裂缝性潜山油藏裂缝网络模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂缝发育的普遍性、裂缝分布的复杂性及裂缝性储层的重要性决定了开展裂缝性油藏研究的必要性和艰巨性。对该类油藏研究的目的是建立比较客观的裂缝网络模型,提高对裂缝空间分布状况的认识,为油田勘探和开发提供符合客观实际的依据。论文以辽河油田沈229潜山油藏为例,综合各种来源不同、尺度不同的资料,通过多学科进行裂缝的描述,然后利用嵌套随机模拟的方法得到可靠的裂缝网络模型,主要研究内容及成果包括:
     1.利用现场资料进行裂缝的识别及裂缝表征参数描述,形成了一套比较系统和完善的技术方法。
     2.利用地质统计和模糊神经网络进行裂缝属性参数的统计和分析,把裂缝的非均质性和资料的不同尺度性有机的结合起来,得到了裂缝属性参数的统计和空间分布特征。
     3.以裂缝属性的统计分布为基础进行裂缝属性参数的模拟,把裂缝密度和多级分数维整合到离散模型中,解决了裂缝空间分布的复杂性。
     4.利用嵌套模拟技术把地质成因形成的大尺度裂缝和通过岩心及测井解释得到小尺度裂缝有机结合起来,建立了反映储层裂缝及其属性客观分布的裂缝网络模型。
     5.所建立的沈229潜山裂缝网络模型在油田开发调整和部署实践中取得了良好的效果,证明该种方法对于研究裂缝性潜山油藏是可行有效的。
     通过该课题的研究得到了以下主要结论:
     1.裂缝性储层的非均质性和复杂性决定了利用一种学科或一种方法难以解决裂缝的空间分布,把各种来源和各种尺度的数据有机结合起来是裂缝属性参数表征和统计分析的关键。
     2.裂缝密度分布可用于裂缝位置分布研究,而多峰圆周统计和多级分形几何则更适合于定量研究裂缝的方位和大小。
     3.模糊逻辑可以有效地实现对不同来源数据重要性的评价;同时可得到裂缝的空间分布及实现裂缝密度分布和多级分形值的定量化。
     4.综合裂缝网络模型比基于目标的随机模拟和基于网格的裂缝模型更具有先进性,其结果可以与其他地质建模结合起来作为输入参数进行数值模拟研究。
It’s essential and hard to carry out the study of fractured reservoirs because of the complexity of fracture distribution and the importance of fractured reservoir. The objective of fractured modeling is build an objective fracture network to provide geological basis for the exploration and development of oilfields.Shen229 buried hill is taken as an example in this article, fracture is described with data from different origins and different dimensions, then obtained reliable discrete fracture net model through nesting stochastic simulation, the main contents and results are as follows:
     1. Identify fracture and describe its parameters with spot data.
     2. Analyze fracture properties using geological statistics and fuzzy neural network, the method resolve the reservoir inhomogeneity and data different size.
     3. Simulate fracture parameters based on the statistic characteristics of fracture and explain the complexity of fracture distribution integrated the fracture density and multilevel fractal dimension to discrete model.
     4. Simulate the distribution of large-scale and small-scale through nesting simulation, the model can reflect the actual distribution of fracture.
     5. The method have been used shen229 buried hill and proved it is effective in fractured reservoir modeling.
     And the following conclusions are obtained from this study:
     1. It’s important to combine the data from different origin and scale in the denotation and statistics of the characteristics parameters of fracture. This method can solve the problem of the complexity and of fractured reservoir.
     2. It’s shown that fracture density can denote the distribution of fracture, circular statistics and multilevel fractal can be used to study quantitatively the fracture’s orientation and scale, respectively.
     3. Fuzzy neural network is useful in evaluation of the importance of data from different origin, the method can quantify fracture spatial distribution.
     4. Integrated stochastic simulation is more advanced than simulation based only on objective or grids, the outcome can be used as input parameter of reservoir simulation.
引文
Adams, S.J. (2000) Fracture Porosity from Conventional Logs with Image Tool Calibration.SPE66408.
    Al Qassab, H.M., Al Khalifa, M.A., Al-Ali, Z., Ameen, M., Phillips,R. and Hartley, L.(2002) New Integrated 3D-Fracture Modeling And Flow Simulation Study: A Gaint Saudi Arabian Carbonate Reservoir. Spe78295, Society of Petroleum Engineers EUROPEC, Aberdeen, Scotland,Oct. 29-31
    Anraku, T., Namikawa, T., Herring, T., Jenkins, I., Price, N.and Trythall, R. (2000) Stochastic Fracture Modeling of The Yufutsu Field. SPE59400.
    Babadagli, T. (2001) Fractal Analysis of 2D Fracture Networks of Geothermal Reservoirs in South-western Turkey. Journal of Volcanology and Geothermal Research, 112, pp.83-103.
    Baker,R.O.and Kuppe, F. (2000) Reservoir Characterization for Naturally Fractured Reservoirs.SPE63286.
    Baker, R.O.,Schechter, D.S.,Mcdonald, P., Knight, W.H.,Leonard, P. and Rouding, C. (2001) Development of Fracture Model for Spraberrry Field, Texas USA.SPE71635.
    Baraka-Lokmane, S. (2002) A New Resin Impregnation Technique for Characterizing Fracture Geometry in Sandstone Cores, International Journal of Rock Mechanics and Mining Sciences,39(6),pp.815-823.
    Barman, I., Queens, A., and Wang, M. (2000) Fractured Reservoir Characterization Using Streamline-Based Inverse Modeling and Artificial Intelligence Tools.SPE6306.
    Bates, C.R., Phillips, D.R., Grimm, R. and Lynn, H.(2001) The Seismic Evaluation of a Naturally Fractured Tight Gas and Sand Reservoir in The Wind River Basin, Wyoming. Petroleum Geosicence,7,pp.35-44.
    Belfield, W. (2000) Predicting Natural Fracture Distribution in Reservoir from 3D Seismic Estimates of Structural Curvature. SPE60298.
    Boerner, S., Gray, D., Zellou, A.M. and Schnerk, G. (2003) Employing Neural Networks to Integrate Seismic and Other Data for the Prediction of Fracture Intensity. SPE84453.
    Bourne, S.J., Rijkels, L., Stephenson, B.J. and Willense, E.J.M. (2001) Predictive Modeling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation. Geoarabia,6(1),pp.27-42.
    Brown, A., Davies, M., Nicholson, H. and Gane, B.R. (1999) the Machar Field, Unlocking the Potential of A North Sea Chalk Field. SPE56974.
    Buddin ,T.S.,S.J.Kane,G.D.Williams , and S.S.Egan,1997 , A sensitivity analysis of 3-dimensional restoration techniques using vertical and inclined shear construction: Tectonophysis v269.
    Cacas, M.C., Daniel, J.M. and Letouzey, J. (2001) Nested Geological Modeling of Naturally Fractured Reservoirs. Petroleum Geosicence,7.pp.S43-S52.
    Carrera, J., Heredia, J., Vomvoris, S. and Hufschmied, P. (1990) Modeling of Flow on A Small
    Fractured Monzonitic Gneiss Block. In: Neuman, S.P. and Neretnieks, I. (eds), Hydrogeology of Low Permeability Environments, 2. Inernational Association of Hydro-Geologists, Hanover, pp.115-167.
    Castrejon-Vacio, F. and Pores-Lunna, A.A. (1994) Use of Seismic Attributes in Geological Desciription of Carbonate Rocks. SPE28673.
    Chambers, K. T., Debaun, D.R., Durlofsky, L.J., Taggart, I. J., Bernath, A., Shen, A.Y., Legarre, H.A. and Goggin, D.J. (1999) Geologic Modeling, Upscaling and Simulation of Faultd Reservoir Using Faulted Stratigraphic Grids.SPE51889.
    Cheng, Q.(1997) Discrete Multifractal. Mathematical Geology,29(2),pp.245-266.
    Clark, R.M, Cox, S.J.D. and Laslett, G.M. (1999) Generalizations of Power-Law Distribution Applicable to Sampled Fault-Trace Lengths: Model Choice, Parameter Estimation and Caveats. Geophysics Journal International, 136,pp.357-372.
    Crampin, S., Lynn, H.B. and Booth, D.C. (1989) Shear-Wave VSP’s: A Powerful New Tool for Fracture and Reservoir Description. Jounal of Petroleum Technology,41(3),pp.283-288.
    Davision, C.C. (1985) URL Drawdown Experiment and Comparision with Models.Atomic Energy of Canada Ltd. TR375, Pinawa,Manitoba.
    Deutsch, C.V. and Cockerham, P.W. (1994) Practical Considerations in the Application of Simulated Annealing to Stochastic Simulation. Mathematical Geology, 26(1),pp.67-82.
    Deutsch, C.V. and Journel, A.G. (1992) The Application of Simulated Annealing to Stochastic Reservoir Modeling.SPE23565.
    Doughty, C. and Karasaki, K. (2000) An Effective Continuum Model for Flow and Transport in Fractured Rock. Berkeley Lap Annual Report,USA.
    Escuder Viruete, J., Carbonell, R., Marti, D. and Petrz-Estaun, A. (2003) 3-D Stochastic Modeling And Simulation of Fault Zones In The Albala Granitic Pluton, SW Iberian Variscan Massif.Journal of Structural Geology,25(9),pp.1487-1506.
    Farmer, C.L. (1992) Numerical Rocks. In: King, P.R. (eds),The Mathematics of Oil Recovery. Clarendon Press, Oxford, England, pp.437.
    Fitzgerald, E.M., Bean, C.J. and Reilly, R. (1999) Fracture-Frequency Prediction from Borehole Wireline Logs Using Artificial Neural Networks. Geophysical Prospecting, 47,pp.1031-1044.
    Ganzer, L.J. (2002) Simulating Fractured Reserviros Using Adaptive Dual Continuum. SPE75233.
    Gringarten, E.(1996) 3D Geometric Description of Fractured Reservoirs. Mathematical Geology,28(7),pp.881-893.
    Gurpinar, O., Kalbus, J. And List, D. (1999) Numerical Modeling of a Triple Porosity Reservoir. SPE57277.
    Haldorsen, H.H. and Damsleth, E. (1993) Challenges in Reservoir Characterization. AAPG Bulletin, 77(4),pp.541-551.
    Heffer, K.J., King, P.R. and Jones, A.D.W. (1999) Fracturing Modeling as Part of Integrated Reservoir Characterization.SPE53347.
    Hennings, P.H., Olson, J.E. and Thompson, L.B. (2000) Combining Outcrop Data and Three-Dimensional Structural Models to Characterize Fractured Reservoirs: An Example From Wyoming. American Association of Petroleum Geologists Bulletin,84(6),pp.830-849.
    Herrmann,H.J. (1995) Some New Results on Fracuture. Physica A ,Elsevier,221,pp.125-133.
    Hewett, T.A. (1994) Fractal Methods for Fracture Characterization.Stochastic Modeling and Geostatistics-Principles, Methods and Case Studies, Yarus, J.M. and Chambers, R.L., The American Association of Petroleum Geologists, Tulsa, USA.
    Hirsch, J.M., Cisar, M.T., Glass, S.W., and Romanowski, D.A. (1981) Recent Expericence with Wireline Fracture Detection Logs.SPE10333.
    Holbrook, P.W. (1988) A New Method for Prediciting Fracture Progagation Pressure from MWD or Wireline Log Data. SPE19566.
    Iverson, W.P. (1992) Fracture Identification from Well Logs. SPE24351.
    Jensen, C.L., Lee, S.H., Milliken, W.J., Kamath, J., Narr, W., Wu, H. and Davies, J.P. (1998) Field Simulation of Naturally Fractured Reservoirs Using Effective Permeabilitied Derived from Realistic Fracture Characterization. SPE48999.
    Jensen, O.K., Bresling, S., Christensen, O.W., Rasmussen, F.O., Foged, N. and Petersen, K.(1989) Natural Fracture Distribution in Reservoirs Modeled by Back-Stripping and Finite Element Stress Analysis. SPE18429.
    Klinkenberg, B. (1994) A Review of Methods Used to Determine the Fractal Dimension of Linear Features. Mathematical Geology,26(1),pp.23-46.
    Lanyon, G.W., Batchelor, A.S. and Ledingham, P. (1993) Results from A Discrete Fracture Network Model of A Hot Dry Rock System. Proceedings of 18th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, USA,Jan.26-28.
    Lee, S.H., Jenden, C.L. and Lough, M.F. (1999) An Efficient Finite Difference Model for Flow in a Reservoir With Multiple Length-Scale Fractures. SPE56752.
    Lefeuvre, F., Turpening, R., Caravana, C., Born, A. and Nicoletis, L. (1993) Vertical Open Fractures and Shear-Wave Velocities Derived from VSPs, Full Waveform Acoustic Logs, and Televiewer Data. Geophysics, 58(6),pp.818-834.
    Lei, W. and Chen, B. (1995) Fractal Charaterization of Some Fracture Phenomena. Engineering Fracture Mechanics, 50(2),pp.149-155.
    Li, D., Liu, J., Sanchez-Barajas, J., Seader, R. and Lanz-Torres, C.L. (1997) A New Practical Approach to Building a 3D Naturally Fractured Reservoir Model. SPE38012.
    Lisle, J.L. (1994) Detection of Zones of Abnormal Strains in Structures Using Gaussian Curvature Analysis. American Association of Petroleum Geologists Bulletin,78(12),pp.1811-1819.
    Long, J.C.S., Karasaki, K., Davey, A., Peterson, J., Landsfeld, M., Kemeny, J. and Martel, S.(1991) Inverse Approach to the Construction of Fracture Hydrology Models Conditioned by Geophysical Data. An Example from the Validation Exercises at the Stripa Mine. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,28(2-3),pp.121-142.
    Lynn, H.B., Bates, R., Layman, M. and Jones, M. (1995) Natural Fracture Characterization Using P-Wave Reflection Seismic Data,VSP, Borehole Imaging Logs, and the In-Situ Stress Field Determination. SPE29595.
    Mandelbrot, B.B. (1983) The Fractal Geometry of Nature. W. H. Freeman and Company, New York, USA.
    National Research Council (1996) Rock Fractures and Fluid Flow-Contemporary Understanding and Applications. National Academy Press, Washington, D.C., USA.
    Nelson, R.A. (2001) Geologic Analysis of Naturally Fractured Reservoirs. Second Edition. Gulf Professional Publishing, Boston,USA.
    Neuman, S.P. and Depner, J.S. (1988) Use of Variable Scale Pressure Test Data to Estimate the Log Hydraulic Conductivity Covariance and Dispersivities of Fractured Granites Near Oracle, Arizona. Journal of Hydrology, 102(1-4).pp.475-501.
    Olson, J.E., Qiu, Y., Holder, J. and Rjken, P. (2001) Constraining the Spatial Distribution of Fracture Networks in Naturally Fractured Reservoirs Using Fracture Mechanics and Core Measurements. SPE71342.
    Ouenes, A. and Hartley, L.J. (2000) Integrated Fractured Reservoir Modeling Using Both Discrete and Continuum Approaches. SPE62939.
    Ozkaya,S.I. and Mattner, J. (2003) Fracture Connectivity from Fracture Intersections in Borehole Image Logs. Computers&Geosciences, 29(2),pp.143-153.
    Parney, R., Cladouhos, T., La Pointe, P., Dershowitz, W. and Curran, B. (2000) Fracture and Production Data Integration Using Discrete Fracture Network Models for Carbonate Reservoir Managemeng, South Oregon Basin Field, Wyoming. SPE60306.
    Pistre, S., Bangoy, L.M. and Rives, T. (1995) A New Approach for Prediction of Unexposed Fractured Reservoirs: A Case Study in Millas Granite (French Pyrenees). Hydrological Sciences Journal,40(3),pp.351-365.
    Pruess, K. and Narasimhan, T.N. (1998) Numerical Modeling of Multiphase and Nonisothermal Flow in Fractured Media. Symposium Conference on Fluid Flow in Fractured Rocks, Georgia State University, May 15-18.
    Quintero, E.J., Martinez, L.P. and Gupta, A.(2001) Characterization of Naturally Fractured Reservoirs Using Artifical Intelligence. SPE67286.
    Rahim, Z. and Al-Qahtani, M.Y. (2001a) Sensitivity Study on Geo-Mechanical Properties to Determine their Impact on Fracture Dimensions and Gas Production in the Khuff and Pre-Khuff Formation Using a Layered Reservoir System Approach, Ghawar Reservoir, Saudi Arabia. SPE72142.
    Rahim, Z. and Al-Qahtani, M.Y. (2001b) Using Radioactive Tracer Log, Production Tests, Fracture Pressure Match, and Pressure Transient Analysis to Accurately Predict Fracture Geometry in Jauf Reservoir, Saudi Arabia.SPE71650.
    Rawnsley, k. and wei, l. (2001) evaluation of a new method to build geological models of fractured reservoirs calibrated to production data. Petroleum geoscience, 7,pp.23-33.
    Reeves, m., freeze, g.a., kellel, v.a., pickens, j.f., upton, d.t. and davis, p.b. (1991) regional double porosity solute transport in the culebra dolomite under brine-reservior-breach release conditions: an analysis of parameter sensitivity and importance. Sandia national laboratories, SAND89-7069, Albuquerque, n.m.
    Ruger, A. and Tsvankin, I. (1997) Using AVO for Fracture Detection: Analytic Basis and Practical Solutions. The Leading Edge, Tulsa, USA, 16(10), pp.1429-1430.
    Rouby, 3D restoration of complexly folded and faulted surface using multiple unfolding mechanisms, AAPG ,V84,No,6
    Sanchez, D.M.A. Vasquez, A.R, Van Alstine, D., Butterworth, J., Carmona, R., Poquioma, W. and Ramones, M. (1999) Applications of Geo-Mechanics in the Development of the Naturally Fractured Carbonates of the Mara Oeste Field, Venezuela. SPE54008.
    Stearns, W. and Fieldman, M. (1972) Reservoirs in Fractured Rocks. In: Stratigraphic Oil and Gas Fields: Classification, Exploration Methods and Case Histories. American Association of Petroleum Geologists, Memorandum (16),pp.82-106.
    Suau, J. and Gartner, J. (1980) Fracture Detection from Well Logs. Log Analyst,21(2),pp.3-13.
    Swaby, P.A. and Rawnsley, K.D. (1996) An Interactive 3D Fracture Modeling Environment. SPE36004, Society of Petroleum Engineers Petroleum Computer Conference, Texas,USA, June 2-5.
    Tamagawa, T., Matsuura, T., Anraku, T., Tezuka, K. and Namikawa, T. (2002) Construction of Fracture Network Model Using Static and Dynamic Data. SPE77741.
    Tamhane, D., Wong, P.M. and Aminzadeh, F. (2002) Integrating Linguistics Descriptions and Digital Signals in Petroleum Reservoirs. International Journal of Fuzzy Systems, 4(1), pp.586-591.
    Twiss, R.J. And Moores, E.M. (1992) Structural Geology. W H Freeman & Co Ltd.
    Warpinski, N.R. (1991) Hydraulic Fracturing in Tight, Fissured Media. Journal of Petroleum Technology,pp.146-209.
    Wen, R. and Sinding-Larsen, R.(1996) Stochastic Modeling and Simulation of Small Faults by Marked Points Processes and Kriging. In: Baafi, E.Y. and Schofield, N.A.(eds),Geostatistics Wollongong. Australia,pp.398-414.
    Wilson, T.H. (2001) Scale Transitions in Fracture and Active Fault Networks. Mathematical Geology,33(5),pp.591-613.
    Willians ,G.D.,S.J.Kane,T. S. Buddin, And A.J.Richards, Restoration and balance of complex folded and fault rock volume :flexural flattening ,jigsaw fitting and decompaction in three dimensions :tectonophysics ,v273
    William R.Jamison, Quantitative evaluation of fractures on monkshoo of anticline , a detachment fold in the foothills of western Canada.AAPG,V81,No.7
    Xing Yuzhong, Fan Tailiang, Zhen Lihui. The fracture network model of shen 229 block buried hill: a case study from Liaohe basin, China.[J]. Journal of Zhejiang University Science.2006(11):1904-1910
    Zellou, A., Ouenes, A. and Banik, A. (1995) Improved Naturally Fractured Reservoir Characterization Using Neural Networks, Geo-Mechanics and 3-D Seismic.
    Zellou, M. And Ouenes, A. (2001) Integrated Fractured Reservoir Characterization Using Neural Networks and Fuzzy Logic: Three Case Studies. Journal of Petroleum Geology,24(4).
    Zhang jichang, Xing yuzhong, Gao yiheng. Calculation methods of fracture parameters in fractured reservoirs [R]. Proceedings of XII international congress of international society for mine surveying, Fuxin-Beijing ,China, 2004,9(1).P279-283
    安丰全,李从信.利用测井资料进行裂缝的定量识别.石油物探,1989(9):54-58.
    B.H.迈杰鲍尔. 裂缝性油藏开发特征.北京:石油工业出版社,1986.
    柏松章. 双裂缝性碳酸盐岩油藏储层渗流特征的初步探讨,古潜山.北京:石油工业出版社,1989.
    柏松章,唐飞.裂缝性潜山基岩油藏开发模式.北京:石油工业出版社,1997.
    陈钢花,伍文圣.利用地层微电阻率成像测井识别裂缝.测井技术,1999(4):23-28.
    陈忠,邢玉忠.有限元数值模拟在裂缝定量预测中的应用.特种油气藏,2001,8(1): 31-36.
    董连科.分形理论及应用. 沈阳:辽宁科学技术出版社,1991.
    E. M. 斯麦霍夫.裂缝性储层勘探的基本原理与方法.北京:石油工业出版社,1988.
    黄辅琼,宋惠珍,欧阳健等.储集层构造裂缝定量预测方法研究.地震地质,1999,21(3):262-267.
    贾文玉,田素月. 成像测井技术与应用.北京:石油工业出版社,2000.
    柯式镇,孙贵霞.井壁电成像测井资料定量评价裂缝的研究.测井技术,2002,27(5):48-51.
    李志明等. 地应力与油气勘探开发.北京:石油工业出版社,1997.
    李善军等.碳酸盐岩地层中裂缝孔隙度的定量解释.测井技术,1997,21(5):205-214.
    刘 立.辽河盆地东部凹陷新生代火山岩裂缝与油气.海洋石油,2003,18(4): 18-23.
    刘建中,张金珠,张雪.油田应力测量.北京:地震出版社,1993.
    罗利,胡培毅.碳酸盐岩裂缝测井识别方法.石油学报,2001,31(3):56-61.
    卢颖忠,黄智辉.储层裂缝特征测井解释方法综述.地质科技情报,1998,26(3):43-48.
    孟召平,彭苏萍.油气储层有限变形转动场及其裂缝发育区预测—以塔里木盆地大庆区块下古生界碳酸盐岩为例.煤田地质与勘探,2001,29(5):56-62.
    华北石油勘探开发设计研究院.潜山油气藏.北京:石油工业出版社,1982.
    R.A. 纳尔逊.天然裂缝性储层的地质分析.北京:石油工业出版社,1988.
    单家增,张占文.大民屯凹陷安福屯潜山带古构造应力场与裂缝发育特征的光弹物理模拟实验研究.石油勘探与开发.2004,4:36-40.
    石油测井情报协作组. 测井新技术应用.北京:石油工业出版社,1998.
    范高尔夫.拉特.裂缝油藏工程基础.北京:石油工业出版社,1989.
    宋惠珍,欧阳健.裂缝性储集层定量研究的一套新方法.地震地质,1994,16(3):62-65.
    宋惠珍,曾海容.储层构造裂缝预测方法及应用.地震地质,1999,21(3):72-78.
    谭烃栋.裂缝性油气藏测井解释模型与评价方法.北京:石油工业出版社,1991.
    雍世和,张超谟.测井数据处理与综合解释.山东东营:石油大学出版社,1996.
    王贵文.测井地质学.北京:石油工业出版社,2000.
    王允诚.裂缝性致密油气储集层.北京:地质出版社,1992.
    王志章.裂缝性油藏描述及预测.北京:石油工业出版社,1995.
    邢玉忠,张吉昌,陈忠等.辽河盆地特殊岩性油藏精细描述技术研究.辽河油田勘探开发研究院论文集, 北京:石油工业出版社. 2005.322~328.
    邢玉忠,张吉昌,张亚中等.测井资料在潜山油藏综合研究中的应用.石油地球物理勘探,2004,29(2):173-176.
    邢玉忠,樊太亮,郑丽辉.沈 229 潜山油藏裂缝分布模型研究.石油天然气学报,2006(3):32-34.
    邢玉忠,樊太亮,郑丽辉.沈 229 元古界潜山储层特征及物性参数解释.测井技术,2006(5):429-431.
    邢玉忠,张吉昌,陈忠等.静安堡油田沈 229 区块开发方案.辽河油田分公司研究院,2003.
    邢玉忠, 张吉昌,陈忠等.静安堡油田沈 229 块潜山油藏有效储层识别与预测技术,辽河勘 探开发研究院,2002.
    杨辉廷,邢玉忠.缝洞型碳酸盐岩储层定量评价研究.天然气勘探与开发,2005(3): 5-13.
    杨培山.华北碳酸盐岩潜山油藏开发.北京:石油工业出版社,1985.
    吴胜和,欧阳健.轮南地区奥陶系裂缝型储层的地质分析.石油学报,1995,16(1):17-23.
    曾锦光.应用构造主曲率研究油气藏裂缝.力学学报,1982(2):54-62.
    曾海容,宋惠珍.碳酸盐岩储层裂缝预测系统研究及其应用.岩石力学工程学报 2000(5):1037-1041.
    曾锦光.应用构造面主曲率研究油气藏裂缝问题.力学学报,1982(2):301-378.
    赵良孝,补勇.碳酸盐岩储层测井评价技术.北京:石油工业出版社,1994.
    赵澄林.《特殊油气储层》,石油工业出版社,1997.
    张方礼,张吉昌,邢玉忠等.沈 229 元古界潜山有效空间分布特征研究.辽河油田勘探开发研究院论文集.北京:石油工业出版社. 2004,12-19.
    张吉昌,田国清,刘建中.储层构造裂缝的分形分析.石油勘探与开发,1996,23(4):54-58.
    张吉昌,邢玉忠,郑丽辉.利用人工智能技术进行构造裂缝识别研究.测井技术, 2005,29(1):52-54.
    张守谦.成象测井技术及应用.北京:石油工业出版社,1996.
    中国石油天然气总公司情报研究所编译.裂缝性碳酸盐岩油藏的测试及分析,北京:石油工业出版社,1991,1-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700