用SSR标记对玉米优良自交系血缘类群及杂优模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用玉米基因组的140余对SSR引物,对50个玉米自交系进行PCR扩增,从中筛选出较均匀覆盖在玉米染色体组上的95对多态性引物,共扩增出485个等位基因变异,每对引物检测等位基因2-14个,平均为5.11个;平均多态性信息含量(PIC)为0.642;用UPGMA法聚类分析。从50个材料中挑选自选系87—1、87—3及14个国内常用的代表不同种质类群的优良玉米自交系为亲本按GriffingⅣ双列杂交模式设计,组配成120个单交组合,采用格子方排列进行试验,计算产量性状的特殊配合力和各组合的对照优势值,以对照优势值作为多维空间的聚类点,计算16个亲本自交系的欧氏距离,最后用类平均法对自交系进行聚类;结合分子标记聚类结果分析了豫玉22双亲的血缘及其产生强杂种优势的机理,并分析了杂种优势与SSR位点杂合度及基于SSR数据按Nie-li法计算的遗传距离间的相关性。同时,根据1981-2003年间河南省种子管理总站每年统计的玉米品种利用情况表,分析了河南省推广面积在3.4万公顷以上的玉米品种种质利用情况,并结合SSR标记对河南省审定品种主要亲本种质类群划分的结果,构建了河南省23年间玉米杂种优势利用的主要杂优模式,并提出4个有发展趋势的杂优模式。
     结果表明:1、50个自交系可被划分为8个类群,此结果和系谱分析基本吻合;豫玉22的亲本之一自选系豫自87-1及其姊妹系豫自87-3与含有热带血缘的先锋杂交种P78599后代选系材料P138、许178距离最近,聚为一类,从配合力分析和分子水平进一步推测87-1、
    
    87一3含有部分热带种质;2、两种方法均显示87一1与综3间的遗传距
    离较远,调查性状发现二者在穗部等重要性状方面呈明显杂种优势互
    补的特征。3、本研究结果表明杂种优势与SSR位点杂合度的相关性
    不明显;此外,杂种优势较差的情况下,杂种优势与基于SSR数据
    的遗传距离呈一定程度的相关性,而杂种优势明显和一般时,其间的
    相关性很小;利用SSR位点杂和度或基于SSR数据的遗传距离预测
    杂种优势受到限制。4、1981一2003年间河南省玉米主要种质基础以
    Mo17群、Reid群、塘四平头群、旅大红骨类为主,近5年P群和综
    合种选系的使用大大增加,拓宽种质取得一定成效;结合SSR标记
    对河南省审定品种主要亲本种质类群划分的结果,构建了河南省
    1981一2003年间玉米杂种优势利用的20种主要杂优模式,并提出4
    个有发展趋势的杂优模式。近20多年来利用最多的杂优模式有7种:
    改良Reid群x塘四平头群、Mo17群X旅大红骨群、改良Reid群x
    旅大红骨群、P群x综合种、Mol7群X塘四平头群、改良Reid群X
    P群和塘四平头群x综合种选系。发展趋势明显的杂优模式有4种:
    P群x综合种选系、改良Reid群X其他、改良Reid群x塘四平头群、
    P群x其他。
Simple sequence repeat(SSRs) has been used to study genetic diversity of 50 Maize inbred lines of Henan . 95 SSR primers selected from all 140 primers gave distinct profiles amplified in the sample of 50 inbred lines, 95 SSR primers produced 485 polymorphic amplified fragments :the average number of alleles per SSR locus was 5.11 with a range from 2 to 14; The polymorphism information content (PIC) for SSR loci varied from 0.187 to 0.764 with an average of 0.642;Simutaneously, 16 inbred lines ,which embrace 87-1 87-3 and 14 other inbred lines on behalf of different heterotic groups selected from those 50 maize inbred lines,are crossed in dialed cross style according to Griffing IV design .Lattice design was employed to analyze GCA and heterosis of yield, in which 120 maize hybrids were involved . 16 Maize inbred lines were classified eight groups based on yield heterosis and combining ability. The parent's germplasm and the mechanism of heterosis of Yuyu 22 have been studied based on the result of the clust
    er analysis according to two kinds of method; The relationship between 120 crosses' heterosis and allele heterozygosity or the genetic distance according to Nie-Li method based on SSR markers has also been studied . In addition, Studing on their parent and their planting area of main corn hybrids authorized in henna from 1981 to 2003, which planting area are over 3.4×l04 hm2 (data come from main maize planting area's statistics of henan done by Henan Seed Management Station), the maize germplasm base and the main utilizing models of heterosis is summarized.
    The result shows that:
    1 The genetic distance between 87-1 87-3 and P138 Xul78, which have distinctly tropic germplasm, was shorter than that of others and it could be concluded that inbred lines 87-1 87-3 possess partially tropic germplasm;
    2 The genetic distance between 87-1 and Zong 3 was long in two kinds of cluster analysis chart, they have many important complement characters such as ear trait;
    3 In this paper, the relationship between each of 120 crosses' heterosis value and allele heterozygosity of SSR loci between the two response inbred lines is not related; In addition, in low heterosis crosses ,to some extent ,heterosis and genetic distance
    
    
    
    
    based on SSR markers done by Nie-li method have related, while in high or middle heterosis crosses , the relation coefficiency is very low, So it is restricted to predict heterosis between two inbred lines based on allele heterozygosity of SSR loci or the genetic distance based on SSR markers done by Nie-li method.
    4, The main maize germplasm in Henan during 1981-2003 was Mo 17 heterosis groups, Improved reid, Tangsipingtou and ludahonggu; P heterosis groups and Synthesis heterosis groups has been used increasingly in recent five years, The maize germplasm in Henan has been extended greatly. According to the cluster analysis of inbred lines mainly used in authorized hybrids in Henan based on SSR markers, twenty main models of Maize heterosis utilization has been used in 1981-2003. Seven of twenty models have widely been used: Inproved reid × tangsipingtou Mol7 × ludahonggu Inproved reid × ludahonggu P Heterosis groups × Synthesis heterosis groups Mo17× tangsipingtou Inproved reid×P Heterosis groups tangsipingtoux Synthesis heterosis groups. These models may be used greatly in future: P Heterosis groups × Synthesis heterosis Inproved reid× qita Inproved reid × tangsipingtou P Heterosis groups × qita.
引文
1.吴景锋.我国主要玉米杂交种种质基础评述.中国农业科学.1982,16(2):1-7
    2.曾三省.中国玉米杂交种种质基础[J].中国农业科学.1990,23(4):1-9
    3.吴景锋.我国玉米杂交种种质基础评述.中国农业科学.1993.16:1-8
    4.吴敏生,王守才,戴景瑞.AFLP分子标记在玉米优良自交系优势类群划分中的作用.作物学报.2000,26(1):9-13
    5.陈景堂,池书敏,马占元等.应用清蛋白PAGE技术进行玉米自交系类群划分的初步研究.玉米科学.2001,(2):18-21
    6.刘新芝,彭泽斌,傅骏骅等.RAPD在玉米类群划分研究中的应用.中国农业科学,1997,30(3):44-51
    7.刘新芝,彭泽斌,傅骏骅等.采用RAPD分子标记、表型和杂种优势聚类分析法对玉米自交系类群的划分.华北农学报,1998,13(4):36-41
    8.袁力行,傅骏骅,Warburton M等.利用RFLP、SSR、AFLP、RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27(8):725-733,
    9.池书敏,刘志增.几个常用玉米自交系的优势类群划分.河北农业大学学报,1995,18(1):22-25
    10.张新,王义波,王振华等.常用玉米自交系的优势类群划分及种质创新.中国农学通报,2000,16(3):20-22
    11.吴敏生,戴景瑞,王守才.玉米优良自交系的优势群划分的初步研究.中国农业大学学报,1998,3(5):97-100
    12.吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测.植物学报,2000,42(6):600-604
    13.吴敏生,王守才,戴景瑞.RAPD分子标记与玉米产量优势预测的研究,遗传学报 1999,26(5):578-584
    14.吴建宇.玉米自交系性状及分类研究.河南农业大学学报,1992,26(2):163-168
    15.郑永战.玉米自交系遗传距离及其与杂种优势关系的初步研究.1993,27(1):77-82
    16.彭泽斌,刘新芝,傅骏骅等.玉米优良自交系杂种优势类群与杂优模式的初步研究.作物学报,1998 24(6):711-717
    17.王懿波,王振华,王永普等.中国玉米主要种质杂交优势利用模式研究.中国农业科学,1997,30(4):16-24.
    18.王懿波,王振华,陆利行等.中国玉米种质基础、杂种优势群划分与杂优模式研究 玉米科学 1998,6(1):9-13
    19.袁力行,张世煌,傅骏骅等.玉米遗传多样性与杂种优势群的研究.中国农业科学.2000,33(增刊):9-14
    
    
    20.李新海,傅俊骅,张世煌等.利用SSR标记研究玉米自交系的遗传变异[J].中国农业科学,2000,33(2):1-9
    21.李云海,肖晗,孙宗修等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异.植物学报,1999,41(10):1061-1066
    22.汤继华,刘宗华,陈伟程等.玉米C型胞质不育恢复主基因SSR标记.中国农业科学,2001,34(6):592-596
    23.王懿波,王振华,王永普等.中国玉米主要种质的改良与杂优模式的利用.玉米科学,1999,7(1):1-8
    24.王懿波,王振华,王永普等.中国玉米主要种质杂种优势群的划分及其改良作用.华北农学报,1998,13(1):74-80
    25.莫惠栋等.玉米数量性状的遗传分析Ⅰ,我国玉米自交系的遗传潜势及其利用.遗传学报,1984,11(4):270-275
    26.刘宗华,陈伟程,罗福和等.玉米热导二环系“87”组配强优势组合的研究.玉米科学.1998,6(2):6-9
    27.刘宗华,汤继华,黄西林等.大穗型玉米杂交种豫玉22号及其丰产稳产性分析.河南农业科学 1998,5:6-9
    28.杨太兴,段章雄.同工酶与玉米杂种优势预测的研究.植物学报,1995,37(6):432-436
    29.池书敏,孟义江,刘志增等.玉米优势类群划分及其杂交模式的研究——过氧化物酶、酯酶和醇溶蛋白多态性的聚类分析.华北农学报,1998,13(2):35-41
    30.黄益勤,李建生.利用RFLP标记划分45份玉米白交系杂种优势群的研究.中国农业科学,2001,34(3):244-250
    31.赵久然,郭景伦,郭强等.应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分.华北农学报,1999,14(1):32-37
    32.孙世孟,李素美,郑芝荣等.山东玉米骨干自交系间亲缘关系的RAPD分析研究.作物学报,1999,25(6):727-732
    33.周洪生.RFLP在玉米遗传和育种中的应用.作物杂志,1992,4:7-9
    34.曾孟潜,杨太兴.玉米叶绿体同工酶的研究.遗传学报,1983,10(1):43-50
    35.张祖新,郑用琏,李建生等.玉米10份地方品种和4份外来群体同工酶位点的遗传多样性.华中农大学报,1995,14(4):322-326
    36.张士煌等.玉米杂种优势与种质扩增、改良和创新.中国农业科学,2000,33(增刊):34-39
    37.向道权,曹海河,戴景瑞等.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8):778-784
    38.吴晓雷,贺超英等.用SSR分子标记研究大豆属种间亲缘进化关系.遗传学报,2001,28(4):359-366
    
    
    39.孙致良,张超良等.RAPD技术在玉米自交系亲缘关系研究中的应用.遗传学报,1999,26(1):61-68
    40.史桂荣.玉米种质类群划分的常用方法及评价.玉米科学,2001,9(3):23-25
    41.王富德 用DNA标记揭示的玉米自交系杂种优势类群 国外农学-杂粮作物 1999.19(4):1-6
    42.王永普等 试用特殊配合力进行玉米种质分类 华北农学报,2001,16(1),7-11
    43.林风,杨国立,王富德等RAPD分子标记在玉米自交系种群关系研究中的应用.国外农学-杂粮作物,1999,19(1):1-4
    44.吴景锋,我国玉米杂交种质发展的主要历程、差距、和对策,玉米科学,1995,3(1):1-5
    45.张祖新,郑用琏,李建生等,1994,三峡地区10个玉米地方品种的遗传潜力,华中农大学报,13(5):449-453
    46.张世煌,在玉米育种方案中利用外来种资的途径,作物杂志,1992,3:17-19
    47.吴景锋,于香云,试论2020年我国玉米种质改良的战略目标,,作物杂志,1998,2:6-11
    48.龙漫远,1987,玉米遗传距离测量方法及其与产量的杂种优势和SCA的关系,作物学报,13(3):193-199
    49.陈彦惠主编,玉米遗传育种学.1996,郑州,河南科技出版社
    50.刘纪麟.玉米育种学.2000,北京,中国农业出版社
    51.高之仁编著,数量遗传学.1986,成都,四川大学出版社
    52.朱军著,遗传模型分析法.1997,北京,中国农业出版社
    53.曾三省.中国玉米杂交种的种质基础,玉米育种研究进展.科学出版社,1992,62-70
    54.中国农业科学院作物品种资源研究所主编,1996,玉米优异种质资源研究利用指南,北京,,中国农业出版社
    55. Melchinger A. E., M. M. Messmer, M. Lee, W. L. Woodman, etal. 1991, Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci. 31: 669-678.
    56. Lee M, Godshalk E B, Lamkey K R, Woodman w.W. 1989, Association of restriction fragment length polymorphisms among maize inbreds with the agronomic performance of their crosses [J]. Crop Sci. 29:1067-1071.
    57. Melchinger A.E, Lee M, Lamkey K R, et al. 1990, Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallele sets of maize inbreds[J]. Theor. Appl. Genet. 80: 488-496.
    58. Mumm R H, Dudely J W. 1994, A classification of 148 U.S. Maize inbreds:Ⅱ cluster analysis is based on RFLPs[J]. Crop Sci. 34:842-851.
    
    
    59. Dudely J W, SagharMaroof M A. 1991, Molecular marker and groupings of parents in maize breeding programs[J]. Crop Sci. 31: 718-723
    60. Smith O S, Smith J S C, Bowen S L. 1990, Similarities among a group of an elite maize inbreds as measured by pedigree F1 grain, grain yield, heterosis and RFLPs[J]. Theor. Appl. Genet. 80: 833-840
    61. Darra5 L Let al. 1986, 1985 United States Farm Maize Germplasm and Commercial Breeding Strategies[J]. Crop Science, 26(6): 1109-1113.
    62. Hong Lu, Jiansheng Li, JL Liu and Bernardo R. 2002, Allozyme polymorphisms of maize populations from southwestern china. Theor Appl Genet 104: 119-126
    63. Messmer MM, Melchiner AE, Hermann R and Bonppenmaier J. 1993, Relationships among early European maize inbreds Ⅱ. Coparision of pedigree and RFLP data. Cro Sci 33: 944-950
    64. Senior ML, Murphy JP, Goodmen MM and Stuber CW. 1998 Utility of SSRs determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38: 1088-1098
    65. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mithce]l SE, Kresovich S and Ziegle J. 1997, An evaluation of the utility of SSR loci as molecular markers in maize(zea mays L.): comparison with data from RFLPS and pedigree. Theor Appl Genet 95: 163-173
    66. Li Y, Du J, Wang T, Shi Y and Jia J 2002, Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica 47: 93-101
    67. Enoki H, Sato H and Koinuma K 2002, SSR analysis of genetic diversity among maize inbred lines adapted cold regions of Japan. Theor Appl Genet 104: 1207-1277
    68. Paternainii I E, lonnquist J H. Heterosis in interracial crosses of corn(Xea mays L.). Crop. Sci., 1963, 3: 504-507
    69. Beck D L., S K. Vasal, J. Crossa, 1991, Heterosis and combining ability among subtropical and temperate intermediate-maturity maize germplasm, Crop Sci. 31: 68-71
    70. Albrecht B., J W. Dudley, 1987, Evaluation of four maize populations containing different proportions of exotic germplasm, Crop Sci., 27: 480-486
    71. Beck D L.,S K. Vasal and J. Crossa, 1990, Heterosis and combining ability of CIMMYT's tropical early and intermediate maturity maize germplasm, Maydica, 35(3): 279-284
    72. Xiao J., Li J. Yuan 1., Tanksley S. D. Dominance is the major genetic basis in
    
    rice as revealed by QTL analysis molecular markers. Genetics, 1995, 140: 745~754
    73. Warburton M. L., Xia X. C., Crossa J., Franco J., Melchinger A. E., Frisch M., Bohn M., Hoisington D. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci., 2002, 42: 1832~1840
    74. Brun E.L.,J.w. Dudley, 1989, Breeding potential in the USA and Argentina of corn populations containing different proportions of flint and dent germplasm, Crop Sci., 29: 570-577
    75. Castillo-Gonzalez, F, MM. Goodman, 1989, Agronomic evaluation of Latin American maize accessions, Crop Sci., 29: 853-861
    76. Sprague G.F.,J.W. Dudley, Corn and corn Improvement, Third Edition, 1988, Madison, Wisconsin, U.S.A
    77. Charcosset A.,B. Bonnisseau, O. Touchebeuf et al, 1988, Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability, Crop Sci.,38:38-44
    78. Compton W A.,R F. Mumm, B. Mathema, 1979, Progress from adaptive mass selection in incompletely adapted maize populations, Crop Sci. 19: 531-533
    79. Crossa J.,1989, Theoretical considerations for the introgression of exotic germplasm into adapted maize populations, Maydica, 34: 53-62
    80. Crossa J.,C.O. Gardnar, RF. Mumm, 1987, Heterosis among populations of maize with different levels of exotic germplasm, T.A.G. 73: 445-450
    81. Crossa J.,C.O. Gardnar, 1987, Introgression of an exotic germplasm for improving an adapted maize population, Crop Sci.,27:187-190
    82. Crossa J.,E.J.Wellhausen, 1990, Heterotic patterns among Mexican races of maize, Crop Sci.,30:1182-1190
    83. Crossa S. T.,G. Srinivasan et a1,1992, Heterosis and combining ability of CIMMYT's subtropical and temperate early-maturityb maize germplasm, Crop Sci, 32: 884-890
    84. Virk P. S., Newbury H. J., Jackson M. T. et al. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis Theor. Appl. Genet., 1995, 90: 1049~1055
    85. Dubreuil P.,A. Charcosset, 1999, Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers, T.A.G.,99:473-480
    
    
    86. Dudley J.W.A.,Saghai M.A.,G.K. Rufener, 1991, Molecular markers and grouping of parents in maize breeding programs, Crop Sci.,31:718-723
    87. Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acid Res., 1989, 17: 6473~6471
    88. Gerdes J.T.,W.F. Tracy, 1993, Pedigree diversity within the Lancaster sure crop heterotic group of maize, Crop Sci. 33: 334-337
    89. Goodman M.M.,C.W. Stuber, 1983, Race of maize, Maydica, 28:169-187
    90. Goodman M.M.,W.L. Brown, 1988, Races of corn, p33-79, Corn and Corn Improvement, Madison, WI.
    91. Hallauer A R.,JM. Sears, 1972, Integrating exotic germplasm into Corn Belt maize breeding programs, Crop Sci.,12:203-206
    92. Hart G.C. et al. 1991, Combining ability of inbred lines derived from CIMMYT maize germplasm, Maydica, 16: 57-64
    93. Holland. J.B.,M.M. Goodman, 1995, Combining ability of tropical maize accessions with U.S. germplasm, Crop Sci.,35:767-776
    94. Holley R N.,M.M. Goodan, 1988, Field potential of tropical maize hybrid derivatives, Crop Sci.,28:213-218
    95. Kim S.K.,S.O. Ajala, 1996, Combining ability of tropical maize germplasm in West Africa, Maydica, 41: 127-134
    96. Lamkey K.R.,B.J. Schnicker, A.E. Melchinger, 1995, Epistasis in an elite maize hybred and choice of generation for inbred lined development, Crop Sci.,35:1272-1281
    97. Livini C., Ajmon-Marsan, A.E. Melchinger et al, 1992, Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs T.A.G.,84:17-25
    98. Messmer M.M.,A.E. Melchinge, J. Boppenmaier etal, 1992, RFLP analysis of early-maturing European maize germplasm, T.A.G.,80: 488-496
    99. Michelini L.A.,A.R. Hallauer, 1993, Evaluation of exotic and adapted maize germplasm crosses, Maydica, 38: 275-282
    100. Mungoma C.,L M. Pollak, 1988, Heterotic patterns among ten corn belt and exotic maize populations, Crop Sci., 28: 500-504
    101. Smith J. S. C. Diversity of United States hybrid maize germplasm: Isozymic and chromatographic evidence. Crop Sci, 1988, 28: 63~69.
    102. Ohmori T., Murata M., Motoyoshi F., Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor. Appl. Genet., 1996, 92: 151~
    
    156
    103. Sci.,31:931-935 Ordas A.,1991, Heterosis in crosses between American and Spanish populations of maize, Crop
    104. Oyervides-Garcia, A R. Hallauer, H C. Mendoza, 1984, Evaluation of improved maize populations in Maxico and the U.S. cron, belt, Crop Sci.,25:115-120
    105. Liu J., LiuG. S., Zhu Z. Q., ChenG. Assessment on genetic relationships among 15 maize(Zea mays)elite inbred lines of China using SSR markers: comparisons with data from heterosis and pedigree. Acta Bot. Boreal. -Occident. Sin. 2002, 22(4): 741~750
    106. Stuber C W, Lincoln S E, Wolf D W, et al, 1992, Analysis of the diallel mating design for maize inbred lines, Crop Sci.,37:400-405
    107. Stuber C.w., 1974, Epistasis in maize:crosses among lines selected for superior intervariety single cross performances, Crop Sci.,14:314-317
    108. Stuber C. W., 1986, Use of exotic sources of germplasm for maize improvement, Proc. Congr. Maize Sorghum
    109. Troyer A.F., 1999, Review and interpretation: Background of U.S. hybred corn, Crop Sci. 39: 601-626
    110. Hormaza J Z, etal. 1998, Genetic diversity of pistachio(pistaciavera, Anacardiaceae)germplasm base donrandomly amplified polymorphic DNA(RAPD) markers[J]. EconomicBotany, 52(1): 78-87
    111. Ajmone P. M., Castiglioni P., Fusari F., et al. 1998, Genetic diversity and relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet., 96: 219~227.
    112. Hallauer A.R., 1999, Temperate maize and heterosis, in: The Genetics and Exploitation of Heterosis in Crops. American society of Agronomy, Inc. And Crop Science Society of America, Inc., Madison, Wisconsin, USA.
    113.中国农科资讯(Http://www.newcorn.com.cn)。
    114.中国玉米(Http://www.Chinamaize.com.cn)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700