特殊岩性岩心实验分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩心分析实验是认识油气层地质特征的必要手段。近年来,以火山岩、砂砾岩、泥岩和碳酸盐岩等特殊岩性为主要储层的油气勘探不断取得新突破,特殊岩性储层的岩心分析工作变得越来越重要。这些特殊岩性的化学成分复杂,物理状态多样,导致常规分析方法在分析特殊岩性岩心时有很大的局限性。因此,为了获取准确的实验数据,正确认识特殊岩性储层的渗流规律,本文通过应用CT和核磁共振这两种现代化岩心分析手段,结合人工智能方法与计算机三维可视化技术,开发了一套先进的特殊岩性岩心实验分析方法。并应用这套方法编写了相应的软件,完成了大量的岩心分析工作,取得了良好的效果。
     通过应用CT技术对岩心内部结构进行无损检测、建立特殊岩性非均质性特征CT分析评价指标、进行岩石CT图像可视化研究和相应的软件开发,实现了对岩样内孔洞和裂缝等的发育特征、发育程度以及岩石非均质性特征的分析。CT分析评价指标包括定性和定量评价指标,指标中给出了相应的评判标准和计算公式,为特殊岩性CT分析提供了依据。CT图像可视化研究采用了三维体素模型、Freeman链码、改进的Marching Cubes算法和视觉增强等多种图形学算法,并在此基础上开发了专业软件,为特殊岩性岩CT分析提供了必要的手段。
     应用上述方法对211块特殊岩性岩心进行CT实验分析的结果表明:1)砾岩中普遍发育有砾缘缝,其的发育程度与砾岩的砾级成正比,与压实程度成反比;砾岩中的孔洞主要是砾间溶孔和颗粒溶孔,其发育程度与胶结物的成分和压实作用有关。随着砾级的降低,孔洞和裂缝的数量下降。2)在多数火山岩内均有较多的孔洞发育,且存在较大的洞和较多的孔;有个别岩心内可见少量微裂缝,极少数岩心内可见裂缝或较多微裂缝。不同类别的火山岩孔洞和裂缝发育程度相当,但是类型略有不同。
     针对特殊岩性非均质性强,孔隙空间结构复杂的特点,提出了特殊岩性物性参数核磁共振检测方法,并开发了相应的岩心分析专家系统。方法包括:全直径岩心核磁共振束缚水饱和度测量、人工智能核磁孔隙度校准和遗传算法与神经网络相结合的渗透率预测模型。这些新方法实现了特殊岩性全直径岩心物性参数的检测,解决了常规分析方法测试周期长、样本难以获取以及可能产生黏性指进等问题。人工智能技术的应用在一定程度上降低了特殊岩性复杂物理化学性质对核磁共振测量的影响,将原有核磁孔隙度实验误差降低了50%以上,渗透率预测精度提升了3倍,并且具有更高的自动化程度。岩心分析专家系统采用最先进的B/S架构,通过在服务器上建立适用于岩心分析的决策树、神经网络和遗传算法等几种人工智能算法和多种核磁共振反演算法,达到了对实验结果进行校准和对储层参数的进行预测和评价的目的。这套系统填补了国内核磁共振岩样分析数据解释专家系统的空白,成为目前特殊岩性储层岩心的物性参数测量分析最有效的工具。
     本文通过以上研究,开创了新的实验手段和实验数据分析方法,提高了特殊岩性岩心分析水平。从而提升了人们对特殊岩性油气储层的科学认识,对推动油气田勘探开发具有重要意义。
Core analysis is one of the most necessary means to recognize the geological characteristics of reservoirs. Recently, the oil and gas exploration of particular lithology such as volcanic, conglomerate, mud and carbonate rocks continued to make new breakthroughs. As a result, core analysis of particular lithology reservoir rock is increasingly significant. However, conventional methods of core analyzing have great limitations on particular lithology due to the complex chemical components and variable physical status. In order to obtain accurate experimental data and understand the seepage law of particular lithology, advanced core analysis methods are developed through the application of two modern core analysis tool, computed tomography (CT) and nuclear magnetic resonance (NMR), and two data analysis methods, artificial intelligent (AI) and computer visualization (CV). Corresponding software are developed and applied to core analysis works bases on these methods, the application has archived good results.
     Through the application of nondestructive CT testing for inner construction of core, the establishing of CT evaluation criterion for the heterogeneity of particular lithology, the research of CT visualization technology for core, and the development of CT analyzing software, the goals of analyzing the features and growth of holes and fractures in core and heterogeneity of core are archived. The evaluation criterion is composed by qualitative evaluation and quantitative evaluation, and gives the corresponding evaluation method and formula. The evaluation criterion provides the basis for CT analysis of particular lithology. The research of CT visualization technology for core used 3D cube model, Freeman chain, improved Marching Cubes algorithms, visual enhancements and many other graphics algorithms. Software developed based on these algorithms provides necessary means for CT analysis of particular lithology.
     The application of CT analysis for 211 particular lithology cores shows:1) Most conglomerates develops gravel-edge fractures, growth of the fracture is proportional to the level of gravel and inverse proportional to the degree of compaction. Holes in conglomerate are mainly corroding holes between gravel and corrode gravel holes. The growth of holes is related to the composition of cement and compaction. With the lower gravel level, the number of holes and fractures decline.2) Most volcanic rocks develop holes, some of them develop big holes or lots of holes. Several volcanic samples contain micro-fractures. Very few contain big fractures or many micro-fractures. The growth of holes and fractures in different volcanic rock categories are equivalent, but the type of holes and fractures are different.
     For the strong heterogeneity and complex pore structure of particular Iithology, methods using NMR for physical parameter testing are proposed, and a corresponding expert system is developed. These methods contain irreducible water saturation measurement for whole core, the NMR porosity measurement refined by AI algorithms, and the NMR permeability estimation model using artificial neural network based on genetic algorithm. These new methods achieved the goal of physical parameters detection for full-diameter and special Iithology core, and solved the defacts of conventional methods, such as size and shape restricts, long test cycles and viscous fingering. The use of AI algorithms reduced the influence of complex chemical components and variable physical status to NMR testing. With higher degree of automation, the new methods successfully reduced the average relative error of NMR porosity by 50%, and increased the accuracy of NMR permeability by 3 times. The expert system uses B/S structure, and achieved on experimental results calibration and reservoir parameters prediction and evaluation. This system filled a blank of NMR data analysis expert system of core samples in China, and has becomes the most efficient tool for physical parameter measurement of particular Iithology.
     This research has opened new experimental means and new data analysis methods for particular Iithology cores. By increasing the skills of core analysis, this research has increased people's knowledge of particular Iithology reservoir, and means a lot to oil and gas exploration and development.
引文
[1]胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):29-36.
    [2]邹才能,张光亚,陶士振,et al全球油气勘探领域地质特征重大发现及非常规石油地质[J].石油勘探与开发,2010,37(2):129-145.
    [3]白国平.世界碳酸盐岩大油气田分布特征[J].古地理学报,2006,8(2):241-250.
    [4]张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发,1994,16(1):1-26.
    [5]姜照勇,孟江,祁寒冰,et al泥岩裂缝油气藏形成条件与预测研究[J].西部探矿工程,2008,9:94-95.
    [6]刘洛夫,金之钧.中国大中型油气田的主力烃源岩分布特征[J].石油学报,2002,23(5): 6-13.
    [7]邵红梅,王成.徐深1井火山岩、砾岩储层特征研究[J].大庆石油地质与开发,2003,22(5):1-4.
    [8]袁士义,冉启全,徐正顺,et al火山岩气藏高效开发策略研究[J].石油学报,2007,28(1):7377.
    [9]赖世新,韩晓黎,曲伟,et al准噶尔盆地三南-滴水泉凹陷及其周缘石炭系勘探前景[J].新疆石油地质,2009,30(3):297-299.
    [10]金之钧.中国大中型油气田的结构及分布规律[J].新疆石油地质,2008,29(3):385-388.
    [11]熊伟,刘华勋.低渗透储层特征研究[J].西南石油大学学报(自然科学版),2009,31(5): 89-92.
    [12]杨正明,苗盛,刘先贵.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报(自然科学版),2007,22(2):96-99.
    [13]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44.
    [14]史忠植.高级人工智能(第二版)[M].北京:科学出版社,2006.
    [15]Dave Shreiner. OpenGL编程指南[M].机械工业出版社,2010.
    [16]SY/T 5336-2006[S].岩心分析方法.
    [17]Mohaghegh Shahab. Recent Developments in Application of Artificial Intelligence in Petroleum Engineering[J]. Journal of Petroleum Technology,2005,57(4): 86-91.
    [18]Shahab Mohaghegh. Virtual-Intelligence Applications in Petroleum Engineering: Part 3—Logic [J]. Journal of Petroleum Technology,2000,52(11):82-87.
    [19]Shahab Mohaghegh. Virtual-Intelligence Applications in Petroleum Engineering: Part 2—Computing [J]. Journal of Petroleum Technology,2000,52(10).
    [20]Shahab Mohaghegh. Virtual-Intelligence Applications in Petroleum Engineering: Part 1—Neural Networks [J]. Journal of Petroleum Technology,2000,52(9):64-71.
    [21]Hounsfield G N. Computerized transverse axial scanning (tomography) [J]. British Journal of Radiology,1973,46:1016-1022.
    [22]RUIZ V G, RODRiGUEZ A, CELORIO C. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests [J]. Physical Chemical and Earth Sciences (A),1999,24(7):633-637.
    [23]ZHOU Mi-yao, LU Da-lian, DUNSMUIR J. Irreducible water distribution in sandstone rock:two phase flow simulations in CT-based pore network. [J]. Physical, Chemical and Earth Sciences (A),2000,25(2):169-174.
    [24]APPOLONI C R, FERNANDES C P, RODRIGUES C R 0. X-ray microtomography study of a sandstone reservoir rock[J]. Nuclear Instruments and Methods in Physics Research,2007,580(A):629-632.
    [25]SPANNE. Pore level imaging of fluid transport using synchrotron X-ray microtomography[J]. Journal of Petroleum Science and Engineering,1998,19: 55-63.
    [26]YOSHITO N, TSUKA Sa N, KOICHI N. Three, dimensional diffusion of non-sorbing species in porous sandstone:computer simulation based on X-ray microtomography using synchrotron radiation[J]. Journal of Contaminant Hydrology,2004,74: 253-364.
    [27]XIA Ting-feng, CHEN Si-li, ZHOU Hui. Real-time computerized tomography(CT)experiments on sandstone damage evolution during traxial compression with chemical corrosion[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:181-192.
    [28]ZHOU X, ZHANG Yx, HA Ql. Real-time computerized tomography (CT) experiements on limestone damage evolution during unloading[J]. Theoretical and Applied Fracture Mechanics,2008,50:49-56.
    [29]Brown R. J. S, Fatt I. Measurement of fractional wettability of oil fields'rocks by the nuclear magnetic relaxation method [A]. Society of Petroleum Engineers[C]. 1956:14-17.
    [30]Brown R. Proton relaxation in crude oil[J]. Nature,1961,189:387-388.
    [31]Seevers D.O. A nuclear magnetic method for determining the permeability of sandstones[A]. Paper Presented at Annual Logging Symposium Transactions: Society of Professional Well Log Analysts[C].1966.
    [32]Timur A. An Investigation of permeability, porosity and residual water saturation relationships[A]. Paper Presented at Annual Logging Symposium Transactions:Society of Professional Well Log Analysts[C].1968:18.
    [33]Timur A. Producible porosity and permeability of sandstone investigated through nuclear magnetic resonance principles[J]. The Log Analyst,1969:3-11.
    [34]Timur A. Pulsed nuclear magnetic resonance studies of porosity[J]. moveable fluid, and permeability of sandstones:Journal of Petroleum Technology,1969, 21:775-786.
    [35]R. L. Kleinberg. NMR Properties of Reservoir Fluids[J]. The Log Analyst,1996.
    [36]Al Et, with R.L.Kleinberg. Nuclear Magnetic Resonance of Rocks:T1 vs. T2[A]. SPE-26470[C].1993.
    [37]Al Et, with D. Marschall. Method for Correlating NMR Relaxometry and Mercury Injection Data[A]. SCA-9511[C].1995.
    [38]Al Et, with S.Chen. Methods for Computing Swi and BVI from NMR Logs[A]. SPWLA 39th Annual Logging Symposium[C].1998.
    [39]Menger Stefan, Prammer Manfred. Can NMR Porosity Replace Conventional Porosity in Formation Evaluation?[A]. SPWLA 39th Annual Logging Symposium[C].1998.
    [40]Al Et, with M.B.Crowe. Measuring Residual Oil Saturation in West Texas Using NMR[A]. SPWLA 38th Annual Logging Symposium[C].1997.
    [41]P. Horkowitz John, Al Et. Residual Oil Saturation Measurements in Carbonates with Pulsed NMR Logs[J]. The Log Analyst,1997.
    [42]Al Et, with R. Akkurt. Selection of Optimal Acquisition Parameters for MRIL Logs[J]. The Log Analystl,1996.
    [43]Al Et, with R. Akkurt. Enhanced Diffusion:Expanding the Range of NMR Direct Hydrocarbon-typing Applications[A]. SPWLA 39th Annual Logging Symposium[C]. 1998.
    [44]Al Et, with R.Akkurt. Determination of Residual Oil Saturation Using Enhanced Diffusion[A]. SPE-49014[C].1998.
    [45]高守双.核磁共振测井[J].测井技术,1983(5).
    [46]高守双.国外核磁测井简介[J].国外测井技术水平调研专辑,1986.
    [47]肖立志,杜有如,叶朝辉.岩石的核磁共振自旋密度微成像[J].物理化学学报,1995(6).
    [48]肖立志.核磁共振成象测井[J].测井技术,1995(4).
    [49]Weimin Wang, Al Et. NMR imaging of introvoxel incoherent motion in porous media[A]. The International 5TH Beijing Conference and Exhibition on Instrument Analysis[C].1993:119-121.
    [50]Weimin Wang, Al Et. The NMR semi-quantitative determination of Polymer retained in sealing drilled core[A]. The Third International Meeting on Recent Advances in MR Applications to Porous media, Belgium[C].1995.
    [51]Weimin Wang, Al Et. The Application of NMR Imaging to the Studies of Enhanced Oil Recovery in China[J]. Magnetic Resonance Imaging,1996,14.
    [52]王为民.用核磁共振成像技术研究聚合物驱油机理[J].石油学报,1997(4).
    [53]王为民.核磁共振岩性测试系统研制报告[J].1997.
    [54]Weimin Wang, Al Et. Using NMR Technology to Determine the Movable Fluid Index of Rock Matrix in Xiaoguai Oilfield[A]. Sixth International Oil&Gas Conference and Exhibition, SPE-50903[C].1998.
    [55]王为民.核磁共振测井基础实验研究[J].测井技术,1997,6.
    [56]Wang Weimin. NMR Logging Study on Igneous Reservoir in Linpan Area in Shengli Oilfield by Means of Core Analysis[A]. SPE-50906[C].1998.
    [57]王为民.核磁共振测井理论与应用[M].石油工业出版社,石油工业出版社,1998:18-43.
    [58]王,路君.CT技术在岩土工程研究中的应用[J].地下空间与工程学报,2009,5(增刊2):1754-1756.
    [59]李玉彬,李向良,李奎祥.利用计算机层析(CT)确定岩心的基本物理参数[J].石油勘探与开发,1999,26(6):86-90.
    [60]顾本立,刘军,尹峰.检测油田岩样的CT方法[J].CT理论与应用研究,1991,4:10-12.
    [61]赵碧华.用CT扫描技术研究岩心伤害情况[J].石油钻采工艺,1992,5:57-60.
    [62]田,中原(编译).用CT技术确定非均质碳酸盐岩心中的残余油分布[J].国外测井技术,1994,9(1):35-42.
    [63]张,全胜.X射线CT技术在岩石损伤检测中的应用研究[J].力学与实践,2005,27(6):11-19.
    [64]顾本立.CT扫描的岩心分析精度[J].石油地球物理勘探,1994,29(1):117-121.
    [65]李玉彬,李向良.利用微焦点X射线CT描述特殊岩性油藏岩心[J].特种油气藏,2000,7(4):53-54.
    [66]高建,刘鹏,柳汉明,et al应用CT成像进行碳酸盐岩储层孔隙表征[J].西部探矿工程,2010,4:36-39.
    [67]高建,吕静.应用CT成像技术研究岩心孔隙度分布特征[J].CT理论与应用研究,2009,18(2):50-57.
    [68]王家禄,高建,刘莉.应用CT技术研究岩石孔隙变化特征[J].石油学报,2009,30(6):887-897.
    [69]高建,韩冬,王家禄,et al.应用CT成像技术研究岩心水驱含油饱和度分布特征[J].新疆石油地质,2009,30(2):269-271.
    [70]Kleinberg R L, Farooqui S A, Horsfield M A. T1/T2 ratio and frequency dependence of NMR relaxation in porous sedimentary rocks[J]. J. Magn. Res. in press,1993.
    [71]Meiboom S, Gill D. Modified spin-echomethod formeasuring nuclear relaxation times[J]. Rev. Sci. Instrum.,1958,29:688-619.
    [72]Carr Hy, Purcell E M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments[J]. Phys. Rev.,1954,94:630-638.
    [73]肖立志.核磁共振成像测井不岩石核磁共振及其应用[M].北京:科学出版社,1998.
    [74]肖立志.我国核磁共振测井应用中的若干重要问题[J].测井技术,2007,31(5):401-407.
    [75]国庆忠.影响核磁共振测井孔隙度的因素分析[J].油气田地面工程,2003,22(3):47.
    [76]Korringa J, Seevers D 0, Torrey H C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers [J]. Physical Review,1962,127(4):1143-1150.
    [77]Dunn K J, Bergman D J, Latorraca G A. Nuclear Magnetic Resonance:Petrophysical and Logging Applications[M]. Pergamon:Elsevier Science,2002.
    [78]J. D Loren, J. D Robinson. Relations between pore size, ffuid and matrix properties, and NML mea-surements[J]. Soc, Petrol. Eng.,1970,10:298-278.
    [79]C Straley, D Rossini, H.J Vinegar. Core analysis by low-field NMR[J]. The Log Analyst,1997,38:84-94.
    [80]W. E Kenyon. Petrophysical principles of applications of NMR logging[J]. The Log Analyst,1997,38:21-43.
    [81]W. E Kenyon. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics,1992,6(2):153-171.
    [82]W.E Kenyon, J.J Howard, A Sezginer, et al. Pore-size distribution and NMR in microporous cherty sandstones[A]. SPWLA 30th Anual Loggong Symposium[C].1989: Paper LL.
    [83]J.R Banavar, L.M Schwartz. Magnetic Resonance as a Probe of Permeability in Porous Media[J]. Phys. Rev. Lett,1987,58:1411-1414.
    [84]W. E Kenyon, P. I Day, C Straley. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones [A]. SPE For mation Evaluation[C].1998: 322-636.
    [85]G. R Coates, J. L Dumanoir. A New Approach to Improved Log-Derived Permeability[J]. The Log Analyst,1974,15:17-31.
    [86]A Timur. An investigation of permeability, porosity, and residual water saturation relationships[J]. The Log Analyst,1968,9:8-17.
    [87]冯进,孙友.核磁共振测井T2截止值的确定方法[J].中国海上油气,2008,20(3):181-183.
    [88]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001:44-45.
    [89]孙军昌,郭和坤,刘卫.低渗火山岩气藏可动流体T2截止值实验研究[J].西南石油大学学报:自然科学版,2010,32(4):109-114.
    [90]周灿灿,程相志,赵凌风.用岩心NMR和常规束缚水的测量改进对T2cutoff的确定[J].测井技术,2001,25(2):83-88.
    [91]Straley C, Rossini D, Vinegar H J. Core analysis by low-field NMR[J]. The Log Analyst,1997,38(2):84-94.
    [92]许运新,蒋承藻,萧得铭.岩心描述与用途[M].哈尔滨:黑龙江科学技术出版社,1994:5-20.
    [93]张小芹,席翔涛,危国亮,et al马朗凹陷卡拉岗组火山岩储层微观特征[J].吐哈油气,2008,13(3):246-273.
    [94]刘顺生,胡复唐.洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,11(4):350-356.
    [95]张红梅,邓琳,王延杰.准噶尔盆地超低渗裂缝性油田开发——以小拐油田为例[J].新疆石油地质,1999,20(2):146-149.
    [96]李军,王德发,范洪军.甘肃酒泉盆地青西油田裂缝特征及成因分析[J].现代地质,2007,21(4):691-696.
    [97]SY/T 5368-2000[S].岩石薄片鉴定.
    [98]余明.简明天文学教程[M].第2版.科学出版社,2011.
    [99]Freeman H. Boundary Encoding and Processing [A]. B S Lipkin, A Rosenfel[C]. New York:Picture Processing and Psychohistories, Academic,1970:241-266.
    [100]FREEMAN H. On the encoding of arbitrary geometric configuration[J]. EEE Trans Electron Comput,1961,10(EC):260-268.
    [101]宫,伟力.基于图像描述的煤岩裂隙CT图像多尺度特征[J].岩土力学,2010,31(2):371-381.
    [102]吴元敏.基于Freeman链码的图像中多个区域面积的计算方法[J].计算机工程与应用,2008,44(15):8-10.
    [103]薛强,蔡文文,石教英.Marching Boxes:一个多精度等值面抽取算法[J].计算机辅助设计与图形学学报,1998,10(1):7-14.
    [104]梁秀霞,张彩明.拓扑结构正确的三线性插值曲面的三角片逼近[J].计算机研究与发展,2006,43(3):528-535.
    [105]Nielson G M. On marching cubes[J]. IEEE Transactions on Visualization and Computer Graphics,2003,9(3):283-297.
    [106]Al Et, with Montani. Reconstruction of topologically correct and adaptive trilinear surfaces[J]. Computers and Graphics,2000,24(3):399-418.
    [107]袁斌,金其然.消除Marching Cubes二义性的新算法[J].计算机辅助设计与图形学学报,1998,10(5):457-463.
    [108]Chernyaev E V. Marching cubes 33:construction of topologically correct isosurface[R]. Geneva:1995.
    [109]Matveyev S V. Resolving the topological ambiguity in approximating the isosurface of scalar function[A]. Proceedings of Visualization and Machine Vision[C]. Seattle:1994:18-21.
    [110]Van Gelder Allen, Wilhelms J, Al Et. Topological considerations in isosurface generation[J]. ACM Transactions on Graphics,1994,13(4):337-375.
    [111]Natarajan B K. On generating topologically consistent isosurfaces from uniform samples[J]. The Visual Computer,1994,11(1):52-62.
    [112]Mielson G, Hamann B. The asymptotic decider:resolving the ambiguity in marching cubes[A]. Proceedings of Visualization' 91[C]. Los Alamitos CA:1991:83-91.
    [113]Durst M J. Additional reference to marching cubes[J]. Computer Graphics,1988, 22(2):72-73.
    [114]Lopes A, Brodlie K. Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing[J]. IEEE Transactions on Visualization and Computer Graphics,2003,9(1):16-29.
    [115]Lopes A. Accuracy in scientific visualization[M]. Leeds:University of Leeds, 1999.
    [116]Brodlie Ken, Wood Jason. Recent advances in volume visualization[J]. Computer Graphics,2001,20(2):125-148.
    [117]Pascucci V, Bajaj C L. Time critical isosurface refinement and smoothing[A]. Proceedings of the 2000 IEEE symposium on Volume visualization[C]. Salt Lake City:2000:33-42.
    [118]Montani C, Scateni R, Scopigno R. Decreasing isosurface complexity via discrete fitting[J]. Computer Aided Geometric Design,2000,17(3):207-232.
    [119]Montani C, Scateni R, Scopigno R. Discretized marching cubes[A]. Proceedings of the Visualization[C]. Washington, DC:1994:281-287.
    [120]R Shu, Zhou Chen, Kankanhalli M S. Adaptive marching cubes[J]. The Visual Computer,1995,11(4):202-217.
    [121]Schroeder W J, Zarge J A, Lorensen W E, et al. Decimation of triangle meshes[J]. Computer Graphics,1992,26(2):65-70.
    [122]Wilhelms J, Van Gelder A. Octree for faster isosurface generation[J]. ACM Transactions on Graphics,1992,11(3):201-227.
    [123]阮秋绮.数字图像处理学[M].北京:电子工业出版社,2001.
    [124]Tiab D, Donaldson E C. Petrophysics 2nd edition[M]. Netherlands:Elsevier,2004: 65-67.
    [125]Kenyon W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics,1992,6(2):153-171.
    [126]肖秋生,朱巨义.岩样核磁共振分析方法及其在油田勘探中的应用[J].石油实验地质,2009,31(1):97-100.
    [127]LP Dake. Fundamentals of reservoir engineering (developments in petroleum science)[M]. Elsevier Science,1998.
    [128]范文星.密闭取心井钻井技术及其问题探讨[J].石油天然气学报,2007,29(2):129-131.
    [129]Valenti N P, Valenti R M, Koederitz L F. A unified theory on residual oil saturation and irreducible water saturation[A]. SPE Annual Technical Conferet and Exhibition[C]. San Antonio, Texas:2002.
    [130]谢然红,肖立志,王忠东.复杂流体储层核磁共振测井孔隙度影响因素[J].中国科学D辑:地球科学,2008,38(增刊工):191-196.
    [131]Straley C, Rossini D, Vinegar H J. Core Analysis by Low Field NMR[A]. SCA Paper 9404[C].
    [132]谢然红,肖立志,傅少庆.饱和水岩石核磁共振表面弛豫温度特性[J].中国石油大学学报(自然科学版),2008,32(2):44-46.
    [133]Chen R, Stallworth P E, Greenbaum S G, et al. Effects of hydrostatic pressure on proton and deuteron magnetic resonance of water in natural rock and artificial porous media[J]. Journal of Magnetic Resonance, Series A,1994,110(1):77-81.
    [134]邵维志,丁娱娇.MRIL-P型核磁共振测井技术及应用[J].测井技术,2002,26(3):205-212.
    [135]蔡剑华,刘卫,郭和坤.便携式核磁共振录井仪的研制与应用[J].石油机械,2008,36(1): 52-53.
    [136]彭石林,尉中良,管志宁.顺磁物质对岩石核磁弛豫特性影响的实验研究[J].石油物探,2002,41(3):372-376.
    [137]王忠东,王东.顺磁离子对核磁共振弛豫响应的影响及其应用的实验研究[J].测井技术,2003,27(4):270-273.
    [138]Anand V, George J. Hirasaki. Paramagnetic Relaxation In Sandstones: Distinguishing T1 And T2 Dependence On Surface Relaxation, Internal Gradients And Dependence On Echo Spacing[J]. Journal of Magnetic Resonance,2008,190: 68-85.
    [139]Foster R J. Physical Geology (3rd edition)[M]. Merrill,1971:550.
    [140]翁爱华,李舟波,王伟男,et al矿化度对流体核磁共振性质影响的实验研究[J].测井技术,2001,25(6):401-404.
    [141]Quinlan Jr. C4.5:Programs for Machine Learning[M]. Morgan Kauffman,1993.
    [142]Shannon C E. A mathematical theory of communication [J]. The bell system technical journal,1948,27:379-423,623-656.
    [143]C. I Guru, U.0 Onyeagoro, J Lin. Permeability prediction using genetic unit averages of flow zone indicators (FZIs) and Neural Network[A]. SPE98828[C]. 2005.
    [144]H. N Robert. Kolmogorov's mapping neural network existence theorem[A]. Proc IEEE 1st Inter Conf on Neural Networks[C]. IEEE Press,1987:11-13.
    [145]D.S Huang. The Local Minima-Free Condition of Feedforward Neural Networks for Outer-Supervised Learning[J]. The Local Minima-Free Condition of Feedforward Neural Networks for Outer-Supervised Learning,1998,28(3):477-480.
    [146]Y Chauvin, D. E Rumelhart. Backpropagation:theory, architectures, and applications[M]. Lawrence Erlbaum Associates, Inc.,1995.
    [147]王为民,李培,叶朝辉.核磁共振弛豫信号的多指数反演[J].中国科学A辑,2008,31(8):730-736.
    [148]王振宇,刘国华.走时层析成像的迭代Tikhonov正则化反演研究[J].浙江大学学报(工学版),2005,39(2):259-263.
    [149]马建海,孙建孟,孙萌,et al.基于迭代Tikhonov正则化的核磁测井解谱方法研究[J].西南石油大学学报,2009,31(1):37-40.
    [150]王鹤,李鲠颖.反演与拟合相结合处理核磁共振弛豫数据的方法[J].物理学报,2005,54(3):1431-1435.
    [151]李平,王椿镛,许厚泽,et al.地球物理反演中奇异值分解应用的若干问题探讨[J].自然科学进展,2001,8(11):8.
    [152]张文权,翁爱华.地面核磁共振正则化反演方法研究[J].吉林大学学报(地球科学版),2007,37(4):879-813.
    [153]陈华,潘克家,谭永基.核磁共振弛豫信号多指数反演新方法[J].测井技术,2009,33(1): 37-41.
    [154]王忠东,肖立志,刘堂宴.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学G辑,2003,33(4):323-332.
    [155]姚绪刚,王忠东.一种新的核磁共振弛豫谱反演算法[J].测井技术,2003,27(5):373-376.
    [156]谭茂金,石耀霖,谢关宝.基于遗传算法的核磁共振T2分布反演[J].测井技术,2007,31(5):413416.
    [157]潘克家,陈华.基于差分进化算法的核磁共振T2谱多指数反演[J].物理学报,2008,57:5956-5961.
    [158]Jose Finol, Carlos Romero, Pedro Romero. An Intelligent Identification Method of Fuzzy Models and Its Applications to Inversion of NMR Logging Data[A]. Proceedings of SPE Annual Technical Conference and Exhibition[C]. Society of Petroleum Engineers,2002.
    [159]张志刚,赵新泉.利用BP人工神经网络计算Fredholm—Ⅱ型积分方程的近似解[J].中南民族大学学报:自然科学版,2002,21(4):79-81.
    [160]廖广志,肖立志,谢然红,et al孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J].地球物理学报,2007,50(3):932938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700