chem.,1993,58,1262-1263.
    [7]S. V. Kolotuchin, P. A. Thiessen, E. E. Fenlon, S. R. Wilson, C. J. Loweth, S. C. Zimmerman, Self-Assembly of 1,3,5-Benzenetricarboxylic (Trimesic) Acid and Its Analogues, Chem. Eur. J.,1999,5,2537-2547.
    [8]G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Go" ttingen University, Germany,1997.
    [9]G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Go" ttingen University, Germany,1997.
    [10]A. W. Addison, T. N. Rao, J. Reedijk, J. V. RijnG. C. Verschoo, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]coppe r(Ⅱ) perchlorate, J. Chem. Soc, Dalton Trans.,1984,1349.
    [11]D. F. Sun, R. Cao, Y. Q Sun, W. H. Bi, D. Q. Yuan, Q. Shi, X. Li, Syntheses and structures of two novel copper complexes constructed from unusual planar tetracopper(II) SBUs, Chem. Commun.,2003,1528.
    [12]D. T. de Lill, N. S. Gunning and C. L. Cahill, Toward Templated Metal-Organic Frameworks:Synthesis, Structures,Thermal Properties, and Luminescence of Three Novel Lanthanide-Adipate Frameworks, Inorg. Chem.,2005,44,258.
    [13]C.M. Wang, C. H. Liao, H. M. Kao and K. H. Lii, Hydrothermal Synthesis and Characterization of [(UO2)2F8(H2O)2Zn2(4,4(?)-bpy)2]a(4,4(?)-bpy), a Mixed-Metal Uranyl Aquofluoride with a Pillared Layer Structure, Inorg. Chem.,2005, 44,6294.
    [14]A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr.,2003,36,7.
    [15]A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands,2006; available via http://www.cryst.chem.uu.nl/platon (for unix) and http://www.chem.gla.ac.uk/louis/software/platon/(for MS Windows).
    [16]S. T. Wang, Y. Hou, E. B. Wang, Y. G. Li, L. Xu, J. Peng, S. X. Liu, C. W. Hu, A novel organic-inorganic hybrid material with
    fluorescent emission:[Cd(PT)(H20)]n (PT= phthalate), New J. Chem.,2003,27,1144.
    [17]X. D. Chen, M. Du and T. C. W. Mak, Controlled generation of heterochiral or homochiral coordination polymer:helical conformational polymorphs and argentophilicityinduced spontaneous resolution, Chem. Commun.,2005,4417-4419.
    [18]M. P. Clares, J. Aguilar, R. Aucejo, C. Lodeiro, M. T. Albelda, F. Pina, J. C. Lima, A. J. Parola, J. Pina, S. de Melo, C. Soriano, E. Garci'a-Espan~a, Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown, Inorg. Chem.,2004,43,6114.
    [19]F. Bolletta, I. Costa, L. Fabbrizzi, M. Licchelli, M. Montalti, P. Pallavicini, L. Prodi and N. Zaccheroni, A [RuⅡ(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] twocomponent system, as an efficient ON-OFF luminescent chemosensor for Ni2+and Cu2+in water, based on an ET (energy transfer) mechanism,J.Chem. Soc., Dalton Trans.,1999,1381.
    [20]S. A. Zabin and C. R. Jejurkar, J. Polym. Mater.,1997,14,239.
    [1]C. Y. Su, Y. P. Cai, C. L. Chen, M. D. Smith, W. Kaim, H. C. Loye, Ligand-Directed Molecular Architectures:Self-Assembly of Two-Dimensional Rectangular Metallacycles and Three-Dimensional Trigonal or Tetragonal Prisms, J. Am. Chem. Soc.2003,125,8595.
    [2]H. K. Liu, W. Y. Sun, D. J. Ma, K. B. Yu, W. X. Tang, The first X-ray structurally characterized M3L2 cage-like complex with tetrahedral metal centres and its encapsulation of a neutral guest molecule, Chem. Commun.2000,591.
    [3]J. Zhang, E. Chew, S. M. Chen, J. T. H. Pham, X. H. Bu, Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand, Inorg. Chem.2008,47,3495.
    [4]X. D. Yang, J. D. Ranford, J. J. Vittal, Isomerism in 1D Coordination Polymers of Cu(II) Complexes of N-(2-Hydroxybenzyl)-L-valine:Influence of Solvent and Coordination Sphere on the Conformation, Cryst. Growth Des. 2004,4,781.
    [5]X. T. Wang, X. H. Wang, Z. M. Wang, S. Gao, Diversity of Azido Magnetic Chains Constructed with Flexible Ligand 2,2'-Dipyridylamine, Inorg. Chem.2009,48,1301.
    [6]B. Ding, Y. Y. Liu, Y. Q. Huang, W. Shi, P. Cheng, D. Z. Liao, S. P. Yan, Structural Variations Influenced by Ligand Conformation and Counteranions in Copper(II) Complexes with Flexible Bis-Triazole Ligand, Cryst. Growth Des.2009,9,593.
    [7]R. Peng, D. Li, T. Wu, X. P. Zhou, S.W. Ng, Increasing Structure Dimensionality of Copper(I) Complexes by Varying the Flexible Thioether Ligand Geometry and Counteranions, Inorg. Chem.2006, 45,4035.
    [8]Y. B. Dong, Y. Y. Jiang, J. Li, J. P. Ma, F. L. Liu, B. Tang, R. Q. Huang, S. R. Batten, Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors, J. Am. Chem. Soc. 2007,129,4520.
    [9]Z. H. Zhang, T. Okamura, Y. Hasegawa, H. Kawaguchi, L. Y. Kong, Syntheses, Structures, and Luminescent and Magnetic Properties of Novel Three-Dimensional Lanthanide Complexes with 1,3,5-Benzenetriacetate, Inorg. Chem.2005,44,6219-6227.
    [10]S. Y. Wan, Y. Z. Li, T. Okamura, J. Fan, W. Y. Sun, N. Ueyama, Syntheses, Structures, and Properties of Two-Dimensional Honeycomb Networks from the Assembly of the Tripodal Ligand 2,4,6-Tris[4-(imidazol-l-ylmethyl)phenyl]-1,3,5-triazine with Metal Salts, Eur. J. Inorg. Chem.2003,3783-3789.
    [11]Z. H. Zhang, Z. L. Shen, T. Okamura, H. F. Zhu, W. Y. Sun, N.Ueyama, Syntheses and Structures of Two Series of Coordination Frameworks Based on the Assembly of 1,3,5-Benzenetriacetic Acid with Lanthanide Metal Salts, Cryst. Growth Des.2005,5, 1191-1197.
    [12]G. X Liu, Y. Q. Huang, Q. Chu, T. Okamura, W. Y. Sun, H. Liang, N. Ueyama, Structural Variations Influenced by Ligand Conformation and Counteranions in Copper(Ⅱ) Complexes with Flexible Bis-Triazole Ligand, Cryst. Growth Des.2008,8, 3233-3245.
    [13]F. N. Dai, H. Y. He, D. F. Sun, A Metal-Organic Nanotube Exhibiting Reversible Adsorption of (H2O)12 Cluster, J. Am. Chem. Soc.2008,130,14064-14065.
    [14]F. N. Dai, H. Y. He, D. F. Sun, Polymorphism in High-Crystalline-Stability Metal-Organic Nanotubes, Inorg. Chem. 2009,48,4613.
    [15]P. K. Dhal, F. H. Arnold, Template-mediated synthesis of metal-complexing polymers for molecular recognition, J. Am. Chem. Soc.1991,113,7417-7418.
    [16]S. V. Kolotuchin, P. A. Thiessen, E. E. Fenlon, S. R. Wilson, C. J. Loweth, S. C. Zimmerman, Self-Assembly of 1,3,5-Benzenetricarboxylic (Trimesic) Acid and Its Analogues, Chem. Eur. J.1999,5,2537-2547.
    [17]G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Gottingen University, Germany,1997.
    [18]G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Gottingen University, Germany,1997.
    [19]D. K. Kumar, D. A. Jose, A. Das, P. Dastidar, From Diamondoid Network to (4,4) Net:Effect of Ligand Topology on the Supramolecular Structural Diversity, Inorg. Chem.2005,44,6933.
    [20]H. S. Lin, P. A. Maggard, Inorg. Chem.2009,48,8940.
    [21]Z. M. Wang, B. Zhang, M. Kurmoo, M. A. Green, H. Fujiwara, T. Otsuka, H. Kobayashi, Synthesis and Characterization of a Porous Magnetic Diamond Framework, Co3(HCOO)6, and Its N2 Sorption Characteristic, Inorg. Chem.2005,44,1230.
    [22]S. T. Wang, Y. Hou, E. B. Wang, Y. G. Li, L. Xu, J. Peng, S. X. Liu, C. W. Hu, A novel organic-inorganic hybrid material with fluorescent emission:[Cd(PT)(H2O)]n (PT= phthalate), New J. Chem.2003,27,1144.
    [23]M. P. Clares, J. Aguilar, R. Aucejo, C. Lodeiro, M. T. Albelda, F. J. Pina, C. Lima, A. J. Parola, J. Pina, J. S. De Melo, C. Soriano, E. Garci a-Espan-a, Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown, Inorg. Chem.2004,43,6114.
    [24]C. G. Zheng, Y. L. Xie, R. G. Xiong, X. Z. You, An unprecedented three-dimensional network cadmium coordination polymer containing isonicotinato N-oxido ligand with strong yellow fluorescent emission, Inorg. Chem. Commun.2001,4,405.
    [25]L. Delhaye, A. Ceccato, P. Jacobs, C. Kottgen, A. Merschaert, Removal of Reaction Solvent by Extractive Workup:Survey of Water and Solvent Co-extraction in Various Systems, Org. Proc. Res. Dev.2007,11,160.
    [26]K. M. Kadish, L. L. Wang, A. Thuriere, L. Giribabu, R. Garcia, E. V. Caemelbecke, J. L. Bear, Solvent Effects on the Electrochemistry and Spectroelectrochemistry of Diruthenium Complexes. Studies of Ru2(L)4Cl Where L) 2-CH3ap,2-Fap, and 2,4,6-F3ap, and ap Is the 2-Anilinopyridinate Anion, Inorg. Chem.2003,42,8309.
    [27]J. M. Lehn, Supramolecular Chemistry-Concepts and Per-spectives; VCH:Weinheim,1995.
    [28]M. C. Hong, W. P. Su, R. Cao, M. Fujita, J. X. Lu, Assembly of Silver(i) Polymers with Helical and Lamellar Structures, Chem. Eur. J.2000,6,427.
    [29]R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, Q. Shi, Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracarboxylic Acid, Inorg. Chem.2002,41,2087.
    [1]J. D. Ranford, J. J. Vittal and D. Q. Wu, Topochemical Conversion of a Hydrogen-Bonded Three-Dimensional Network into a Covalently Bonded Framework, Angew. Chem., Int. Ed.,1998,37,1114.
    [2]D.-X. Xue, W.-X. Zhang, X.-M. Chen and H.-Z. Wang, Single-crystal-to-single-crystal transformation involving release of bridging water molecules and conversion of chain helicity in a chiral three-dimensional metal-organic framework, Chem. Commun.,2008,1551.
    [3]P. Zhu, W. Gu, L.-Z. Zhang,X. Liu, J.-L. Tian and S.-P. Yan, A Rare Thermally Induced Single Crystal to Single Crystal Transformation from a 2D Chiral Coordination Polymer to a 3D Chiral Coordination Polymer, Eur. J. Inorg. Chem.,2008,2971.
    [4]S. R. Batten and R. Robson, Interpenetrating Nets:Ordered, Periodic Entanglement, Angew. Chem., Int. Ed.,1998,37,1461.
    [5]M. Eddaoudi, D. B.Moler, H. Li, B. Chen, T. M. Reineke, M.O'Keeffe and O. M. Yaghi, Modular Chemistry:Secondary Building Units as
    a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks, Acc. Chem. Res.,2001,34,319.
    [6]C. Janiak, Engineering coordination polymers towards applications, Dalton Trans.,2003,2781.
    [7]B. Moulton and M. J. Zaworotko, From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids, Chem. Rev.,2001,101,1629.
    [8]S. Kitagawa, R. Kitaura and S.-I. Noro, Functional Porous Coordination Polymers, Angew. Chem., Int. Ed.,2004,43,2334.
    [9]D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro and H.-C. Zhou, Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand, Chem. Commun.,2005,5447.
    [10]B. Chen, M. Eddaoudi, S. T.Hyde, M. O'Keeffe andO.M.Yaghi, Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores, Science,2001,291,1021.
    [11]B. F. Abrahams, B. F. Hoskins, D. M. Michael and R. Robson, Assembly of porphyrin building blocks into network structures with large channels, Nature,1994,369,727-729.
    [12]B. Chen, F. R. Fronczek and A. W. Maverick, Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(Ⅱ)), Chem. Commun. 2003,2166.
    [13]J. W. Wang, C. C. Huang, X. H. Huang and D. S. Liu, Three-Dimensional Lanthanide Thiophenedicarboxylate Framework with an Unprecedented (4,5)-Connected Topology, Cryst. Growth Des.,2008,8,795.
    [14]D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and M. J. Rosseinsky, Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials, Acc. Chem. Res.,2005,38,273.
    [15]C. N. R. Rao, S. Natarajan and R. Vaidhyanathan, Metal Carboxylates with Open Architectures, Angew. Chem., Int. Ed., 2004,43,1466.
    [16]A. J. Blake, N. R. Champness, P. Hubberstey,W.-S. Li, M. A. Withersby and M. Schroder, Inorganic crystal engineering using self-assembly of tailored building-blocks, Coord. Chem. Rev.,1999, 183,117.
    [17]D. Li, T. Wu, X. P. Zhou, R. Zhou and X. C. Huang, Twelve-Connected Net with Face-Centered Cubic Topology:A Coordination Polymer Based on [Cu12(m4-SCH3)6]6+Clusters and CN- Linkers, Angew. Chem., Int. Ed.,2005,44,4175.
    [18]X. M. Zhang, R. Q. Fang and H. S.Wu, A Twelve-Connected CU6S4 Cluster-Based Coordination Polymer, J. Am. Chem. Soc. 2005,127,7670.
    [19]Z. Q. Wang, V. C. Kravtsov and M. J. Zaworotko, Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra, Angew. Chem., Int. Ed,2005,44,2877.
    [20]F. Luo, J.-M. Zheng and S. R. Batten, Unprecedented (3,4)-connected metal-organic frameworks (MOFs) with 3-fold interpenetration and considerable solvent-accessible void space, Chem. Commun.,2007,3744.
    [21]T. Jiang and X. M. Zhang, Temperature Tuned Synthesis of Zinc, N-bis-(1(2)H-tetrazol-5-yl)-amine Complexes:From Zn3O Cluster-Based 3-Connected 63-hcb and (3,6)-Connected (43)2(46)-kgd Layers to Zn5(OH)4 Chain-Based 3D Open Framework, Cryst. Growth Des.,2008,8,3077.
    [22]J. L. Li, R. H. Zhang and X. H. Bu, Novel Noninterpenetrating (3,6) Topological Coordination Networks Assembled from Flexible meso-Bis(Sulfinyl) Bridging Ligands, Cryst. Growth Des.,2004,4, 219.
    [23]F. Luo, Y. X. Che and J. M. Zheng, A Ternary Metal-Organic Framework Built on Triangular Organic Spacers, Square and
    Tetrahedral Co2 Secondary Building Units, Cryst. Growth Des., 2008,8,176.
    [24]C. A. Williams, A. J. Blake, P. Hubberstey and M. Schroder, Cadmium-Porphyrin Coordination Networks:Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4 and (3,5)-Connected hms Nets, Chem. Commun.,2005,5435.
    [25]G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Gottingen University, Germany,1997.
    [26]G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Gottingen University, Germany,1997.
    [27]N. F. Zheng, J. Zhang, X. H. Bu and P. Y. Feng, Cadmium-Porphyrin Coordination Networks:Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4 and (3,5)-Connected hms Nets, Cryst. Growth Des.,2007,7,2576.
    [28]B. Zheng, H. Dong, J. F. Bai, Y. Z. Li, S. H. Li and M. Scheer, Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand To Construct Coordination Assemblies:Experimental and Theoretical Studies, J. Am. Chem. Soc.,2008,130,7778.
    [29]H. Chun, D. N. Dybtsev, H. Kim and K. Kim, Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs:Implications for Hydrogen Storage in Porous Materials Chem.-Eur. J.,2005,11, 3521.
    [30]J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi, Hydrogen Sorption in Functionalized Metal-Organic Frameworks, J. Am. Chem. Soc.,2004,126,5666.
    [31]J. F. Bickley, R. P. Bonar-Law, C. Femoni, E. J. Maclean, A. Steiner and S. J. Teat, Dirhodium(II) carboxylate complexes as building blocks. Synthesis and structures of square boxes with tilted walls, J. Chem. Soc., Dalton Trans.,2000,4025.
    [1]S. R. Batten and R. Robson, Interpenetrating Nets:Ordered, Periodic Entanglement, Angew. Chem. Int. Ed.1998,37,1460-1494.
    [2]P. Losier and M. J. Zaworotko, A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities, Angew. Chem. Int. Ed.1996,35, 2779-2782.
    [3]J. L. C. Rowsell and O. M. Yaghi, Strategies for Hydrogen Storage in Metal-Organic Frameworks, Angew. Chem. Int. Ed.2005,44, 4670-4679.
    [4]S. Q. Ma, D. F. Sun, P. M. Forster, D. Q. Yuan, W. J. Zhuang, Y. S.Chen, J. B. Parise and H.-C. Zhou, A Three-Dimensional Porous Metal-Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features, Inorg. Chem.2009,48,4616-4628.
    [5]D. F. Sun, S. Q. Ma, Y. X. Ke, D. J. Collins, and H.-C. Zhou, An Interweaving MOF with High Hydrogen Uptake, J. Am. Chem. Soc. 2006,128,3896-3897.
    [6]D. X. Wang, H. Y. He, X. H. Chen, Y. Z. Niu, S. Y. Feng, D. F. Sun, J. Zhang, A 3D Porous Metal-Organic Framework Constructed of 1D Zigzag and Helical Chains Exhibiting Selective Anion Exchange, CrystEngComm.2010,12,1041-1044.
    [7]X. L. Zhao, H. Y. He, T. P. Hu, F. N. Dai, D. F. Sun, Interpenetrating polyhedral MOF with a primitive cubic network based on supermolecular building blocks constructed of a semirigid C3-symmetry carboxylate ligand. Inorg. Chem.2009,48, 8057-8059.
    [8]O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nat. Mater.2009,8,481-484.
    [9]L. Q. Ma, W. B. Lin, Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal-Organic Frameworks, J. Am. Chem. Soc.2008,130,13834-13835.
    [10]S. Q. Ma, D. F. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H.-C. Zhou, Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake, J. Am. Chem. Soc. 2007,129,1858-1859.
    [11]Q. Wang, J. Y. Zhang, C. F. Zhuang, Y. Tang, C. Y. Su, Guest Inclusion and Interpenetration Tuning of Cd(II)/Mn(II) Coordination Grid Networks Assembled from a Rigid Linear Diimidazole Schiff Base Ligand, Inorg. Chem.2009,48,287.
    [12]N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M. O' Keeffe, and O. M. Yaghi, Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc.2005,127,1504-1505.
    [13]J. J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, Temperature and Concentration Control over Interpenetration in a Metal-Organic Material, J. Am. Chem. Soc. 2009,131,17040-17041.
    [14]O. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, Control over Catenation in Metal-Organic Frameworks via Rational Design of the Organic Building Block, J. Am. Chem. Soc.2010,132, 950-951.
    [15]G. M. Sheldrick, SHELXS-97, Program for Crystal Structure
    Solution, Gottingen University, Germany,1997.
    [16]G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Gottingen University, Germany,1997.
    [17]H. Chun, D. N. Dybtsev, H. Kim, K. Kim, Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs:Implications for Hydrogen Storage in Porous Materials, Chem. Eur. J.,2005,11, 3521-3529.
    [18]A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr.,2003,36,7.
    [19]A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, The Netherlands,2006; available via http://www.cryst.chem.uu.nl/platon (for unix) and http://www.chem.gla.ac.uk/_louis/software/platon/(for MS Windows).
    [20]H. Xu, Y. D. Li, De novo prediction of ground state multiplicity and structural isomerism for transition metal complexes,.J. Mol. Struct.,2004,690,137.
    [21]X.-Y. Chen, B. Zhao, W. Shi, J. Xia, P. Cheng, D.-Z. Liao, S.-P. Yan, and Z.-H. Jiang, Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node, Chem. Mater. 2005,17,2866-2874.
    [22]Y. C. Liang, R. Cao, W. P. Su, M. C. Hong, W. J. Zhang, Syntheses, Structures, and Magnetic Properties of Two Gadolinium(ⅲ)-Copper(ⅱ) Coordination Polymers by a Hydrothermal Reaction, Angew. Chem. Int. Ed.2000,112, 3442-3445.
    [23]X. J. Zhao, G. S. Zhu, Q. R. Fang, Y. Wang, F. X. Sun and S. L Qiu, A Series of Three-Dimensional Lanthanide Coordination Compounds with the Rutile Topology, Cryst. Growth Des.2009,9, 737-742.
    [24]Y. F. Zhou, F. L. Jiang, D. Q. Yuan, B. L. Wu, R. H. Wang, Z. Z. Lin, M. C. Hong, Copper Complex Cation Templated Gadolinium(Ⅲ)-Isophthalate Frameworks, Angew. Chem. Int. Ed. 2004,43,5665-5668.
    [25]J. Luo, H. Xu, Y. Liu, Y. Zhao, L. L. Daemen, C. Brown, T. V. Timofeeva, S. Ma, H.-C. Zhou, Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework:Sorption Properties and Neutron Diffraction Studies, J. Am. Chem. Soc.2008, 130,9626-9627.
    [26]S. Q. Ma, X. S. Wang, D. Q. Yuan, H.-C. Zhou, A Coordinatively Linked Yb Metal-Organic Framework Demonstrates High Thermal Stability and Uncommon Gas-Adsorption Selectivity, Angew. Chem. Int. Ed.2008,47,4130-4133.
    [27]J. L. C. Rowsell, O. M. Yaghi, B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, Strategies for Hydrogen Storage in Metal-Organic Frameworks/High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites, Angew. Chem. Int. Ed.2005,44,4647.
    [28]X.-S. Wang, S. Q. Ma, P. M. Forster, D. Q. Yuan, J. Eckert, J. J. Lopez, B. J. Murphy, J. B. Parise, H.-C. Zhou, Enhancing H2 Uptake by " Close-Packing " Alignment of Open Copper Sites in Metal-Organic Frameworks, Angew. Chem. Int. Ed.2008,47, 7263-7266.
    [29]F. Nouar, J. Eckert, J. F. Eubank, P. Forster, M. Eddaoudi, Zeolite-like Metal-Organic Frameworks (ZMOFs) as Hydrogen Storage Platform:Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies, J. Am. Chem. Soc.2009,131, 2864-2870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700