松辽盆地晚白垩世青山口组一段黄铁矿形态及古湖泊演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地位于中国东北部,是我国大型白垩纪沉积盆地,是亚洲古陆上最大的白垩纪湖盆之一,是我国陆相白垩系发育最完整的地区。白垩纪青山口组沉积时期是松辽盆地首次最大湖侵期。青山口组一段(K2qn1)沉积期间的海侵事件以及当时古湖泊水体性质研究,一直以来都是松辽盆地的研究热点。“松科1井”的实施获得了连续的高分辨率沉积记录,为高分辨率的古环境、古气候重建提供了理想的研究材料。黄铁矿是富有机质沉积的一种特征矿物,是恢复沉积环境的一种重要指标。大量研究表明,沉积黄铁矿形态学研究能提供有关沉积环境和早期成岩过程的有用信息。
     本论文利用反光显微镜和扫描电镜对“松科1井”南孔青山口组一段泥岩样品中黄铁矿形态观察发现,青一段泥岩中存在二种基本的黄铁矿形态,即莓球和自形晶,以及由这两种形态衍生而来的集合体形态。在对不同黄铁矿形态的成因探讨的基础上,依据黄铁矿莓球大小分布对底层水体氧化还原条件的指示原理,认为青一段沉积期底层水体氧化还原条件曾发生过从含氧-贫氧静滞-缺氧含氧-贫氧的变化过程。通过对青一段泥岩有机碳含量与黄铁矿硫含量比值(C/S)分析,表明青一段沉积期湖泊水体盐度变化具有一定的阶段性,并指出海侵可能是造成湖泊水体咸化最直接的原因。
     综合底层水体氧化还原条件变化和古盐度变化等分析结果,将青一段沉积期湖泊水体环境的演化划分为五个阶段。I阶段(泉四段末期)属淡水环境;II阶段发生海侵,水体开始咸化,但盐度分层较弱,底层水体为含氧-贫氧状态;III阶段持续海侵,水体咸化程度最大,盐度分层强烈,底层水体呈静滞-缺氧状态;IV阶段海侵结束,大量淡水注入,呈咸水-半咸水环境,底层水体含氧;V阶段呈咸水环境,底层水体呈含氧-贫氧状态。此外,基于能谱分析结果认为不同形态黄铁矿S:Fe原子比值可能代表不同的黄铁矿形成阶段以及基于X射线粉晶衍射分析结果认为黄铁矿最小微晶大小与莓球直径间可能存在着一种正相关关系。但此方面工作还有待进一步研究。
Songliao Basin, located in northeastern China, is a large-scale Cretaceous sedimentary Basin in China, and one of the most big Cretaceous lake in Asia. The Qingshankou period in Cretaceous is the time when the first large-scale lacustrine transgressive events happened in the Songliao Basin. For a long time, transgressive events and the properties of the ancient lake during deposition of the Qingshankou Formation Unit 1(K2qn1) have been the research focuses in the Songliao Basin.“SLCORE I”has taken continuous high-resolution sedimentary records. So it has provided ideal materials for the high-resolution paleoenvironment and paleoclimate reconstruction. In the organic matter-rich sedimentary pyrite are a characteristic mineral and an important indicator for recovering depositional environment. Numerous studies show that study of sedimentary pyrite morphology may provide useful information on depositional environments and early diagenic processes.
     In this study reflecting microscope and Scanning Electron Microscopic (SEM observations indicate that euhedral crystals and framboids are the dominant textural forms of pyrite in the K2qn1 mudstone samples from the south well of“SLCORE I”. Pyrite framboidal size distribution indicates that redox condition in the bottom water had been changed from oxic-dysoxic to euxinic-anoxic to oxic-dysoxic during K2qn1 deposition. Moreover, organic-to-pyrite sulfur ratio indicates that paleosalinity change in the lake had a certain stage during K2qn1 deposition. Transgression may be the most direct reason caused for the water salinization.
     Mainly based on results of the analysis of the bottom water redox conditions and paleosalinity change, the evolution of lake water environment has been divided into five stages during K2qn1 deposition, i.e., in the first stage (I) the lake is a freshwater environment; In the second stage (II) transgression occurred and the water beginning salinization, but salinity stratification was weak, and the bottom water environment was in an oxic-dysoxic state. In the third stage (III) transgression continued, strong salinity stratification, and the bottom water environment was in a euxinic-anoxic state. In the fourth stage (IV) transgression ended, and the bottom water environment was in an oxygen state. In the fifth stage (V) the bottom water environment was in an oxygen-dysoxic state. In addition, Energy Dispersive X-ray Spectrometer (EDS) analysis results indicate S:Fe atomic ratio may be a indicator for the stage of pyrite formation. Using X-ray diffraction (XRD) analysis results, we found that there may be a positive correlation between framboid diameter and minicrystal size of pyrite. However, in this regard remains to be further studied.
引文
[1] Allen R E. Role of diffusion-precipitation reactions in authigenic pyritization: Chemical Geology, 2002, 182: 461~472.
    [2] Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth planet. Sci., 1994, 22: 499~551.
    [3] Barrera E, Johnson C C. Evolution of the Cretaceous ocean-climate system. Special Paper of Geological Society of America, 1999, 322: 1~445.
    [4] Bein A. and Nielsen H. Sulphur diagenesis in freshwater lignites (Hula Basin, Isreal): implication for S-C relationships in organic sediments. Journal of the Geological Society, London, 1988, 145: 133~136.
    [5] Berner, R A. The synthesis of framboidal pyrite. Economic Geology, 1969, 64: 383~384.
    [6] Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Amer. J.Sci., 1982, 282: 451~473.
    [7] Berner R A and Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory, Geochmica et Comsochimica Acta, 1983, 47: 855~862.
    [8] Berner R A. Sedimentary pyrite formation. An update Geochinica et Cosmochinica Acta, 1984, 48: 605~615.
    [9] Berner R A and Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 1984, 12: 365~368.
    [10] Berner R A. The rise of plants and their effect on weathering and atmospheric CO2. Science, 1997, 276: 544~546.
    [11] Berner R A. Modeling atmospheric O2 over Phanerozoic time. Geochimica et Cosmochimica Acta, 2001, 65: 685~694.
    [12] Bertrand P, Lallier-Verges E, Boussafir M. Enhancement of accumulation and anoxic degradation of organic matter controlled by cyclic productivity: a model. Organic Geochemistry, 1993, 22: 511~520.
    [13] Bloch J and Krouse H R. Sulfide diagenesis and sedimentation in the Albian Harmon Member, Western Canada. Journal of Sedimentary Petrology, 1992, 62(2): 235~249.
    [14] Boesen C and Postma D. Pyrite formation in anoxic environments of the Baltic. American Journal of Science, 1988, 288: 575~603.
    [15] Boussafir M and Lallier-Verges E. Accumulation of organic matter in the Kimmeridge Clay Formation(KCF): an update fossilistion model for marine petroleum source-rocks. Marine and Petroleum Geology, 1997, 14(1): 75~83.
    [16] Briggs D E G, Bottrell S H and Raiswell R. Pyritization of soft-bodied fossils: Beecher’s trilobite bed, Upper Ordovician, New York State. Geology, 1991, 19: 1221~1224.
    [17] Butler I B and Rickard D. Framboidal pyrite formation via the oxidation of iron(II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 2000, 64: 2665~2672.
    [18] Canfield D E, Raiswell R, Bottrell S. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 1992, 292: 659-683.
    [19] Canfield D E, Lyons T W and Raiswell R. A model for iron deposition to euxinic Black Seasediments. American Journal of Science, 1996, 296: 818~834.
    [20] Canfield D E, Thamdrup B and Fleischer S. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnology and Oceanography, 1998, 43: 253~264.
    [21] Canfield D E, Habicht K S and Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science, 2000, 288: 658~660.
    [22] Cheng R H, Wang G D, Wang P J, et al. Microfacies of deep-water deposits and forming models of the Chinese Continental Scientific Drilling-SKII. Acta Geologica Sinica, 2007, 81(6): 1026~1032.
    [23] Cutter G A and Kluckhohn R S. The cycling of particulate carbon, nitrogen, sulphur, and sulphur species (iron monosulfide, greigite, pyrite, and organic sulphur) in the water columns of Framvaren Fjord and the Black Sea. Marine Chemistry, 1999, 67: 149~160.
    [24] Davis H R, Byers C W and Dean W E. Pyrite formation in the Lower Cretaceous Moway Shale: effect of organic matter type and reactive iron content. American Journal of Science, 1988, 288: 873~890.
    [25] Degens E T, Okada H, Honjo S and Hathaway J C. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineralium Deposita, 1972, 7: 1~12.
    [26] Donald R and Southam G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 1999, 63: 2019~2023.
    [27] Doss B. Melnikovit, ein neus Eisenbisulfide, und seine Bedeutung für die Genesis der Kielslagerst?tten. Zeitschrift Praktische Geologie,1912, 20: 453~483.
    [28] Emery K O and Hunt J M. Summary of Black Sea investigations. In the Black Sea. Geology, Chemistry and Biology (ed. E. Degens and D. Ross); AAPG Mem., 1974, 20: 575~591.
    [29] Erba E. Calcareous nannofossils and Mesozoic oceanic events. Marine Micropaleontology, 2004, 52: 85~106.
    [30] Giblin A E and Howarth R W. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography, 1984, 29: 47~63.
    [31] Goldhaber M B and Kaplan I R. The sulfur cycle. In: E. Goldberg (Editor), The Sea, 5. Wiley, Chichester, 1974, 569~655.
    [32] Grimes S T, Brock F, Rickard D and et al. Understanding fossilization: Experimental pyritization of plants. Geology, 2001, 29: 123~126.
    [33] Gronvold F and Westrum EF. Heat capacities of iron disulfides thermodynamics of marcasite from 5 to 700K, pyrite from 300 to 780 K, and the transformation of marcasite to pyrite. Journal of Chemical Thermodynamics, 1976, 8: 1039~1048.
    [34] Haq B U, Hardenbol J and Vail P R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 1987, 235: 1156~1167.
    [35] Hudson J D. Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology, 1982, 29: 639~667.
    [36] Irving E, North F K, Couillard R. Oil, climate and tectonics. Can. J. Earth Sci., 1974, 11: 1~17.
    [37] Jones B and Manning D A C. Comparison of geochemical indices used for the interpretation of depositional environments in ancient mudstones. Chemical Geology, 1994, 111: 112~129.
    [38] Kalliokoski J. Diagenetic pyritization in three sedimentary rocks. Economic Geology, 1966,61: 872~885.
    [39] Kalliokoski J. Framboids: colloid-crystals of pyrite. Economic Geology, 1965, 60: 1562.
    [40] Kalliokoski J and Cathles L. Morphology, mode of formation, and diagenetic changes in framboids. Bulletin of the Geological Society of Finland, 1969, 41: 153~133.
    [41] Kaplan I R, Emery K O and Rittenberg S C. The distribution and isotopic abundance of sulphur in recent marine sediments of southern California. Geochimica et Cosmochimica Acta, 1963, 27: 297~331.
    [42] Kemp A L and Thode H G. The mechanism of the bacterial reduction of sulphate and sulphite from isotope fractionation studies. Geochim. Cosmochim Acta, 1968, 32.
    [43] Kimblin R T and Johnso A C. Recent localized sulphate reduction and pyrite formation in a fissured chalk aquifer. Chemical Geology, 1992, 100: 119~127.
    [44] Konhauser K O. Diversity of bacterial iron mineralization. Earth-Science Reviews, 1998, 43: 91~121.
    [45] Lallier-Verges E, Bertrand P, Desprairies A. Organic matter composition and sulfate reduction intensity in Oman Margin sediments. Marine Geology, 1993, 112: 57~69.
    [46] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 2002, 17(3): 623~652.
    [47] Leeder M, Raiswell R, Al-Biatty H, McMahon A and Hardman M. Carboniferous stratigraphy, sedimentation and correlation of well 48/3-3 in the Southern North Sea Basin: integrated use of palynology, natural gamma/sonic logs and carbon/sulfur geochemicstry. Journal of the Geological Society of London, 1990, 147: 287~300.
    [48] Leventhal J S. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochimica et Cosmochimica Acta, 1995, 59(6): 1207~1211.
    [49] Love L G. Microorganisms and the presence of syngenetic pyrite. Quarterly Journal of the Geological Society of London, 1957, 113: 429~440.
    [50] Love L G, Curtis C D and Brockley H. Framboidal pyrite, morphology revealed by electron microscopy of external surfaces. Fortschr. Miner., 1971, 48: 259~264.
    [51] Love L G and Amstutz G C. Review of microscopic pyrite from the Devonian Chattanooga Shale and Remmelsberg Banderz. Fortschritte der Mineralogia, 1966, 43: 273~309.
    [52] Luther G W III, Giblin A, Howarth R W and Ryans R A. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochimica et Cosmochimica Acta, 1982, 46: 2665~2669.
    [53] Lyons T W and Muramoto J A. Water-column pyrite formation in the modern Black Sea: Sulfur isotopic constraints. Geol. Soc. Amer. Abstr. Prog., 1992, 24, A168 (abstr.).
    [54] Marnette E C L, Breemen N V, Horduk K A and Cappenberg T E. Pyrite formation in two freshwater systems in the Netherlands. Geochimica et Cosmochimica Acta, 1993, 57: 4165~4177.
    [55] McKay J L, Longstaffe F J. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin. Sedimentary Geology, 2003, 157: 175~195.
    [56] Middelburg J J. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochimica et Cosmochinica Acta, 1991, 55: 815~828.
    [57] Morse J W and Cornwell J C. Analysis and distribution of iron sulfide minerals in recentanoxic marine sediments. Marine Chemistry, 1987, 22: 55~69.
    [58] Morse J W and Berner R A. What determines sedimentary C/S ration. Geochimica et Cosmochimica Acta, 1995, 59: 1073~1077.
    [59] Morse J W and Wang Q. Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter: Marine Chemistry, 1997, 57: 187~193.
    [60] Murowchick J B and Barnes H L. Marcasite precipitation from hydrothermal solutions. Geochimica et Cosmochimica Acta, 1986, 50: 2615~2629.
    [61] Müller D, Sdrolias M, Gaina C, Steinberger B and Heine C. Long-term sea level fluctuations driven by ocean basin dynamics. Science, 2008, 319: 1357~1362.
    [62] Norris R D, Bice K L, Magno E A, et al. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology, 2002, 30: 299~302.
    [63] Nuhfer E B and Pavlovic A S. Association of Kaolinite with pyretic framboids. Journal of Sedimentary Petrology, 1979, 49: 321~323.
    [64] Pedersen T F and Calvert S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 1990, 74: 454~466.
    [65] Perry K A and Pedersen T F. Sulphur speciation and pyrite formation in meromictic ex-fjords. Geochimica et Cosmochimica Acta, 1993, 57: 4405~4418.
    [66] Postgate J. The economic activities of sulphate-reducing bacteria. In“Progress in industrial microbiology”, 2, London, 1960.
    [67] Raiswell R. Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci., 1982, 282: 1244~1263.
    [68] Raiswell R and Berner R. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 1985, 285: 710~724.
    [69] Raiswell R, Buckley F, Berner R A and Anderson T F. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol.,1988, 58: 812~819.
    [70] Reynolds R L, Tuttle M L, Rice C A, Fishman N S, Karrachewski J A and Sherman D M. Magnetization and geochemistry of gregite-bearing Cretaceous strata, North Slope, Alaska. American Journal of Science, 1994, 294: 485~528.
    [71] Rickard D T. The origin of framboids. Lithos, 1970, 3: 269~293.
    [72] Rickard D T and Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: The mechanism. Geochimica et Cosmochimica Acta, 1997, 61: 135~147.
    [73] Ross D A, Degens E T and MacIlvainc J. Black Sea: Recent sediment history. Science, 1970, 170: 163~165.
    [74] Rust G W. Colloidal primary copper ores at Cornwall mines, southeastern Missouri. Journal of Geology, 1935, 43: 398~426.
    [75] Saelen G, Raiswell R, Talbot M R, Skei J M and Bottrell SH. Heavy sedimentary sulfur isotopes as indicators of super-anoxic bottom-water conditions. Geology, 1993, 21: 1091~1094.
    [76] Sahagian D, Pinous O. Olferiev A and Zakyarov V. Eustatic curve for the Middle Jurassic- Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. AAPGBull., 1996, 80(9): 1433~1458.
    [77] Sassano G P and Schrijver K. Framboidal pyrite: Early-diagenetic, late-diagenetic, and hydrothermal occurrences from Acton Vale quarry, Cambro-Ordovician, Quebec. American Journal of Science, 1989, 289: 167~179.
    [78] Schallreuter R. Framboidal pyrite in deep sea sediments. Initial Reports of the DSDP, 1984, 75: 875~891.
    [79] Schenau S J, Passier H F, Reichart G J and Lange de G J. Sedimentary pyrite formation in the Arabian Sea, Marine Geology, 2002, 185: 393~402.
    [80] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Cause and consequence. Geologie en Mijnbouw, 1976, 55: 179~184.
    [81] Schneiderh?hn H. Chalkographische Untersuchung des Mansfelder Kupferschiefers. Neues Jahrbuch für Mineralogie. Geologie und Pal?eontologie, 1923, 47: 1~38.
    [82] Schoonen M A A and Barnes H L. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100℃. Geochimica et Cosmochimica Acta, 1991a, 55: 1495~1504.
    [83] Schoonen M A A and Barnes H I. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100℃. Geochimica et Cosmochimica Acta, 1991b, 55: 1505~1514.
    [84] Schoonen M A A. Mechanisms of sedimentary pyrite formation. Geological Society of American, Special Paper, 2004, 379: 117~134.
    [85] Schouten C. The role of sulphur bacteria in the formation of the so-called sedimentary copper ores and pyretic ore bodies. Economic Geology, 1946, 41: 517~538.
    [86] Shen Wenjie, Lin Yangting et al. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253: 323~331.
    [87] Sherman I. Flocculent structure of sediment suspend in Lake Mead. Transactions, American Geophysical Union, 1953, 34(3): 394~406.
    [88] Skei J M. Formation of framboidal iron sulfide in the water of a permanently anoxic fjord-Framvaren, south Norway. Marine Chemistry, 1988, 23: 345~352.
    [89] Stene L P. Polyframboidal pyrite in the tills of southwestern Alberta. Canadian Journal of Earth Sciences, 1979, 16: 2053~2057.
    [90] Strechie C, Andre F, Jeliowska A, Tucholka P, Guichard F, Lericolais G and Panin N. Magnetic minerals as indicators of major environmental change in Holocene black sea sediments: preliminary results. Physics and Chemistry of the Earth, Parts A/B/C, 2002, 27: 1363~1370.
    [91] Sweeney R E, ms. Pyritization during diagenesis of marine sediments: ph. D. thesis, Univ. California, Los Angeles, 1972.
    [92] Sweeney R E and Kaplan I R. Pyrite framboid formation: Laboratory synthesis and marine sediments. Economic Geology and the Bulletin of the Society of Economic Geologists, 1973, 68: 618~634.
    [93] Thompson S L, Barron E J. Comparison of Cretaceous and present Earth albedos: implications for paleoclimates. Journal of Geology, 1981, 89: 143~167.
    [94] Vallentyne J R. Isolation of pyrite spherules from recent sediments. Limnology and Oceanography, 1963, 8: 16~30.
    [95] Wang C, Huang Y, Hu X, Li X. Cretaceous oceanic red beds: Implications for paleoclimatology and paleoceanography. Acta Geologica Sinica, 2004, 78: 873~877.
    [96] Wang Q and Morse J W. Pyrite formation under conditions approximating those in anoxic sediments: I. Pathway and morphology: Marine Chemistry, 1996, 52: 99~121.
    [97] Watts A B and Thorne J. Tectonics, global changes in sea level and their relationship to the stratigraphical sequences et the US Atlantic continental margin. Mar. Petrol. Geol., 1984, 1: 319~321.
    [98] Weise R G and Fyfe W S. Occurrences of iron sulfides in Ohio coals. International Journal of Coal Geology, 1986, 6: 251~276.
    [99] Wignall P B and Newton R. Pyrite framboid diameter as a measure of oxygen defidency in ancient mudrocks. American Journal of Science, 1998, 298: 537~552.
    [100] Wignall P B, Newton R and Brookfield M E. Pyrite framboid evidence for oxygen poor deposition during the Permin-Triassic crisis in Kashmir, Palaeogeogrphy, Palaeoclimatology, Palaeoecology, 2005, 216: 183~188.
    [101] Wilkin R T and Barnes H L. Reactivity of Fe-monosulfides with dissolved inorganic and organic sulfur species: Constraints on pyrite forming mechanisms (abst.), V. M. Goldschmidt Conference Program and Abstracts, 1995, p. 97.
    [102] Wilkin R T. Size distribution in sediments, synthesis, and formation mechanism of framboidal pyrite. Ph. D. dissertation, The Pennsylvania State Univ., 1995.
    [103] Wilkin R T, Barnes H L and Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897~3912.
    [104] Wilkin R T and Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 1996, 60: 4167~4179.
    [105] Wilkin R T and Barnes H L. Formation processes of framboidal pyrite: Geochimica et Cosmochimica Acta, 1997, 61: 323~339.
    [106] Wilkin R T, Arthur M A, Dean W E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth and Planetary Science Letters, 1997, 148: 517~525.
    [107] Wilkin R T and Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399~1416.
    [108] Williams D F, Liu T S et al. The study of lake sediments for global change research. Earth Sci. Frontiers, 1997, 4(1~2): 34~41.
    [109] Wolthers M. Geochemistry and environmental mineralogy of the iron-sulphur-arsenic system [Ph.D. thesis]: Utrecht, Utrecht University, 2003.
    [110] Zaback D A, Pratt L M and Hayes J M. Transport and reduction of sulfate and immobilization of sulfide in marine black shales. Geology, 1993, 21: 141~144.
    [111] Zhou Chuanming and Jiang Shao-Yong. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271: 279~286.
    [112]迟元林,王璞珺,单玄龙,万传彪.中国陆相含油气盆地深层地层研究.长春:吉林科学技术出版社,2000.
    [113]大庆油田石油地质志编写组.中国石油地质志(卷二)大庆、吉林油田(上册).北京:石油工业出版社,1993.
    [114]邓宏文,钱凯.深湖相泥岩的成因类型和组合演化.沉积学报,1990, 8(3): 1~21.
    [115]方大钧,王兆樑,金国??中国松辽盆地白垩系磁性地层.中国科学:B辑,1989, 10:1084~1091.
    [116]高瑞祺.松辽盆地白垩纪被子植物花粉的演化.古生物学报,1982, 21(2): 217~224.
    [117]高瑞祺,乔秀云,何承全.松辽盆地白垩纪微体浮游植物群及其环境讨论.微体古生物学报,1992, 9(2): 111~126.
    [118]高瑞祺,何承全,乔秀云.松辽盆地白垩纪非海相沟鞭藻、绿藻及疑源类.南京:南京大学出版社. 1992.
    [119]高瑞祺,张莹,崔同翠.松辽盆地白垩纪石油地层.北京:石油工业出版社,1994.
    [120]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律.北京:石油工业出版社,1997.
    [121]高瑞祺,赵传本,乔秀云,等.松辽盆地白垩纪石油地层孢粉学.北京:地质出版社,1999.
    [122]高有峰,王璞珺,王成善,等.松科1井南孔选址、岩心剖面特征与特殊岩性层的分布.地质学报,2008, 82(5): 669~675.
    [123]高有峰,王璞珺,程日辉,等.松科1井南孔白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层.地学前缘,2009, 16(2): 1~10.
    [124]格里年科B A,格里年科ЛН,赵瑞译.硫同位素地球化学.北京:科学出版社,1980.
    [125]顾健.白垩纪松辽盆地青山口组一段硫记录与古湖泊变化:[硕士学位论文].中国地质大学(北京),2008.
    [126]侯读杰,黄清华,等.松辽盆地海侵地层的分子地球化学特征.石油学报,1999, 20(2): 31~34.
    [127]侯启军,冯子辉,邹玉良,等.松辽盆地齐家-古龙凹陷油气成藏期次研究.石油实验地质,2005, 27(4): 390~394.
    [128]胡守云,Appel E.,Hoffmann V.,Schmahl W.,王苏民.湖泊沉积物中胶黄铁矿的鉴出及其磁学意义.中国科学(D辑),2002, 32(3): 234~238.
    [129]黄福堂,迟元林,黄清华.松辽盆地中白垩世海侵事件的质疑.石油勘探与开发,1999, 26(3): 104~107.
    [130]黄清华,郑玉龙,杨明杰,等.松辽盆地白垩纪古气候研究.微体古生物学报,1999, 16(1): 95~103.
    [131]黄清华,谭伟,杨会臣.松辽盆地白垩纪地层序列和年代地层.大庆石油地质与开发,1999, 18(6): 15~18.
    [132]霍兰H D,初汉平等译.大气和海洋化学.北京:科学出版社,1986.
    [133]贾军涛,王璞珺,万晓樵.松辽盆地断陷期白垩纪营城组的时代归属.地质论评,2008, 54(4): 439~448.
    [134]蒋友英.松辽盆地朝阳沟地区泉头组-青山口组孢粉组合及古气候变化:[硕士学位论文].中国地质大学(北京),2008.
    [135]姜在兴.沉积学.北京:石油工业出版社,2003.
    [136]莱尔曼A.湖泊的化学、地质学和物理学.北京:地质出版社,1989.
    [137]李娟,舒良树,等.松辽盆地中新生代构造特征及其演化.南京大学学报(自然科学),2002, 38(4): 525~531.
    [138]李世杰,区荣康,朱照宇,等. 24万年来西昆仑甜水海湖岩芯碳酸盐含量变化与气候环境演化.湖泊科学,1998, 10(2): 58~64.
    [139]李世杰,王小天,夏威岚,等.青藏高原苟鲁湖泊沉积记录的小冰期气候变化.第四纪研究,2004, 24(5): 508~513.
    [140]黎文本.从孢粉组合论证松辽盆地泉头组的地质时代及上、下白垩统界线.古生物学报,2001, 40(2): 153~176.
    [141]李延钧,陈义才,朱江.松辽盆地古龙地区葡萄花油层油气成因与凝析气藏形成分布.西南石油学院学报,1997, 19(3): 14~19.
    [142]刘春莲,杨建林,等.影响湖相沉积岩中有机碳分布的主要因素—以三水盆地为例.沉积学报,2001, 19(1): 113~116.
    [143]刘春莲,董艺辛,等.三水盆地古近系怖心组黑色页岩中黄铁矿的形成及其控制因素.沉积学报,2006, 24(1): 75~80.
    [144]楼章华,卢庆梅,蔡希源,等.湖平面升降对浅水三角洲前缘砂体形态的影响.沉积学报,1998, 16(4): 27~31.
    [145]沈吉,张恩楼,夏威岚.青海湖近千年来气候环境变化的湖泊沉积记录.第四纪研究,2001, 21(6): 508~513.
    [146]申家年,王庆红,等.松辽盆地白垩纪湖泊水体温度与古气候温度估算.吉林大学学报(地球科学版),2008, 38(6): 946~952.
    [147]王成善,胡修棉.白垩纪世界与大洋红层.地学前缘,2005, 12(2): 11~21.
    [148]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究—从重大地质事件探寻地球表层系统耦合.地球科学进展,2006, 21(8): 838~842.
    [149]王成善,冯志强,吴河勇,等.中国白垩纪大陆科学钻探工程:松科一井科学钻探工程的实施与初步进展.地质学报,2008, 82(1): 9~20.
    [150]王家豪,姚光庆,赵彦超.浅水辫状河三角洲发育区短期基准面旋回划分及储层宏观特征分析.沉积学报,2004, 22(1): 87~94.
    [151]王璞珺,杜小弟,王俊,等.松辽盆地白垩纪年代地层研究及地层时代划分.地质学报,1995, 69(4): 372~381.
    [152]王璞珺,王东坡.松辽盆地白垩系青山口组黑色页岩的形成环境及海水侵入的底流模式.岩相古地理,1996, 16(1): 34~43.
    [153]王璞珺,刘万洙.事件沉积:导论·实例·应用.长春:吉林科学技术出版社,2001.
    [154]王东坡,刘招珺,刘立.松辽盆地演化与海平面升降.北京:地质出版社,1994.
    [155]王苏民,等.中国湖泊志.北京:科学出版社,1998.
    [156]王永春.松辽盆地南部岩性油藏的形成和分布.北京:石油工业出版社,2001.
    [157]王云飞.青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化.海洋与湖沼,1993, 24(1): 31~36.
    [158]汪品先.开展含油气盆地的古湖泊学研究—代序言,见:古湖泊学译文集。海洋出版社,1991.
    [159]吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立.地学前缘,2008, 15(4): 159~169.
    [160]萧德铭,迟园林,蒙启安,等.松辽盆地北部向斜区岩性油藏勘探认识与实践.北京:石油工业出版社,2005.
    [161]杨万里,高瑞琪,郭庆福,等.松辽盆地陆相油气生成、运移和聚集.哈尔滨:黑龙江科学技术出版社,1985.
    [162]杨万里.松辽盆地油气分布基本规律及勘探远景预测.杨万里主编:松辽陆相盆地石油地质.北京:石油工业出版社,1985.
    [163]叶得泉,钟筱春.中国北方含油气区白垩系.北京:石油工业出版社,1990.
    [164]叶得泉,张莹.松辽盆地泉头组三、四段介形类化石的分布特征与扶扬油层细分.微体古生物学报,1991,8(4): 351~363.
    [165]叶得泉.松辽盆地白垩系介形类生物地层和磁性地层学意义.大庆石油地质与开发,1991,10(4): 1~12.
    [166]叶得泉,黄清华,张莹,陈春瑞.松辽盆地白垩系介形类生物地层学.北京:石油工业出版社,2002.
    [167]尹秀珍.松辽盆地中部晚白垩世早期古湖泊生产力研究:[博士学位论文].中国地质大学(北京), 2008.
    [168]余源盛,朱育新.湖泊沉积物中S、C及其比值的环境意义.湖泊科学,1995, 7(1): 41~46.
    [169]张立平,王东坡.松辽盆地白垩纪古气候特征及其变化机制.岩相古地理,1994, 14(1): 11~16.
    [170]张庆国,鲍志东,等,松辽盆地中央坳陷南部下白垩纪泉头组四段沉积相.古地理学报,2007, 9(3): 267~276.
    [171]张西营,马海州,韩风清,等.德令哈盆地尕海湖DG03孔岩芯矿物组合与古环境变化.沉积学报,2007, 25(5): 767~773.
    [172]中国科学院贵阳地球化学研究所《矿物X射线粉晶鉴定手册》编著组.矿物X射线粉晶鉴定手册.北京:科学出版社,1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700