松辽盆地松科1井北孔磁性地层学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪在地质历史时期是一个极其特殊的时期,期间全球生物界、古地理和古气候均发生急剧变化。因此白垩纪是地质历史时期地球系统研究的典型范例时期。
     陆地和海洋是构成统一地球表层系统的不可分割的单元。关于全球海相白垩纪沉积已经有了很深入系统的研究;而对白垩纪陆相沉积的研究则远未达到海相白垩纪的水准。我国白垩纪海相地层仅有限分布于新疆、西藏、黑龙江以及台湾等地区,白垩纪以陆相沉积为主,其中以松辽盆地规模最大,拥有完整的白垩纪陆相沉积记录。目前,尚未对松辽盆地各组地层时代取得完全一致的认识,从而对白垩系上、下限,甚至对白垩系上、下统的界线存在一定分歧。“松科1井”是中国大陆第一口以白垩纪地层为主的全取心科学钻探,也是国际大陆科学钻探(ICDP)框架下第一口陆相白垩系科学钻探;该钻井地层连续,无缺失;沉积厚度小;外源碎屑影响小,以深湖相泥岩沉积为主。
     本论文对松科1井北孔进行了详细的磁性地层年代学研究。主要运用磁性地层学的方法,结合岩石磁学、同位素年代学结果,将获得的北孔地磁极性序列与国际上通用的地磁极性年表(GTPS)对比,获得松科1井北孔各个组、段的地层年龄和界线划分:K/Pg界线位于北孔明水组二段上中部、磁极性带R1(即C29r)中;嫩江组(K_(2n))和四方台组(K_(2s))的界线的年龄为79.075 Ma;嫩二段和嫩三段界线(K_2n_2-K_2n_3)的年龄为82.172 Ma、嫩三段和嫩四段界线(K_2n_3-K_2n_4)的年龄为81.591 Ma、嫩四段和嫩五段界线(K_2n_4-K_2n_5)的年龄为80.478 Ma;四方台组和明水组界线(K_(2s)-K_(2m))的年龄为72.155 Ma;明水组一段和二段界线(K_(2m)2-K_(2m)1)的年龄为70.132 Ma。
     基于本文作者等建立的松科1井北孔的磁性地层年代格架,本文将松科1井北孔陆相地层的与全球海相层序进行了对比,即松科1井北孔(从嫩江组一段到明水组二段)保存了Campanian早期到Danian早期之间的沉积地层,白垩纪/古近纪界线位于明水组二段上部。
In geological history, the Cretaceous is a very special period, during which the global biosphere, paleogeography and paleoclimate changed dramatically. Therefore, the Cretaceous period of geologic history is a typical example of the Earth system.
     The marine Cretaceous has been intensively studied. However, systematic research for Cretaceous continental deposits remains scarce. The Songliao Basin in northeastern China which is one of the largest nonmarine petroliferous basins in the world, contains a complete Cretaceous sequence of terrestrial sediments. However, correlation of the Cretaceous terrestrial sequences of the Songliao Basin to marine strata remains ambiguous due to the absence of a reliable chronology.
     The Cretaceous Continental Scientific Drilling borehole in the Songliao Basin (CCSD-SK-I) offers a unique opportunity for probing into the nature of the terrestrial Cretaceous world. The CCSD-SK-I sedimentary sequence consists of two borehole cores: the north core being upper; and the south core, lower. The strata of the north core comprise the Nenjiang, Sifangtai and Mingshui Formations; and of the south core, the Quantou, Qingshankou, Yaojia and Nenjiang Formations.
     In this dissertation, I carried out high-resolution magnetostratigraphic investigation on the north core. Correlation of the recognized magnetozone to the geomagnetic polarity timescale was achieved by combining magnetostratigraphic and SIMS U-Pb zircon geochronologic data of the south core. Our correlation suggests that the north core sedimentary sequence spans from the upper chron C34n to chron C29r. The age of the north core sedimentary sequence from the lower Nenjiang Formation to the Mingshui Formation in the Songliao Basin can thus be constrained to an interval from the early Campanian to the Maastrichtian ages. I futher get ages between the lithostratigraphic formations/members in the CCSD-SK-Ⅰn: K/T boundary is located in the upper part of member 2 of the Mingshui Formation, that is, within magnetic polarity with magnetozone R1 (C29r); the age of boundary between Nenjiang (K_(2n))and Sifangtai formation (K_(2s)) is 79.075 Ma; the age of boundary between the member 2 of Nenjiang formation and the member 3 of Nenjiang formation (K_2n_2-K_2n_3) is 82.172 Ma; the age of boundary between the member 3 of Nenjiang formation and the member 4 of Nenjiang formation (K_2n_3-K_2n_4) is 81.591 Ma; the age of boundary between the member 4 of Nenjiang formation and the member 5 of Nenjiang formation (K_2n_4-K_2n_5) is 80.478 Ma; the age of boundary between Sifangtai and Mingshui formation (K_(2s)-K_(2m)) is 72.155 Ma; the age of the boundary between the member 1 and the member 2 of Mingshui formation (K_(2m)2-K_(2m)1) is 70.132Ma. The CCSD-SK-I(north) records the sedimentary succession from the early Campanian to the early Danian, the boundary between the Cretaceous/Paleogene is in the upper part of member 2 of Mingshui Formation.
引文
[1] Barron E J. Cretaceous Plate Tectonic Reconstructions. Palaeogeography, Palaeoclim -atology, Palaeoecology, 1987(59): 3—29.
    [2] Berggren WA, Kent DV, Swisher CC, Aubry MP. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry MP, Hardenbol J (eds.) Geochronology Time Scales and Global Stratigraphic Correlations, SEPM Special publication 54. Tulsa (OK): SEPM. pp. 129–212, 1995b.
    [3] Berner R A. Geocarb II: A revised model of atmospheric CO2 over Phanerozoic time[J] . A m J Sci, 1994, 294: 56-91.
    [4] Berner R A , Kothavala Z. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time[J] . American Journal of Science, 2001, 301: 182-204.
    [5] Bralower T J, Srthur M A, Leckie R M, et al. Timing and paleoceanography of oceanic dysoxia/anoxic in the late Barremian to Early Aptian[J]. Palaios,1994, 9: 335-369.
    [6] Brunhes, B, Recherches sur la direction de l’aimantation des roches volcaniques, J. Phys., 1906, 5, 705–724.
    [7] Cande SC, Kent DV. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100(B4), 6093–6096, 1995.
    [8] Chengshan Wang, Xiumian Hu, Massimo Sarti, et al. Upper Cretaceous oceanic red beds in sourthern Tibet: A major change from anoxic to oxic, deep-sea environments[J]. Gretaceous Research, 2005, 26: 21-32
    [9] Clark D A. Hysteresis properties of sized dispersed monochinic pyrrhotite grains. Geophy Tes Lett,1984,11:173-176.
    [10]Cox A, Doell RR, Dalrymple GB. Geomagnetic polarity epochs and Pleistocene geochonometry. Nature, 198, 1049–1051, 1963.
    [11]Cox A, Doell RR, Dalrymple GB. Reversals of the Earth's magnetic field. Science, 144, 1537-1543, 1964a.
    [12]Cox A, Doell RR, Dalrymple GB. Geomagnetic polarity epochs. Science, 143, 351-352, 1964b.
    [13]Cronin M, Tauxe L, Constabl E C, et al. Noise in the quite zone[J]. Earth Planet Sci Lett, 2001, 190: 13-30.
    [14]Day R, Fuller M, Schmidt V A. Hysteresis and paleomagnetism: Techniques and instruments. Chapman and Hall, London, 1983, 503pp.
    [15]Dekkers M J,Mattei J L.,Fillion G, et al, Grain-size dependence of the magnetic behavior of pyrrhotite during its low temperature transition at 34K. Geophysical Research Letters, 1989,16:855-858.
    [16]Doell RR, Dalrymple GB. Geomagnetic polarity epochs: A new polarity event and the age of the Brunhes-Matuyama boundary. Science, 152, 1060–1061, 1966.
    [17]Dunlop D J, OZDEMIR O. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press, 1997, 573pp.
    [18]Fisher R A. Dispersion on a sphere. Proc R Soc London. Ser A, 1953, 217: 295-305.
    [19]Gee JS, Kent DV. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale. in Treatise on Geophysics, Volume 5, Geomagnetism, Encyclopedia of Geophysics, pp. 455?507, ed Kono, M., Elsevier, Amsterdam. 2007.
    [20]Gradstein, F.M., Ogg, J.G., and Smith, A.G., 2004, A Geologic Time Scale 2004: Cambridge, Cambridge University Press, 589 p
    [21]Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156-1167.
    [22]Heirtzler JR, Dickson GO, Herron EM, Pittman III WC, Le Pichon X. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J. Geophys. Res., 73, 2119-2136, 1968.
    [23]Heler F. Rock magnetic studies of Upper Jurassic limestones from southern Germany J Geophys,1978,16:1-11.
    [24]Helsley C E, Steiner M B. Evidence for long intervals of normal polarity during the Cretaceous period[J]. Earth Planet Sci Lett, 1969, 5: 325-332.
    [25]Huber B T, Hodell D A, Hamil Ton C P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geol S oc A mer Bull, 1995, 107: 1164-1191.
    [26]Jenkyns H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of theGeological Society London, 1980, 137: 171-188
    [27]Jones C E, Jenkyns H C.Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301: 112—149.
    [28]King J, Banerjee S K, Marvin J,et al. A comparson of different magnetic methods for determining the relative grain size of magnetite in natural material: some results from lake sediments. Earth Plant Sci lett, 1982, 59: 404-419.
    [29]Kirschvink J L. The least-squares line and plane and the analysis of paleomagnetic data.Geophys J R Astron Soc, 1980, 62:699-718.
    [30]Larson R L.Latest pulse of Earth: Evidence for a mid Cretaceous superplume[J]. Geology, 1991, 19: 963-966.
    [31]Larson R L, Erba E. Onset of the mid-Cretaceous green-house in the Barremian-Aptian: Igneous events and the biological, sedimentary and geochemical responses [J]. Palaeoceanography, 1999, 14: 663-678.
    [32]Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 1990, 17(2),: 159-162.
    [33]McDougall I, Chamalaun FH. Geomagnetic polarity scale of time. Nature 212: 1415–1418, 1966.
    [34]McDougall I, Tarling DH. Dating geomagnetic polarity zones. Nature 202: 171–172, 1964.
    [35]Opdyke ND, Channell JET. Magnetic Stratigraphy. San Diego: Academic Press, 346pp, 1996.
    [36]O,Reilly W.Rock and Mineral Magnetism.Glasgow:Blackie,1984,220.
    [37]Roberts A P. Magnetic properties of sedimentary greigite(Fe3S4). Earth and Planetary Science Letters,1995,134(3):227-236.
    [38]Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Cause and consequence[J]. Geologie en Mijinbouw, 1976, 55: 179-184.
    [39]Skelton P W. The Cretaceous World [M]. London: Cambridge University Press, 2003: 1-350.
    [40]Tauxe L, Kylstra N, Constable C. Bootstrap statistics for paleomagnetic data. J Geophys Res, 1991, 96: 11723-11740.
    [41]Thellier,E,. Sur l’aimantation des terres cuites et ses applications geopyhsiques, Ann Inst Physique du Globe, Univ. Paris, 1938, 16: 157-302.
    [42]Thompson R,Oldfield F. Environmental Magnetism. London: Allen and Unwin, 1986.
    [43]Torii M, Fukuma K, Hong C S, et al. Magnetic discrimination of pyrrhotite and greigite-bearing sediment samples. Geophysical Research Letters, 1996, 23(14): 1813-1816.
    [44]Verwey E J, Haayman P W, Romeijn F C. Physical properties and cation arrangement of oxides with spinal structures. Journal of Chemical Physics, 1947,15: 181-189.
    [45]Vine FJ, Matthews DH. Magnetic anomalies over oceanic ridges. Nature 199: 947–949, 1963.
    [46]Wilson P A, Norris R D, Cooper M J. Testing the mid-Cretaceous greenhouse hypothesis using“glassy”foraminiferal calcite from the core of t he Turonian tropics on Demerara Rise[J]. Geology, 2002, 30: 607-610.
    [47]Xiaoqiao Wan, Peiji Chen, Mingjian Wei, The Cretaceous system in China. Acta Geologica Sinica, 2008, 81(6): 957—983.
    [48]Xiumian Hu, Luba Jansa, Chengshan Wang, et al. Upper Cretaceous oceanic red beds(CORBs) in the Tethys: Occurrences, lithofacies, age and environments[J]. Cretaceous Research, 2005, 26:3-20.
    [49]Zijderveld J D A. A C demagnetization in rocks: analysis of result. In: Collinson D W, Creek K M, Runcorn S K, et al. Methods in paleomagnetism. Elsevier, 1967, 254-28.
    [50]方大钧.王兆樑等.中国松辽盆地白垩系磁性地层.中国科学. 1989, 10(10): 1085-1091.
    [51]高有峰.王成善.王璞君等.松科1井北孔选址、岩心剖面特征与特殊岩性层的分布.地学前缘. 2009, 11(6): 104-112
    [52]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律.北京:石油工业出版社,1997
    [53]高瑞棋,赵传本.1999.松辽盆地白垩纪石油地层孢粉学.北京:地质出版社.
    [54]黄宝春,谭承泽.古地磁多磁成分的分离技术.地球物理学进展. 1994. 9(1): 125-134.
    [55]黄清华,谭伟,杨会臣.松辽盆地白垩纪地层序列与年代地层.大庆石油地质与开发. 1999,12. 18(6). 15-17, 28.
    [56]季强.柳永清.姬书安等.论中国陆相侏罗系-白垩系界线.地质通报, 2006,3(25): 336-339.
    [57]刘本培,赵锡文,全秋琦等编..地史学教程.北京:地质出版社. 1986: 1—408.
    [58]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究——从重大地质事件探寻地球表层系统耦合.地球科学进展. 2006, 21(7): 839-842.
    [59]王成善等.中国白垩纪大陆科学钻探工程:松科1井科学钻探工程的实施与初步进展.地质学报. 2008, 1(82): 9-20.
    [60]杨万里.松辽陆相盆地石油地质.北京:石油工业出版社,1985
    [61]叶得泉,黄清华,张莹等.松辽盆地白垩纪介型类生物地层学.北京:石油工业出版社,2002
    [62]朱日祥.黄宝春.潘永信等.岩石磁学与古地磁实验室简介.地球物理学进展, 2003, 18(20): 177-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700