纳米磁流体的磁光性质及其在新型光学材料和器件上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米磁流体是一种具有磁性的纳米材料,它具有液体的流动性和光学性质可调谐的特点,是一种新型的光学功能材料。本论文主要研究纳米磁流体的相关磁光学性质,并探讨其在光子器件和材料上的应用。
     本文首先从纳米磁流体的发展历史、主要类型和研究进展等方面对纳米磁流体的背景知识做了综述。继而引出其主要的光学性质及其在各种光学器件上的应用。磁流体之所以拥有这些性质及应用的一个非常重要的原因是因为其在外加匀强磁场的作用下,其中的磁性颗粒四氧化三铁Fe3O4会产生团聚现象,从而生成周期性分布的磁链,这些磁链的方向与外加匀强磁场的方向平行,所以我们对磁性颗粒团簇形成磁链的现象进行了实验研究。此外,二向色性也是磁流体重要的磁光性质之一,对其研究表明,磁流体在外加磁场下对不同偏转态的光吸收率存在差异。
     基于上述性质,人们研究出了许多基于磁流体的光子学器件,由于磁流体的光学透射率对这些光子学器件的性能会产生很大的影响,所以研究不同情况下的磁流体光学透射率是很有意义的。我们就透射率随温度的变化进行了研究,实验发现,当外加磁场强度保持不变时,随着温度的升高,磁性颗粒的热运动效应增强,这样就抑制了磁链的形成。因此,光学透射率增加。通过理论分析,我们发现磁流体透射率随着其所处环境温度的变化呈e指数型变化。这个实验结果有助于我们设计一种基于纳米磁流体的温度传感器。通过对灵敏度的研究,发现该温度传感器较适合用于高温环境(例如高于60℃)。
     由于磁流体的吸收系数相对较大,当激光束照射到磁流体上时,它会吸收一部分激光能量,这对其本身的光学性质会有影响。为此我们研究了一种基于纳米磁流体和多孔氧化铝薄膜的新型纳米磁光材料的制备过程,并对其光透射和磁光性质进行了研究。与传统的磁流体相比,该材料具有更好的光透射性质。同时,我们发现了该材料的一个独特的磁光性质:负梯度磁线性二向色性,与传统磁流体的郎之万型有很大的区别。该现象可以用两种平均直径不同的磁畴间的反铁磁耦合现象来解释。我们认为基于该材料的这种特殊的磁光效应,对将来集成光器件的发展有着潜在的作用。
Magnetic fluid is a kind of nanostructured material possessing magnetism. It is a novel functional material in optical field, which has both the fluidity of liquid and the tunable optical properties. This dissertation is mainly concerned with the magneto-optical properties of nanostructured magnetic fluid and its potential applications in photonic devices and materials.
     We first make a comprehensive introduction on magnetic fluid concerning its development history, main types and research progress. Then, we introduce its magneto-optical properties and its potential applications in photonic devices. One of the most important reasons that magnetic fluid may has these properties and applications is that when a magnetic field is applied parallel to the plane of a magnetic fluid thin film, magnetic chains form in the same direction as the magnetic field. As a result, we carry out experiments to study the agglomeration of magnetic particles in magnetic fluid. In addition, the dichroism is also one of the important magneto-optical properties of magnetic fluid. Experimental studies have shown that optical absorption rates are different for different deflection state of magnetic fluid under an external magnetic field.
     Based on the properties above, scientists have developed many magnetic fluid based photonic devices. Because the optical transmission of MF greatly influences the properties and the efficiency of these photonic devices, it is worth researching the optical transmission of MF under different conditions. We carried out experiments to investigate the temperature dependence of the optical transmission. In conclusion, the effect of thermal agitation is enlarged by rising the temperature when the amplitude of the magnetic field is unchanged, which suppresses the magnetic chains that are formed. Thus, the optical transmission is enlarged. From a theoretical analysis, we see that the transmittance fits an exponential growth with the ambient temperature around the MF, which is in good agreement with the experimental results. After the analysis of its sensitivity, it is known that this temperature sensor designed is suitable for using in higher temperature, to say above 60oC.
     When the magnetic fluid is irradiated by a laser beam, a part of the energy of the laser beam will be absorbed by the magnetic fluid for it has a relative large coefficient. For this reason, optical magnetic nanostructures, based on anodic aluminum oxide membranes and magnetic fluids, were fabricated and investigated in both transmission and magneto-optical properties. A strong enhancement in transmission property has been found compared with the traditional magnetic fluids. Excellent magneto-optical characteristic was obtained: a negative differential magnetic linear dichroism was observed, quite different from the traditional Langevin type of magnetic fluids. This phenomenon was interpreted by an antiferromagnetic coupling between two types of magnetic grains having different average diameters in the nanocomposites. Based on its outstanding magneto-optical effects, it may open potentials for future integral optical devices.
引文
[1] A. Einstein, Mitt. Phys. Ges. (Zurich) no. 18, 47 (1916); A. Einstein, Z. Phys. 18, 121(1917).
    [2]陈英礼,激光导论,(电子工业出版社,北京,1986).
    [3] T. H. Maiman,“Stimulated Optical Radiation in Ruby,”Nature 187, 493 (1960).
    [4] T. H. Maiman,“Stimulated Optical Emission in Fluorescent Solids: I. Theoretical Considerations,”Phys. Rev. 123, 1145 (1961).
    [5] T. H. Maiman, R. H. Hoskins, I. J. D'Haenens, C. K. Asawa, and V. Evtuhov,“Stimulated Optical Emission in Fluorescent Solids: II. Spectroscopy and Stimulated Emission in Ruby,”Phys. Rev. 123, 1151 (1961).
    [6]周文,陈秀峰,和杨冬晓,光子学基础,(浙江大学出版社,杭州,2000).
    [7]明海,张国平,和谢建平,光电子技术,(中国科学技术大学出版社,合肥,1998).
    [8]雷肇棣,光纤通信基础,(电子科技大学出版社,成都,1997).
    [9]于美文,光全息学及其应用,(北京理工大学出版社,北京,1996).
    [10]池长青,王之珊,和赵丕智,铁磁流体力学,(北京航空航天大学出版社,北京,1993).
    [11]马小娟,可调粘滞性CoFe2O4离子型磁性液体的制备及其磁致光投射变化特性研究,[学位论文],西南师范大学,2003.
    [12]王晨,胡军,罗伟,和严密,“磁性液体的研究进展”,金属功能材料10,35(2003).
    [13] B. Wilson, Account of Dr. Knight’s method of making artificial Lodeston, Pbil.Tracsact, (1779).
    [14] F. Bitter,“On Inhomogeneities in the Magnetization of Ferromagnetic Materials,”Phys. Rev. 38, 1903 (1931).
    [15] F. Bitter,“Experiments on the Nature of Ferromagnetism,”Phys. Rev. 41, 507 (1932).
    [16] W. C. Elmore,“Ferromagnetic colloid for studying magnetic structures,”Phys. Rev. 54, 309 (1938).
    [17] W. C. Elmore,“The Magnetization of Ferromagnetic Colloids,”Phys. Rev. 54, 1092 (1938).
    [18] S. S. Papell,“Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,”U. S. Patent 3215572, (1965).
    [19] C. H. Griffiths, M. P. O'Horo, and T. W. Smith,“The structure, magnetic characterization, and oxidation of colloidal iron dispersions,”J. Appl. Phys. 50, 7108 (1979).
    [20] S. R. Hoon, M. Kilner, G. J. Russell, and B. K. Tanner,“Preparation and properties of nickel ferrofluids,”J. Magn. Magn. Mater. 39, 107 (1983).
    [21] I. Nakatani, M. Hijikata, and K. Ozawa,“Iron-nitride magnetic fluids prepared by vapor-liquid reaction and their magnetic properties,”J. Magn. Magn. Mater. 122, 10 (1993).
    [22] R. Massart,“Preparation of aqueous magnetic liquids in alkaline and acidic media,”IEEE Trans. Magn. 17, 1247 (1981).
    [23] F. A. Tourinho, R. Franck, and R. Massart,“Aqueous ferrofluids based on manganese and cobalt ferrites,”J. Mater. Sci. 25, 3249 (1990).
    [24] A. T. Skjeltorp,“Ordering phenomena of particles dispersed in magnetic fluids (invited),”J. Appl. Phys. 57, 3285 (1985).
    [25] P. Davies, J. Popplewell, G. Martin, A. Bradbury, and R. W. Chantrell,“Monte Carlo simulations of the structure of magnetic fluid composites,”J. Appl. Phys.: Appl. Phys. 19, 469 (1986).
    [26] A. T. Skjeltorp,“Monodisperse particles and ferrofluids: A fruit-fly model system,”J. Magn. Magn. Mater. 65, 195 (1987).
    [27]徐明祥,“磁性液体复合体的磁光效应”,红外与毫米波学报18,353(1999).
    [28] R. E. Rosensweig,“Fluidmagnetic buoyancy,”AIAA J. 4, 1751 (1966).
    [29] J. L. Neuringer, and R. E. Rosensweig,“Ferrohydrodynamics,”Phys. Fluids 7, 1927 (1964).
    [30]腾荣厚,“浅谈磁性液体”,粉末冶金工业11,48(2001).
    [31]王瑞金,“磁流体技术的应用与发展”,新技术新工艺10,15(2001).
    [32]腾荣厚,“浅谈磁性液体(续)”,粉末冶金工业11,42(2001).
    [33]马小娟,可调粘滞性CoFe2O4离子型磁性液体的制备及其磁致光透射变化特性研究,[学位论文],西南师范大学,2003.
    [34]王金宋等,磁性材料及其应用,(国防工业出版社,北京,1989).
    [35]齐凤春,“磁性液体”,材料导报12,17(1998).
    [36] A. J. Freeman, Proceedings on the 5th international conference on magnetic fluids, 85 (1990).
    [37]许孙曲,“第六届磁流体国际会议学术论文综述”,磁性材料及器件25,25(1994).
    [38] J. Rivas, M. A. López Quintela, M. G. Bonome, R. J. Duro and J. M. Greneche“Production and characterization of FeB amorphous particles,”J. Magn. Magn. Mater. 122, 1 (1993).
    [39]李德才,磁性液体理论及应用,(科学出版社,北京,2003).
    [40] S. Y. Yang, W. S. Tse, H. E. Horng, H. C. Yang, and C.-Y. Hong,“Optical anisotropy induced by external magnetic fields on magnetic fluid films,”J. Magn. Magn. Mater. 226-230, 1992 (2001).
    [41] C.-Y. Hong,“Optical switch devices using magnetic fluid thin films,”J. Magn. Magn. Mater. 201, 178 (2001).
    [42] L. Martinez, R. Rakowski, and F. Cecelja,“Design of a magneto-optic residual current device using aqueous ferrofluid as the sensing material,”In IMTC 2004- instrumentation and measurement, Technology conference Como, Italy, 804 (2004).
    [43] H. E. Horng, J. J. Chieh, Y. H. Chao, S. Y. Yang, C.-Y. Hong, and H. C. Yang,“Designingoptical-fiber modulators by using magnetic fluids,”Opt. Lett. 30, 543 (2005).
    [44] C.-Y. Hong, S. Y. Yang, K. L. Fang, H. E. Horng, and H. C. Yang,“Mach-Zehnder interferometer by utilizing phase modulation of transmitted light through magnetic fluid films possessing tunable refractive index,”J. Magn. Magn. Mater. 297, 71 (2006).
    [45] H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh, C.-Y. Hong, and H. C. Yang,“Tunable optical switch using magnetic fluids,”Appl. Phys. Lett. 85, 5592 (2004).
    [46] T. Du, and W. Luo,“Nonlinear optical effects in ferrofluids induced by temperature and concentration cross coupling,”Appl. Phys. Lett. 72, 272 (1998).
    [47] T. Du, S. Yuan, and W. Luo,“Thermal lens coupled magneto-optical effect in a ferrofluid,”Appl. Phys. Lett. 65, 1844 (1994).
    [48] J.-W. Seo, H. Kim, D. Park, and H. Lee,“Microfluidic MEMS-based light modulator using magnetic fluid suitable for flat panel display applications,”J. Microelectromechanical. Sys. 14, 763 (2005).
    [49] J.-W. Seo, H. Kim, and S. Sung,“Design and fabrication of a magnetic microfluidic light modulator using magnetic fluid,”J. Magn. Magn. Mater. 272-276, e1787 (2004).
    [50] W. E. L. Hass, and J. E. Adams,“Diffraction effects in ferrofluids,”Appl. Phys. Lett. 27, 571 (1975).
    [51] Y. W. Huang, S. T. Hu, S. Y. Yang, H. E. Horng, J. C. Hung, C.-Y. Hong, C. H. Chao, and C. F. Lin,“Tunable diffraction of magnetic fluid films and its potential application in coarse wavelength-division multiplexing,”Opt. Lett. 29, 1867 (2004).
    [52] H. E. Horng, C.-Y. Hong, S. L. Lee, C. H. Ho, S. Y. Yang, and H. C. Yang,“Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields,”J. Appl. Phys. 88, 5904 (2000).
    [53] http://www.ieo.ntnu.edu.tw/index-1.htm.
    [54] I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th Rasing,“Magnetic photonic crystals,”J. Phys. D: Appl. Phys. 36, R277 (2003).
    [55] H. E. Horng, S. Y. Yang, Y. H. Ke, C.-Y. Hong, W. S. Tse, and H. C. Yang,“Study fo bendingangles for the potential photonic-crystal waveguides by using magnetic fluid,”In Seventh Optoelectronics and Communications Conference (Oecc2002) Technical Digest, July 2002, Pacifico Yokohama, 366 (2002).
    
    [1] P. Moriarty,“Nanostructured materials,”Rep. Prog. Phys. 64, 297 (2001).
    [2] R. E. Rosensweig, Ferrohydrodynamics, (Cambridge University Press, Cambridge,1985).
    [3] H. Wang, Y. Zhu, C. Boyd, W. Luo, A. Cebers, and R. E. Rosensweig,“Periodic branched structures in a phase-separated magnetic colloid,”Phys. Rev. Lett. 72, 1929(1994).
    [4] T. Du, and W. Luo,“Intensity dependent transmission dynamics in magnetic fluids,”J. Appl. Phys. 85, 5953 (1999).
    [5] W. Luo, T. Du, and J. Huang,“Field-induced instabilities in a magnetic fluid,”J. Magn. Magn. Mater. 201, 88 (1999).
    [6] P. Goldberg, J. Hansford, and P. J. van Heerden,“Polarization of Light in Suspensions of Small Ferrite Particles in a Magnetic Field,”J. Appl. Phys. 42, 3874 (1971).
    [7] A. Martinet,”Biréfringence et dichro?sme linéaire des ferrofluides sous champ magnétique,”Rheol. Acta. 13, 260 (1974).
    [8] W. E. L. Hass, and J. E. Adams,“Diffraction effects in ferrofluids,”Appl. Phys. Lett. 27, 571 (1975).
    [9] P. C. Scholten,“Magnetic measurements on particles in suspension,”IEEE Trans. On MagneticsMAG-11, 1400 (1975).
    [10] G. A. Jones, and I. B. Puchalska,“The birefringent effects of magnetic colloid applied to the study of magnetic domain structures,”Phys. Stat. Sol. (a) 51, 549 (1979).
    [11] H. W. Davies, and J. P. Llewellyn,“Magnetic birefringence of ferrofluids. II. Pulsed field measurements,”J. Phys. D: Appl. Phys. 12, 1357 (1979).
    [12] H. W. Davies, and J. P. Llewellyn,“Magnetic birefringence of ferrofluids. I. Estimation of particle size,”J. Phys. D: Appl. Phys. 12, 311 (1979).
    [13] P. C. Scholten,“The origin of magnetic birefringence and dichroism in magnetic fluids,”IEEE Trans. on Magnetics MAG-16, 221 (1980).
    [14] R. V. Mehta,“Scattering and polarization of light by magnetic fluids,”IEEE Trans. On Magnetics MAG-16, 203 (1980).
    [15] R. W. Chantrell, A. Bradbury, J. Popplewell, and S. W. Charles,“Agglomerate formation in a magnetic fluid,”J. Appl. Phys. 53, 2742 (1982).
    [16] S. Taketomi,“Magnetic Fluid's Anomalous Pseudo-Cotton Mouton Effects about 107 Times Larger than That of Nitrobenzene”Jpn. J. Appl. Phys. 22, 1137 (1983).
    [17] R. W. Chantrell, A. Bradbury, and S. Menear,“Birefringence of weakly interacting fine particels,”J. Appl. Phys. 57, 4268 (1985).
    [18] J. P. Llewellyn,“Form birefringence in ferrofluids,”J. Phys. D: Appl. Phys. 16, 95 (1983).
    [19] D. Y. Chung, T. R. Hickman, R. P. De Paula, and J. H. Cole,“Magneto-optics of ferrofluids, using fiber optics,”J. Magn. Magn. Mater. 39, 71 (1983).
    [20] A. T. Skjeltorp,“One- and Two-Dimensional Crystallization of Magnetic Holes,”Phys. Rev. Lett. 51, 2306 (1983).
    [21] G. A. Jones,“Aggregation of water-based magnetic liquids observed with the polarising microscope,”J. Phys. D: Appl. Phys. 18, 1281 (1985).
    [22] P. Davies, J. Popplewell, G. Martin, A. Bradbury, and R. W. Chantrell,“Monte Carlo simulations of the structure of magnetic fluid composites,”J. Phys. D: Appl. Phys. 19, 469 (1986).
    [23] J. R. Birch, J. P. Llewellyn, and et al.,“Modulation of near-millimeter-wavelength radiation bymagnetic fluids,”Elect. Lett. 21, 313 (1985).
    [24] S. W. Charles,“Some applications of magnetic fluids—use as an ink and in microwave systems,”J. Magn. Magn. Mater. 65, 350 (1987).
    [25] J. C. Bacri, V. Cabuil, R. Massart, R. Perzynski, and D. Salin,“Ionic ferrofluid: Optical properties,”J. Magn. Magn. Mater. 65, 285 (1987).
    [26] S. Taketomi, S. Ogawa, H. Miyajima, S. Chikazumi, K. Nakao, T. Sakakibara, T. Goto, and N. Miura,“Dynamical properties of magneto-optical effect in magnetic fluid thin films,”J. Appl. Phys. 64, 5846 (1988).
    [27] Y. L. Raikher, and P. C. Scholten,“Magnetic colloid in an AC magnetic field; Constant birefringence effect,”J. Magn. Magn. Mater. 74, 275 (1988).
    [28] B. J. Liang, and S.-H. Chen,“Electric-field-induced molecular reorientation of a magnetically biased ferronematic liquid-crystal film,”Phys. Rev. A 39, 1441 (1989).
    [29]林曼倩,磁流体的磁光效应,[学位论文],台湾,中山大学(台湾),2001.
    [30] A. A. Rousan, N. A Yusuf, H. M. El-Ghanem,“On the concentration dependence of light transmission in magnetic fluids,”IEEE Tans. on Magn. 85, 1653 (1988).
    [31] N. Inaba, H. Miyajima, H. Takahashi, S. Taketomi, and S. Cjikazumi,“Magnetooptical absorption in infrared region for magnetic fluid thin film,”Magnetics Conference, 1989. Digests of INTERMAG '89., International, GQ10 (1989).
    [32] K. T. Wu, Y. D. Yao, C. R. C. Wang, P. F. Chen, and E. T. Yeh,“Magnetic field induced optical transmission study in an iron nanoparticles ferrofluid,”J. Appl. Phys. 85, 5959 (1999).
    [33] K. T. Wu, Y. D. Yao, and H. K. Huang,“Magnetic and optical studies of magnetic colloidal particles in water and oleic acid,”J. Appl. Phys. 87, 6932 (2000).
    [34] K. T. Wu, Y. D. Yao, and H. K. Huang,“Comparison of dynamic and optical properties of Fe3O4 ferrofluid emulsion in water and oleic acid under magnetic field,”J. Magn. Magn. Mater. 209, 246 (2000).
    [35] T. Du, and W. Luo,“Intensity dependent transmission dynamics in magnetic fluids,”J. Appl. Phys. 85, 5953 (1999).
    [36] S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, C.-Y. Hong, and H. C. Yang,“Origin of field-dependent optical transmission of magnetic fluid films,”Appl. Phys. Lett. 79, 2372 (2001).
    [37] S. Y. Yang, Y. T. Hsiao, Y. W. Huang, H. E. Horng, C.-Y. Hong, H. C. Yang,“Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,”J. Magn. Magn. Mater. 281, 48 (2004).
    [38] J. Li, B. Zhao, Y. Lin, X. Qiu, and X. Ma,“Transmission of light in ionic ferrofluid,”J. Appl. Phys. 92, 1128 (2002).
    [39] S. Y. Yang, Y. F. Chen, H. E. Horng, C.-Y. Hong, W. S. Tse, and H. C. Yang,“Magnetically-modulated refractive index of magnetic fluid films,”Appl. Phys. Lett. 81, 4931 (2002).
    [40] H. E. Horng, C.-Y. Hong, S. Y. Yang, and H. C. Yang,“Designing the refractive indices by using magnetic fluids,”Appl. Phys. Lett. 82, 2434 (2003).
    [41] Y. F. Chen, S. Y. Yang, W. S. Tse, H. E. Horng, C.-Y. Hong, and H. C. Yang,“Thermal effect on the field-dependent refractive index of the magnetic fluid film,”Appl. Phys. Lett. 82, 3481 (2003).
    [42] S. Y. Yang, J. J. Chieh, H. E. Horng, C.-Y. Hong, and H. C. Yang,“Origin and applications of magnetically tunable refractive index of magnetic fluid films,”Appl. Phys. Lett. 84, 5204 (2004).
    [43] R. W. Chantrell, A. Bradbury, J. Popplewell, and S. W. Charles,“Particle cluster configuration in magnetic fluids,”J. Phys. D: Appl. Phys. 13, L119 (1980).
    [44] N. A. Yusuf,“Field and concentration dependence of chain formation in magnetic fluids,”J. Phys. D: Appl. Phys. 22, 1916 (1989).
    [45] T. Du, S. Yuan, and W. Luo,“Thermal lens coupled magneto-optical effect in a ferrofluid,”Appl. Phys. Lett. 65, 1844 (1994).
    [46] P. C. Morais, S. W. da Silva, M. A. G. Soler, and N. Buske,“Raman spectroscopy in magnetic fluids,”Biomolecular Engineering 17, 41 (2001).
    [47]李德才,磁性液体理论及应用,(科学出版社,北京,2003).
    [48]池长青,王之珊,和赵丕智,铁磁流体力学,(北京航空航天大学出版社,北京,1993).
    [49] M. M. Maiorov,“Faraday effect in magnetic fluids at a frequency 10 GHz,”J. Magn. Magn. Mater.252, 111 (2002).
    
    [1] S. Y. Yang, Y. F. Chen, H. E. Horng, C.-Y. Hong, W. S. Tse and H. C. Yang, Appl. Phys. Lett. 81, 4931 (2002).
    [2] H. E. Horng, C.-Y. Hong, S. Y. Yang and H. C. Yang, Appl. Phys. Lett. 82, 2434 (2003).
    [3] S. Y. Yang, J. J. Chieh, H. E. Horng, C.-Y. Hong and H. C. Yang, Appl. Phys. Lett. 84, 5204 (2004).
    [4] H. E. Horng, S. Y. Yang, S. L. Lee, C.-Y. Hong and H. C. Yang, Appl. Phys Lett. 79, 350 (2001).
    [5] C.-Y. Hong, H. E. Horng, I. J. Jang, J. M. Wu, S. L. Lee, W. B. Yeung and H. C. Yang, J. Appl. Phys. 83, 6771 (1998).
    [6] M. M. Maiorov, J. Magn. Magn. Mater. 252, 111 (2002).
    [7] C.-Y. Hong, J. Appl. Phys. 85, 5962 (1999).
    [8] Z. Di, X. Chen, S. Pu, X. Hu and Y. Xia, Appl. Phys. Lett. 89, 211106 (2006).
    [9] Z. Di, X. Chen, J. Chen and Y. Xia, Appl. Phys. Lett. 90, 161129 (2007).
    [10] A. F. Bakuzis, K. Skeff Neto, P. P. Gravina, L. C. Figueiredo, P. C. Morais, L. P. Silva, R. B. Azevedo and O. Silva, Appl. Phys. Lett. 84, 2355 (2004).
    [11] P. C. Scholten, IEEE Trans. Magn. 16, 221 (1980).
    [12] M. T. A. Eloi, R. B. Azevedo, E. C. D. Lima, A. C. M. Pimenta and P. C. Morais, J. Magn. Magn. Mater. 293, 220 (2005).
    [13] Miranda and P. P. C. Sartoratto, J. Appl. Phys. 101, 09J106 (2007).
    [14] S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima and S. Chikazumi, J. Phys. Soc. Jpn. 56, 3362 (1987).
    [15] V. Socoliuc, M. Rasa, V. Sofonea, D. Bica, L. Osvath and D. Luca, J. Magn. Magn. Mater. 191,241 (1999).
    [16] J.-W. Seo, S. J. Park and K. O. Jang, J. Appl. Phys. 85, 5956 (1999).
    [17] C.-Y. Hong, J. Magn. Magn. Mater. 201, 178 (1999).
    [18] H. E. Horng, C. S. Chen, K. L. Fang, S. Y. Yang, J. J. Chieh C.-Y. Hong and H. C. Yang, Appl. Phys. Lett. 85, 5592 (2004).
    [19] S. Pu, X. Chen, L. Chen, W. Liao, Y. Chen and Y. Xia, Appl. Phys. Lett. 87, 021901 (2005).
    [20] S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, C.-Y. Hong and H. C. Yang, Appl. Phys. Lett. 79, 2372 (2001).
    [21] S. Pu, X. Chen, Z. Di and Y. Xia, J. Appl. Phys. 101 053532 (2007).
    [22] S. Y. Yang, Y. T. Hsiao, Y. W. Huang, H. E. Horng, C.- Y. Hong and H. C. Yang, J. Magn. Magn. Mater. 281, 48 (2004).
    [23] M. Q. Lin, Magneto-optical Effects of Magnetic Fluids, Dissertation, University of Sun Yet-sen Taiwan (2001), p. 17.
    [24] Jha CM, Bahl G, Melamud R, Chandorkar SA, Hopcroft MA, Kim B, Agarwal M, Salvia J, Mehta H, Kenny TW (2007) High resolution microresonator-based digital temperature sensor. Appl Phys Lett 91:074101.
    [25] Moreira MF, Carvalho ICS, Cao W, Bailey C, Taheri B, Palffy- Muhoray P (2004) Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor. Appl Phys Lett 85:14.
    [26] Smith CW, Gisser DG, Young M, Powers SR Jr (1974) Laser emission at 1.065 lm from neodymium-doped anhydrous cerium trichloride at room temperature. Appl Phys Lett 24:10.
    [27] Shenping Li, Chan KT (1998) Optical fiber temperature sensor using a gain-switched Fabry–Perot semiconductor laser self-seeded from a linearly chirped fiber Bragg grating. Appl Phys Lett 73:23.
    [28] Henry DM, Herringer JH, Djeu N (1999) Response of 1.6 lm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K. Phys Appl Lett 74:23.
    [1] N. Qureshi, H. Schmidt, and A. R. Hawkins, Appl. Phys. Lett. 85, 431 (2004).
    [2] V. Pavlov, P. Usachev, R. Pisarev, D. Kurdyukov, S. Kaplan, A. Kimel, A. Kirilyuk, and Th. Rasing, Appl. Phys. Lett. 93, 072502 (2008).
    [3] R. J. Martín-Palma, M. Manso, M. Arroyo-Hernández, V. Torres-Costa, and J. M. Martínez-Duart, Appl. Phys. Lett. 89, 053126 (2006).
    [4] E. Céspedes, Y. Huttel, L. Martínez, A. de Andrés, J. Chaboy, M. Vila, N.D. Telling, G. van der Laan, and C. Prieto, Appl. Phys. Lett. 93, 252506 (2008).
    [5] H. Liu, J. Wu, J. Min, and Y. Kim, J. Appl. Phys. 103, 07D529 (2008).
    [6] C. R. Mayer, V. Cabuil, T. Lalot, and R. Thouvenot, Adv. Mater. 12, 417 (2000).
    [7] C. Chanéac, E. Tronc, and J. P. Jolivet, J. Mater. Chem. 6, 1905 (1996).
    [8] S. Sonlinas, G. Piccaluga, M. P. Morales, and C. J. Sema, Acta Mater. 49, 2805 (2001).
    [9] P. Tartaj, T. González-Carrefio, and C. Serna, Adv. Mater. 13, 1620 (2001).
    [10] S. Kim, J. Lee, Y. Chang, S. Hwang, and K.-H. Yoo, Appl. Phys. Lett. 93, 033503 (2008).
    [11] M. Tofizur Rahman, R. K. Dumas, N. Eibagi, N. N. Shams, Y.-C. Wu, K. Liu, and C.-H. Lai, Appl. Phys. Lett. 94, 042507 (2009).
    [12] J. Gao, Q. Zhan, W. He, D. Sun, and Z. Cheng, Appl. Phys. Lett. 86, 232506 (2005).
    [13] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, Appl. Phys. Lett. 92, 243126 (2008).
    [14] E. A. Bluhm, E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young, and G. D. Jarvinen, Langmuir 15, 8668 (1999).
    [15] S. Kawai and I. Ishiguro, J. Electrochem. Soc. 122, 32 (1975).
    [16] G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, and W. J. M. de Jonge, J. Appl. Phys. 86, 5141 (1999).
    [17] K. Nielsch, F. Muller, A. P. Li, and U. Gosele, Adv. Mater. 12, 582 (2000).
    [18] S. Sun, D. Weller, and C. B. Murray, in The Physics of Ultra-High-Density Magnetic Recording, edited by M. L. Plumer, J. v. Ek, and D. Weller (Springer, New York, 2001), pp. 249–276.
    [19] L. Menon, M. Zheng, H. Zeng, S. Bandyopadhyay, and D. J. Sellmyer, J. Electron. Mater. 29, 510 (2000).
    [20] D. Navas, M. Hernández-Vélez, M. Vázquez, W. Lee, and K. Nielsch, Appl. Phys. Lett. 90, 192501 (2007).
    [21] S. Taketomi, Jpn. J. Appl. Phys., Part 1 22, 1137 (1983).
    [22] S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, J. Appl. Phys. 99, 093516 (2006).
    [23] H. -E. Horng, S. Y. Yang, S. L. Lee, C. Y. Hong, and H. C. Yang, Appl. Phys. Lett. 79, 350 (2001).
    [24] W. Luo, T. Du, and J. Huang, Phys. Rev. Lett. 82, 4134 (1999).
    [25] A. Bourlinos, A. Simopoulos, D. Petridis, H. Okumura, and G. Hadjipanayis, Adv. Mater. 13, 289 (2001).
    [26] S. Ohya, K. Ohno, and M. Tanak, Appl. Phys. Lett. 90, 112503 (2007).
    [27] J. L. Mene’ndez, B. Besco’s, G. Armelles, R. Serna, J. Gonzalo, R. Doole, A. K. Petford-Long, and M. I. Alonso, Phys. Rev. B 65, 205413 (2002).
    [28] B. R. Jennings, M. Xu, and P. J. Ridler, Proc. R. Soc. London, Ser. A 456, 891 (2000).
    [29] M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, and V. Spasojevic, Mater. Lett. 63, 1054 (2009).
    [30] E. Fonda, S. R. Teixeira, J. Geshev, D. Babonneau, F. Pailloux, and A. Traverse, Phys. Rev. B 71, 184411 (2005).
    [31] E. E. Shalyguina, I. Skorvanek, P. Svec, V. A. Melnikov, and N. M. Abrosimova, J. Exp. Theor. Phys. 99, 544 (2004).
    [32] Y. Yao, H. C. Mireles, J. Liu, Q. Niu, and J. L. Erskine, Phys. Rev. B 67, 174409 (2003).
    [33] M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, and V. Spasojevic, J. Magn. Magn. Mater. 321, 12 (2009).
    [34] B. Dieny and J. P. Gavigan, J. Phys.: Condens. Matter 2, 187 (1990).
    [35] A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, Science 311, 205 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700