碳微球的催化合成和自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C_(60)、洋葱状富勒烯(OLFs)及碳微球(CMSs)等零维碳材料以其独特的笼状结构和电学、磁学、化学等特殊的性能而受到人们的广泛关注,其中,C_(60)可看作最简单的OLFs,CMSs可以看作是石墨化程度较低的长大的OLFs。光子晶体是一种将不同介电常数的介质在空间中按一定周期排列而形成的人造晶体。光子晶体的基本特征是具有光子带隙,频率落在带隙中的光将不能传播,这使其比普通光学材料具有更广泛的应用。将碳材料用于制备光子晶体有着巨大的应用前景,关于这方面的研究也正成为人们的研究热点。
     本文主要采用化学气相沉积(CVD)法,以C2H2为碳源,制备了OLFs和CMSs,考察了催化剂对产物的影响,然后对产物进行了后处理并测试了产物的铁磁性能;本文以CMSs作为结构基团进行自组装,考察了溶剂、组装方法、基片、悬浮液pH值、悬浮液浓度和反应温度对自组装效果的影响。采用场发射扫描电子显微镜、高分辨透射电子显微镜、热重分析、拉曼光谱、X-射线衍射和原子力显微镜等对产物进行了表征分析,并利用振动样品磁强计(VSM)测试了产物的铁磁性能。结果表明:
     1、以NaCl分别担载Fe、Co、Ni作催化剂,采用CVD法在420℃进行反应,结果表明Fe/NaCl和Co/NaCl作催化剂时产物为内包金属的OLFs,而Ni/NaCl作催化剂时产物大部分为碳纳米管(CNTs);用Co/NaCl作催化剂,进一步探讨催化剂含量对产物的影响:当Co含量为2wt.%时,在此温度下用CVD法合成了大量直径分布在10-60 nm之间的内包Co的OLFs;没有催化剂时在420℃的低温下没有产物生成,将温度升高至950℃进行反应制备了CMSs;将OLFs用浓盐酸浸泡后,Co核仍被碳壳层包覆,说明碳包覆层保护Co颗粒免受浓酸腐蚀;进一步将样品在900℃热处理后,碳包覆层的石墨化程度略有提高;铁磁性能测试表明:产物具有独特的铁磁性能。
     2、用浓HNO3和H2O2(体积比为1:1)对CMSs进行了表面修饰,使其团聚现象有所改善;用NaOH溶液作溶剂配制悬浮液,以载玻片为基片,采用垂直沉积法可实现CMSs的自组装,得到CMSs薄膜。在一定温度下,pH≈13时得到了排列较为致密的薄膜;在此温度和pH值时,随着悬浮液浓度的增大,薄膜厚度增大,当浓度为2wt.%时,可得到排列较为致密的薄膜;进一步对反应温度进行探讨,发现较为适宜的沉积温度为50℃。所得样品在自然光的照射下,呈现出一定强度的反射光且颜色较为均匀,说明所得自组装膜有较好的均匀性,为下一步光学性能的测试奠定了基础。
Because of their unique spherical structure and special properties in electronics, magnetic, chemistry and so on, zero-dimensional carbon materials, such as C_(60), onion-like fullerenes (OLFs), and carbon microspheres (CMSs), have attracted much research interest. Among these materials, C_(60) is the simplest OLFs and CMSs are giant OLFs with low graphitized degree. Photonic crystals are artificially arranged periodic structures of materials with different dielectric constants in optical wavelength scale. The transmittance of light is forbidden in a wavelength range called photonic band gap. Photonic crystals have broader application prospect than common optical materials. It is promising to prepare photonic crystals using carbon materials as building blocks. The research in this area is becoming hot.
     In this paper, OLFs and CMSs were prepared by chemical vapor deposition (CVD) using acetylene as carbon source and the effects of the catalysts on the products were studied. Then the products were modified and the magnetic property of the products was measured. CMSs were used as building blocks of self-assembly. The effects of solvent, assembly method, substrate, pH value of the suspension, concentration of suspension and reaction temperature were investigated. Field emission scanning electron microscopy, high resolution transmission electron microscopy, thermogravimetry, Raman spectroscopy, X-ray diffraction, and atomic force microscopy were employed to characterize the samples. The ferromagnetic property of the products was measured with a vitrating sample magnetometer (VSM). The results are as follows:
     1. Metal-encapsulating OLFs were prepared using Fe/NaCl and Co/NaCl as catalysts by CVD at 420℃, while carbon nanotubes (CNTs) were prepared using Ni/NaCl as catalyst. The influence of catalyst content on the products was further discussed using Co/NaCl as catalyst. Lots of cobalt-encapsulating OLFs were prepared when the content of cobalt was 2wt.%. In absence of catalyst, no products were obtained at 420℃, while CMSs were prepared at elevated temperature of 950℃. After immersing in concentrated HCl, cobalt nanoparticles encapsulated by carbon shells were not removed. It means that carbon shells can protect the encapsulated cobalt cores against acid. When the products were further heat-treated at 900℃, cobalt-encapsulating OLFs with higher graphitization degree were obtained. Moreover, the results from the measurement of VSM also showed a unique magnetic property.
     2. CMSs oxidized by HNO3 and H2O2 (volune ratio 1:1) had better dispersion than as-synthsized CMSs. Suspension of oxidized CMSs was prepared using NaOH as solvent. Vertical deposition method was adopted for the self-assembly of CMSs into films using glass slide as substrate. Film with a more compact array was obtained by self-assembly at a fixed temperature when pH value of the suspension was about 13. The thickness of the film increased with increasing suspension concentration under fixed temperature and pH value. When suspension concentration was 2wt.%, a more dense film was prepared. Further investigation on the reaction temperature showed that the suitable temperature was 50℃. Sample showed a good reflection of light with uniform color, which indicates the formation of uniform CMSs film and thus good potential for preparation of photonic crystals.
引文
[1] Endo M, Kim YA, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs)-Basic properties and their battery applications [J]. Carbon, 2001, 39(9): 1287-1297.
    [2] Wei BQ, Vajtai R, Ajayan PM. Sequence growth of carbon fibers and nanotube networks by CVD process [J]. Carbon, 2003, 41(1): 185-188.
    [3] Ting JM, Huang NZ. Thickening of chemical vapor deposited carbon fiber [J]. Carbon, 2001, 39(6): 835-839.
    [4] Mukai SR, Masuda T, Hashimoto K, et al. Physical properties of rapidly grown vapor-grown carbon fibers [J]. Carbon, 2000, 38(3): 491-494.
    [5] Li YY, Bae SD, Sakoda A, et al. Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas [J]. Carbon, 2001, 39(1): 91-100.
    [6] Bai S, Li F, Yang QH, et al. Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures [J]. Chem Phys Lett, 2003, 376(1-2): 83-79.
    [7] Li YJ, Lau SP, Tay BK, et al. Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties [J]. Diam Relat Mater, 2001, 10(3-7): 878-882.
    [8] Yang SM, Chen XQ, Motojima SJ, et al. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts [J]. Carbon, 2005, 43(4): 827-834.
    [9]邹丽娜,郑咏梅,施宏丰等.光子晶体的研究新进展及应用[J].半导体光电,2006, 27(3): 231-235.
    [10] Kroto HW, Heath JR, O'Brien SC, et al. C60: Buckyminister-fullerenes [J], Nature, 1985, 318(6042): 162-163.
    [11] Kratschmer W, lanb L D, Fostiropoulos K, et al. Solid C60: A new form of carbon [J]. Nature, 1990, 347(6291): 354-357.
    [12] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
    [13] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation [J].Nature, 1992, 359(6397): 707-709.
    [14] Hou SM, Tao CG, Zhang GM, et al, Ultrahigh vacuum scanning probe microscopy studies of carbon onions, Physica E, 2001, 9(2): 300-304.
    [15]白春礼.扫瞄隧道显微技术及其应用.北京:上海科学技术出版社, 1991: 35-40.
    [16] Kilic C, Mehrez H, Ciraci S. Quantum point contact on graphite surface [J]. Phys Rev B, 1998, 58(12): 7872-7881.
    [17] Chen CP, Chang TH, Wang TF. Synthesis of magnetic nano-composite particles [J]. Ceram Int, 2001, 28(8): 925-930.
    [18] Hirata A, Igarashi M, Kaito T. Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles [J]. Tribology International, 2004, 37(11-12): 899-905.
    [19]葛爱英,许并社,王晓敏等.洋葱状富勒烯电磁特性的研究[J].物理化学学报, 2006, 22(2): 203-208.
    [20]王海英,王晓敏,章海霞等.电弧放电制备内包金属洋葱状富勒烯的研究[J].材料热处理学报, 2003, 23(4): 41-43.
    [21]刘雯,郭俊杰,李天保等.水下放电制备内包金属洋葱状富勒烯的研究[J].材料导报, 2006, 20(6): 132-133.
    [22] Xu BS, Guo JJ, Wang XM, et al. Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution [J]. Carbon, 2006, 44(13): 2631-2634.
    [23] Colbert DT, Zhang J, Mcclure SM, et al. Growth and sintering of fullerene nanotubes [J]. Science, 1994, 266(5188): 1218-1222.
    [24]刘雯,李红晋,杨永珍等.环己烷放电制备洋葱状富勒烯的研究[J].中北大学学报, 2009, 30(1): 55-58.
    [25] Terrons H, Terrones M. The transformation of polyhedral particles into graphitic onions [J]. J Phys Chem Solids, 1997, 58(11): 1789-1796.
    [26] Xu BS, Tanaka SI. Multiple-nulei onion-like fullerenes cultivated by electron beam irradiation. Proc Int Conf ICSE, Cambridge, 1997: 355-360.
    [27] Golberg D, Bando Y, Kurashima K, et al. Fullerene and onion formation under electron irradiation of boron-doped graphite [J]. Carbon, 1999, 37(2): 293-299.
    [28] Banhart F, Fuller T, Redlich P H, et al. The formation, annealing and self-compression ofcarbon onions under electron irradiation [J]. Chem Phys Lett, 1997, 269(3-4): 349-355.
    [29]李天保,刘光焕,刘旭光等.内包铁洋葱状富勒烯的合成和表征[J].材料热处理学报, 2005, 26(3): 28-30.
    [30] Xu BS, Li TB, Han PD, et al. Several features of the iron-included onion-like fullerenes [J]. Mater Lett, 2006, 60(16): 2042-2045.
    [31] Wang XM, Xu BS, Liu XG, et al. Synthesis of Fe included Onion-like Fullerenes by chemical vapor deposition [J]. Diam Relat Mater, 2006, 15(1): 147-150.
    [32] Serin V, Brydson R, Scott A, et al. Evidence for the solubility of boron in graphite by electron energy loss spectroscopy [J]. Carbon, 2000, 38(4): 547-554.
    [33] Cabioc’h T, Riviere JP, Delafond J. A new technique for fullerene onion formation [J]. J Mater Sci, 1995, 30(19): 4787-4792.
    [34] Cabioc’h T, Thune E, Rivie’re JP, et al. Structure and properties of carbon onion layers deposited onto various substrates [J]. J Appl Phys, 2002, 91(3): 1560-1567.
    [35] Cabioc’h T, Thune E, Jaouen M. Carbon-onion thin-film synthesis onto silica substrates [J]. Chem Phys Lett, 2000, 320(1-2): 202-205.
    [36] Li BY, Wei BQ, Liang J, et al. Transformation of carbon nanotubes to nanoparticles by ball milling process [J]. Carbon, 1999, 37(3): 493-497.
    [37]杜爱兵,刘旭光,许并社.煤基洋葱状富勒烯制备及其结构表征[J].无机材料学报, 2005, 20(4): 779-784.
    [38]符冬菊,刘旭光,杜爱兵等.微波等离子体法合成洋葱状富勒烯的研究[J].无机材料学报, 2006, 21(3): 576-582.
    [39]蔺娴,刘旭光,符冬菊等.等离子体条件下煤基富勒烯的制备及生成机理[J].煤炭转化, 2006, 29(4): 1-4.
    [40] Singh GS, Lal D, Tripathi VS. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques [J]. J Chromatogr A, 2004, 1036(2): 189-195.
    [41] Ma AL, Wang XM, Li TB, et al. Characteristics of carbon microspheres and study on its adsorption isotherms [J]. Mater Sci Eng A, 2007, 443(1-2): 54-59.
    [42] Morawski AW, Inagaki M. Application of modified synthetic carbon for adsorption of trihalomethanes (THMs) from water [J]. Desalination, 1997, 114(1): 23-27.
    [43] Przepi?rski J, Tryba B, Morawski AW. Adsorption of carbon dioxide on phenolic resin-based carbon spheres [J]. Appl Surf Sci, 2002, 196(1-4): 296-300.
    [44] Wang LH, Fujita M, Inagaki M. Relationship between pore surface areas and electric double layer capacitance in non-aqueous electrolytes for air-oxidized carbon spheres [J]. Electrochim Acta, 2006, 51(19): 4096-4102.
    [45] Jin YZ, Gao C, Hsu WK, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons [J]. Carbon, 2005, 43(9): 1944-1953.
    [46] Pol VG, Motiei M, Gedanken A, et al. Carbon spherules: synthesis, properties and mechanistic elucidation [J]. Carbon, 2004, 42(1): 111-116.
    [47] Yoon SB, Kim JY, Kim JH, et al. Template synthesis of nanostructured silica with hollow core and mesoporous shell structures [J]. Curr Appl Phys, 2006, 6(6): 1059-1063.
    [48] Liu XG, Liu HY, Yang YZ, et al. Modification of carbon microspheres in different acids [C]. 2008 Carbon Conference. Japan. 2006: 65.
    [49] Xu BS, Guo JJ, Jia HS et al. Electrocatalytic properties of platinum on hard carbon spherules derived from deoiled asphalt for methanol oxidation [J]. Catal Today, 2007, 125(3-4): 169-172.
    [50]蔡小梅. CdS-SiO2蛋白石光子晶体的制备及其性能研究[D].西安:西北工业大学, 2006.
    [51]夏明哲.自组装胶体(光子)晶体及其改性[D].杭州:浙江大学, 2005.
    [52] Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics [J]. Phys Rev Lett, 1987, 58(20): 2059-2062.
    [53] John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys Rev Lett, 1987, 58(23): 2486-2489.
    [54]丁敬,陈东,唐芳琼.胶体自组装法形成光子带隙材料[J].化学进展, 2004, 16(4): 492-499.
    [55]崔秀芝. Si基二维孔构ZnO周期结构薄膜生长及性能研究[D].曲阜:曲阜师范大学, 2008.
    [56]张俊虎,杨柏.基于自组装胶体晶体构筑有序微结构[J].科学通报, 2009, 54(6): 717-728.
    [57] Vos WL, Sprik R, Blaaderen AV, et al. Strong effects of photonic band structures on the diffraction of colloidal crystals [J]. Phys Rev B, 1996, 53(24): 16231-16235.
    [58]周倩,董鹏,程丙英.大尺寸SiO2胶体颗粒的重力沉降自组装研究[J].物理学报, 2004, 53(11): 3984-3989.
    [59] Miguez H, Meseguer F, Lopez C, et al. Evidence of fcc crystallization of SiO2 nanospheres [J]. Langmuir, 1997, 13(23): 16231-16235.
    [60] Lopez C, Vazquez L, Meseguer F, et al. Photonic crystal made by close packing SiO2 submicron spheres [J]. Superlattices Microstruct, 1997, 22(3): 399-404.
    [61]丁涛,刘占芳,宋恺.三维光子晶体的制备[J].化学进展, 2008, 20(9): 1283-1293.
    [62]许丕池,姜德生,余海湖等. SiO2溶胶及其静电自组装薄膜的制备[J].化学物理学报, 2004, 17(2): 165-170.
    [63]何方方,许丕池,卢忠远等.静电自组装法制备SiO2光学增透膜[J].四川大学学报, 2005, 37(3): 90-93.
    [64]李小甫,余海湖,姜德生.静电自组装技术及其应用[J].四川大学学报, 2005, 37(3): 90-93.
    [65] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites [J]. Science, 1997, 277(5330): 1232-1237.
    [66]李小甫,余海湖,姜德生.静电自组装技术及其应用[J].高技术通讯, 2002, 12(11): 51-54.
    [67]白立涛.在各种基底上构筑聚合物微球稳定排列方法的研究[D].长春:吉林大学, 2004.
    [68] Gu ZZ, Fujishima A, Sato O. Fabrication of high-quality opal films with controllable thickness [J]. Chem Mater, 2002, 14(2): 760-765.
    [69]刘建树.光子晶体材料的制备及其应用[D].北京:北京化工大学, 2007.
    [70]王艳平,朱永政,陈洪波等.光子晶体及其自组装制备[J].光电子技术与信息, 2006, 19(3): 5-9.
    [71]于子龙,陈福义,介万奇等. CdSe-SiO2光子晶体的垂直沉积及近红外变频特性[J].功能材料, 2008, 39(1): 20-25.
    [72]赵荻,汪晨怿,钱达兴. SiO2胶体晶体的自组装结构及其带隙特征[J].材料导报, 2008, 22(4): 119-128.
    [73] Ye YH, Francois L, Alain H. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality [J]. Appl Phys Lett, 2001, 78(1): 52-54.
    [74] Zhou Z, Zhou XS. Flow-controlled vertical deposition method for the fabrication of photonic crystals [J]. Langmuir, 2004, 20(4): 1524-1526.
    [75]刘立营,王秀峰,吴艳霞等.改性二氧化硅微球的制备及其光子晶体自组装[J].硅酸盐通报, 2008, 27(6): 1217-1229.
    [76] Dimitrov AS, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J]. Langmuir, 1996, 12(5): 1303-1311.
    [77] Jiang P, Bertone JF, Hwang KS, et al. Single-crystal colloidal multilayers of controlled thickness [J]. Chem Mater, 1999, 11(8): 2132-2140.
    [78]汪静,李康,钱卫平等.垂直沉积法制备二氧化硅胶体晶体及其表征[J].东南大学学报, 2003, 33(2): 208-210.
    [79]程开富.光子晶体在光通信领域中的应用[J].电子科学技术评论, 2004, 19(1): 57-65.
    [80]刘彦平.光子晶体材胶体球的制备、自组装及其性质[D].兰州:兰州大学, 2008.
    [81] Gregan RF, Mangan BJ, Knight JC, et al. Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285(5433): 1537-1539.
    [82] Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79.
    [83]李春霞.纳米碳光子晶体的研究进展[J].科技资讯, 2007, 16: 10-11.
    [84] Han PD, Xu BS, Liang J, et al. Band gaps of two-mensional photonic crystal structure using fullerene films [J]. Physica E, 2004, 25(1): 29-34.
    [85] Xu BS, Han PD, Liang J, et al. Theroretical investigation of reflectivity of fullerene-(C60, C70)/AIN multilayers in UV region [J]. Solid State Commun, 2005, 133(6): 353-357.
    [86] Gaevski ME, Kognovitskii SO, Konnikov SG, et al. Two-dimensional photonic crystal fabrication using fullerene films [J]. Nanotechnology, 2000, 11(4): 270-273.
    [87] Zakhidov AA, Khayrullin II, Baughman RH, et al. CVD synthesis of carbon-based metallic photonic crystals [J]. Nanostructured Materials, 1999, 12(5-8): 1089-1095.
    [88]韩凤梅,郭艳川,陈丽娟. AAO模板法生长碳纳米管阵列及形成机理研究[J].无机化学学报, 2005, 21(7): 1004-1008.
    [89]林青,贺琪.化学气相沉积法制备碳纳米管有序阵列[J].青岛大学学报, 2008, 23(3): 23-29.
    [90]栾峰,章蓓,徐军等.用纳米碳制备光子晶体[J].红外与毫米波学报, 2002, 21(7): 53-56.
    [91]王晓敏,刘旭光,李天保等.洋葱状富勒烯的拉曼散射[J].物理化学学报, 2004, 20(7): 731-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700