若干玉米自交系杂种优势群划分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以综3、综31等12个优良的玉米自交系为材料,利用产量特殊配合力和SSR分子标记技术,研究了玉米杂种优势群划分,SSR分子标记遗传差异与杂种优势的关系,并且通过SSR标记遗传距离及产量特殊配合力鉴定了综3、综31和构成其原始群体的8个自交系的亲缘关系。主要结果如下:
     1、12个自交系按照完全双列杂交设计配成66个杂交组合,用UPGMA方法,以产量特殊配合力为距离,分为6类,分类结果与自交系的亲缘关系基本一致,群间特殊配合力大于群内特殊配合力
     2、对12个玉米自交系进行了SSR分析,107对引物共检测出419个等位基因变异,每对引物检测出2-11个等位基因,平均为3.916个,平均多态性信息量为0.601。表明SSR标记可从分子水平上检测玉米自交系的的遗传多样性。
     3、利用Nei-li's法计算了SSR相似系数和遗传距离,通过遗传距离聚类表明,以遗传距离为0.62为标准,12个自交系可划分为6类,聚类结果与玉米已知系谱亲缘关系大多数十分吻合,聚类后的群间遗传距离大于群内遗传距离,结果表明SSR分子标记可用于杂种优势群划分。
     4、SSR遗传距离与杂种产量、产量杂种优势,特殊配合力均显著相关,但决定系数很小,表明不能根据亲本遗传距离预测杂种产量、杂种优势。
     5、分子标记遗传距离和产量特殊配合力结果表明综3、综31与太183、B73的关系最远,其次是吉63、旅28、大秋36、黄早四,而与自330、Va35的关系最近,但综3同综31相比,综3与Va35的遗传差异更小些,而综31与自330的遗传差异更小些。
Maize heterotic grouping and the relationship between differentiation and heterosis were studied using SSR technique and SCA for yield. The materials consisted of 12 maize inbred lines inclouding Zong3 and Zong31. Besides, the parental contribution of Zong3 and Zong31 were evaluated on the basis of genetic distance of SSRs and SCA of yield data. Following results were obtained:
    1.12 inbred lines has been divided into six groups that consistent with the pedigree information using SCA of yield as distance in a diallel set of crosses between them, SCA among groups was greater than that within groups.
    2.12 inbred lines were assayed for SSR technique, 107 primers generated a total of 419 alleles. The number of alleles per locus ranged from 2 to eleven, with an average of 3.916.Mean polymorphic information content (PIC) was 0.601 .The result showed maize inbred lines had different genetic basis and genetic diversity could be detected by mean of SSRs at molecular level.
    3.Similarity coefficient and genetic distance based on SSR data were computed by Nei-li s method. A cluster analysis revealed that 12 inbred lines were divided into six groups, which agreed well with pedigree information. Genetic distances among groups were greater than those within groups after cluster. The result showed that SSRs could be used to heterosis grouping.
    4.Genetic distance was significantly correlated with yield performance, heterosis and SCA for yield, but determination coefficient was low. Thus, SSRs was not able to predict yield performance and heterosis.
    5.Genetic distance and SCA for yield showed that inbred lines Zong3 and Zong31 were furthest to Tail83 and B73, next to Ji63, Lv28, Daqiu36 and Huangzaosi, and were closest to Zi330 and Va35. Compared to Zong31, Zong3 has less genetic divergence to Va35 and more to Zi330. Zong31 was on the contrary.
引文
[1] Ajmone P. M., Castiglioni P., Fusad F., et al. Genetic diversity and relationship to hybrid performance in maize as revealed by RFLP andAFLP markers. Theor. Appl. Genet., 1998, 96: 219~227.
    [2] Bonierbale M. W., Plaisted R. L, Tanksley S.D. RFLP maps based on common sets of clones reveal modes of chromosome evolution in potato and tomato. Genetics, 1988, 120:1095~1103
    [3] Boppenmaier J., Melchinger A.E., Seitz G., et al. Genetic diversity for RFLPs in European maize inbreds Ⅲ. Performance of crosses within versus between heterotic groups for grain traits. Plant Breeding. 1993, 111:217~226
    [4] Bruce A. B. The Mendelian theory of heredity and augmentation of vigor. Science, 1910, 32:627~628
    [5] Burr B., Burr F. A., Thompson K. H., AlbertsenM. C., StuberC. W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118:519~526
    [6] Coe E. H., Hoisington D. A., Neuffer M. G. Linkage map of corn (maize) (Zea mays L.). Maize Genet. Coop. Newsl., 1987, 61:116-147
    [7] Concibido V. C., Denny R. L., Lange D. A., et al. RFLP mapping and marker-assisted selection of soybean Cyst nematode resistance in PI 209332. Crop Sci. 1996, 36 (6): 1643~1650
    [8] DavenportC. B. Degeneratio.n, aibinism and inbreeding. Science, 1908, 28:454~455
    [9] Donis- Keller H., Green P., Helms C., et al. A genetic linkage map of human genome. Cell, 1987, 51:319~337
    [10] Dos Santos J. B., Nienhuis J., Skroch P., et al. Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet., 1994, 87:909~915
    [11] Dubreuil P., Charcosset A., Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor. Appl. Genet., 1998, 96: 577~587
    [12] Dudley J. W., Saghai-MaroofM. A., Rufener G. K., Molecular markers and grouping of parents in maize breeding programs. Crop Sci., 1991, 31: 718~723
    [13] East E. M., Inbreeding in corn. Reports of the ConnecticutAgricultural Experiment Station for Years 1907-1908. 1908, pp. 419~428
    [14] East E. M. Heterosis. Genetics, 1936, 21:375~397
    [15] Godshalk E. B., Lee M., Lamkey K. R. Relationship of restriction fragment length polymorphisms to single cross hybrid performance of maize. Thoer. Appl. Genet., 1990, 80: 273~280
    
    
    [16] Hamalainen J. H., Watanabe K. N., Valkonen J. P. T., et al. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus. Theor. Appl. Genet., 1997, 94 (2): 192~197
    [17] Helentjaris T., Slocum M., Wright S., Schaefer A., Niehhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet., 1986, 72:761~769
    [18] Hu J., Quiros C. F. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep., 1991, 10:505~511
    [19] Jones D. F. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acid. Sci. USA, 1917, 3:310~312
    [20] Lande R., Thompson R. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics, 1990, 124:743~756
    [21] Li B., Wu R. Genetic causes ofheterosis in juvenile aspen: a quantitative comparison across intra- and inter- special hybrids, Theor. Appl. Genet. 1996, 93: 380~391
    [22] Li J. X., Yu S. B., Tan Y. F., Gao Y. J., Li X. H., zhang Q. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet. 2000, 101:248~254
    [23] Liang C. Z., Gu M. H., Pan X. B., et ai. RFLP tagging of a new semidwarfing gene in rice. Theor. Appl. Genet. 1994, 88:898~900
    [24] Liu J., Liu G. S., Zhu Z. Q., Chen G. Assessment on genetic relationships among 15 maize (Zea mays) elite inbred lines of China using SSR markers: comparisons with data from heterosisandpedigree. Acta Bot. Boreal. -Occident. Sin. 2002, 22(4): 741~750
    [25] Lu H., Li J. S., Liu J. L., Bernardo R. Allozyme polymorphisms of maize populations from southwestern China. Theor. Appl. Genet., 2002, 104:119~126
    [26] Luo L. J., Li Z. K. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components. Genetics, 2000, 108: 1755~1771
    [27] Melchinger A. E., Messmer M. M., Lee M., Woodman W. L., Lamkey K. R. Diversity and relationships among U. S. maize inbreds revealed by restriction fragment length polymorphism, Crop Sci., 1991, 31(3): 669~678
    [28] Messmer M. M. Genetic diversity among progenitors and elite lined from the Iowa stiff stalk synthetic (BSSS) maize population : comparison If ailozyme and PFLP data.Theor. Appl. Genet. 1991, 83:97~107
    [29] Michelmore R. W., Paran L., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: arapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. USA, 1991, 88:9828~9832
    [30] Mohan M., Nair S., Bentur J. S., et al. RFLP and RAPD mapping of the rice Gm2 gene that
    
    confers resistance to biotype 1 of gallmidge (Orseolia oryzae). Theor. Appl. Genet. 1994, 87:782~788
    [31] MummR. H., Dudely J. W., A classification of 148U. S. Maize inbreds: Ⅰ. Cluster analysis based on RFLPs 〔J〕. Crop Sci. 1994, 34:842~851
    [32] Ohmod T., Murata M., Motoyoshi F., Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor. Appl. Genet., 1996, 92:151~156
    [33] Saghai Maroof M. A., Yang G. P., Biyashev R. M., et al. Analysis of the barley and rice genomes by comparative RFLP linkage mapping. Theor. Appl. Genet., 1996, 92:541~551
    [34] Senior M. L., Murphy J. P., Goodman M. M., et al. Utility of SSRs for determining genetic similarities and relationships in maize using anagarose gel system[J]. Crop Sci., 1998, 38: 1088~1098
    [35] ShullG. H. Thccompositionofafieldofmaize. Am Breed Assoc Rep, 1908, 4:296~301
    [36] Smith J. S. C., ChinE. C. L., Shu H., Smith O. S., Wall S. J., Senior M. L., Mitchell S. E., Kresovitch S., Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea Mays L.) comparisons with data from RFLPs and pedigree. Theor. Appl. Genet., 1997, 95:163-173
    [37] Smith J. S. C. Diversity of United States hybrid maize germplasm: Isozymic and chromatographic evidence. Crop Sci, 1988, 28:63~69
    [38] Smith O. S., Smith J. S. C., Bowen S. L. Similarities among a group of an elite maize inbreds as measured by pedigree F1 grain, grain yield, heterosis and RFLPs. Theor. Appl. Genet. 1990, 80: 833~840.
    [39] Sprague G. S., Tatum L. A. General and specific combining ability in single crosses of com. J. Am. Soc. Agron., 1942, 34, 923~932
    [40] StuberC. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic actors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers, Genetics, 1992, 140:745~754
    [41] Sun Qinxin, Zhong fu Ni, Zhiyong Liu. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves. Euphytica, 1999, 106: 117~123.
    [42] Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acid Res., 1989, 17:6473~6471
    [43] Tsaftaris A. S., Polidoros A. N., In Proc Ⅻ Eucarpia Maize and Sorghum conference, Bergamo. Italy, 1993, P283~292
    [44] Virk P. S., Newbury H. J., Jackson M. T. et al. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor. Appl. Genet., 1995, 90: 1049~1055
    [45] Warburton M. L., Xia X. C., Crossa J., FrancoJ., Melchinger A. E., Frisch M., Bohn M., Hoisington D. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci., 2002, 42:1832~1840
    
    
    [46] Xiao J., Li J. Yuan 1., Tanksley S. D. Dominance is the major genetic basis in rice as revealed by QTL analysis molecular markers. Genetics, 1995, 140:745~754
    [47] XiongL., Yang G. P., Xu C. G., Zhang Q. F., Saghai Maroof M. A. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Molecular Breeding, 1998, 4:129~136
    [48] YamaotoT., Kuboki Y., Lin SY, et al. Fine mapping of quantitative trait loci Hd-1, Hal-2, and Hal-3, controlling heading date of rice, as single Mendelian factors. Theor. Appl. Genet., 1998, 97:37~44
    [49] Young N. D., Zamir D., Ganal M. W., et al. Use of isogenic lines and simultaneous probing to Identify DNA marker stightly linked to the Tm-2a gene in tomato. Genetics, 1988, 120(2): 579~585
    [50] Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Q. F., Saghai Maroof M. A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA, 1997, 94:9226~9231
    [51] Zhang G., Bharaj T. S., Lu Y., et al. Mapping of the Rf-3 nuclear fertility-restoring gene for WA Cytoplasmic male sterility in rice using RAPD and RFLP markers.Theor. Appl. Genet. 1997, 94 (1): 27~33
    [52] Zhang Q. F, Shen B. Z., Dai X. K., et al. Using bulked extreme sand recessive class to map genes for photoperiod-sensitive genic male sterlity in rice. Proc. Natl. Acad. Sci. USA, 1994, 191:8675~8679
    [53] 曹永国,向道权,黄烈健,等.SSR分子标记与玉米杂种优势关系的研究.农业生物技术学报,2002,10(2):120~123
    [54] 陈彦惠,刘新芝,彭泽斌.玉米杂种优势类群和模式的研究.河南农业大学学报,1995,29(4):341~347
    [55] 陈彦惠,王利明,戴景瑞.中国温带玉米种质与热带、亚热带种质杂优组合模式研究.作物学报,2000,26(5):557~564
    [56] 陈彦惠,玉米遗传育种学,1996,河南科学出版社
    [57] 程宁辉,高燕萍,杨金水,等.水稻杂种一代与亲本幼苗基因差异表达的分析.植物学报,1997,39:379~382
    [58] 程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因表达差异的初步研究.科学通报,1996,41:451~454.
    [59] 池书敏,孟义江,刘志增,等.玉米杂种优势划分及其杂交模式的研究及过氧化物酶、酯酶和醇溶蛋白多态性的聚类分析.华北农学报,1998,13(2):35~41
    [60] 戴景瑞.我国玉米遗传育种的回顾和展望.玉米遗传育种国际学术讨论会文集,长春,2000,9:1~7
    [61] 杜金友,黎裕,王天宇,等.SSR和AFLP分析玉米遗传多样性的研究.华北农学报,2003,18(1):59-63
    [62] 番兴明,陈洪梅,谭静,等.利用配合力和SSR标记对热带和温带玉米自交系进行杂种优
    
    势群划分.西南农业学报,2003,16(1):1~8
    [63]番兴明,张世煌,谭静,等.根据SSR标记划分优质蛋白玉米自交系的杂种优势群.作物学报,2003,29(1):105~110
    [64]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社
    [65]高明刚.四川部分玉米推广组合及其亲本自交系遗传分析,四川农业大学硕士论文
    [66]高之仁编著.数量遗传学.四川大学出版社,成都,1986
    [67]顾克余,翟虎渠,张红生.水稻杂种一代及其亲本分蘖期根系基因的差异表达.南京农业大学学报,2000,23(1):1~4
    [68]黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究.中国农业科学.2001,34(3):244~250
    [69]兰发盛,腾耀聪,李德宾,等.玉米自交系优势群划分及其利用的初步研究.四川农业大学学报,1993,11(1):64~69
    [70]李传友,金德敏,贾建航,等.AFLP技术在玉米自交系类群分析研究中的应用.高技术通讯,1999,9(3):43~47
    [71]李明顺,张世煌,李新海,等.根据产量特殊配合力分析玉米自交系杂种优势群.中国农业科学,2002,35(6):600~605
    [72]李新海,傅骏骅,张世煌,等.利用SSR标记研究玉米自交系的遗传变异.中国农业科学,2000,33(2):1~9
    [73]李新海,袁力行,李晓辉,等.利用SSR标记划分70份我国玉米自交系的杂种优势群.中国农业科学,2003,36(6):622~627
    [74]刘纪膦,玉米育种的策略.玉米科学,2003(专刊),54~57
    [75]刘纪麟,郑用琏,张祖新,等.三峡地区玉米地方品种杂种优势群的初探.作物杂志,1998,(增刊):6~12刘纪麟主编.玉米育种学(第二版),中国农业出版社,2000
    [76]刘来福.作物数量遗传.1984,农业出版社
    [77]刘新芝,彭泽斌,傅骏骅,等.RAPD在玉米类群划分研究中的应用,中国农业科学,1997,30:44~51
    [78]刘新芝,彭泽斌,傅骏骅,等.采用RAPD分子标记、表型和杂种优势聚类分析法对玉米自交系类群的划分.华北农学报,1998,13(4):36~41
    [79]刘新芝,彭泽斌,思扬,等.50个常用玉米自交系配合力的聚类分析.玉米科学,1994,2(1):1~5
    [80]潘家驹主编.作物遗传育种总论.中国农业出版社,北京,1995
    [81]荣廷昭,潘光堂,黄玉碧著.数量遗传学.中国科学技术出版社,北京,2003
    [82]孙其信,倪中福,刘志勇.作物杂种优势的遗传机制.全国作物育种学术讨论会论文集,1998,106~104
    [83]田曾元.玉米杂种与亲本功能叶片基因差异表达与杂种优势.中国农业大学博士论文,2002
    [84]王斌,张超良,金德敏,等.RAPD技术在玉米自交系亲缘关系研究中的应用.遗传学报,1999.26(1):61~68。
    
    
    [85]王懿波,王振华,陆利行,等.中国玉米种质基础、杂种优势群划分与杂优模式研究.玉米科学,1999,7(1):1~8
    [86]王懿波,王振华,王永普,等.中国玉米主要种质杂交优势利用模式研究.中国农业科学,1997,30(4):16~24
    [87]王懿波,王振华,王永普,等.中国玉米主要种质杂种优势群的划分及其改良利用.华北农学报,1998,13(1):74~80
    [88]吴景峰.我国主要玉米杂交种种质基础评述.中国农业科学,1983,16(2):1~7
    [89]吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测.植物学报,2000,42(6):600~604
    [90]吴敏生,戴景瑞.中国17个优良玉米自交系的分子标记杂合性及其与杂交种性状的关系研究.西北植物学报,2000,20(5):691~700
    [91]吴敏生,王守才,戴景瑞.AFLP分子标记在玉米优良自交系优势群划分中的应用.作物学报,2001,26(1):9~13
    [92]吴敏生,王守才,戴景瑞.RAPD分子标记与玉米杂种产量优势预测的研究.遗传学报,1999,26(5):578~584
    [93]吴敏生.中国农业大学博士研究生论文,1999
    [94]吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用.高技术通讯,2001,4:99~103
    [95]向道权.中国农业大学博士研究生论文,2001
    [96]邢永忠,徐才国,华金平,等.水稻株高和抽穗期基因定位和分离.植物学报,2001,43(7):721~726
    [97]杨仁崔,陈顺辉译,S.S.Virmani著.杂种优势和杂交水稻育种.1994,9~11.
    [98]余四斌,周芳.植物杂种优势遗传基础的研究进展.种子,1998,6:53~58
    [99]袁力行,傅骏骅,Warburton M,等.利用RFLP、SSR、AFLP、RAPD标记分析玉米自交系遗传的比较研究.遗传学报,2000,27(8):725~733
    [100]袁力行,傅骏骅,刘新芝,等.利用分子标记预测玉米杂种优势的研究.中国农业科学,2000,33(6):6~12
    [101]袁力行,傅骏骅,张世煌,等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究.作物学报,2001,27(2):149~156
    [102]张爱民.作物杂种优势基础研究的进展.中国科学院院刊,2001,5:334~338
    [103]张世煌.玉米的杂种优势群和杂种优势模式.作物杂志,1998(增刊)
    [104]周奕华,陈正华.分子标记在植物学中的应用及前景.武汉植物学研究,1999,17(1):75~86
    [105]朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B),1994,24(10):1048~1052
    [106]唐启义,冯明光.实用统计分析及其DPS数据处理系统。科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700