白念珠菌酵母相和菌丝相ERG11基因的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     验证已知的白念珠菌菌丝相细胞的理想培养条件;通过对氟康唑敏感程度不同的白念珠菌酵母相和菌丝相细胞氟康唑作用靶酶基因ERG11序列的比较研究,以探讨两种细胞形态在基因序列上的差异性,从而为白念珠菌的病原真菌学研究其实验对象的选择(菌丝相或酵母相细胞)提供理论依据。
     方法:
     以同一母体来源的16株对氟康唑敏感程度不同的白念珠菌作为研究对象(分别为CA-1,CA-2,…,CA-17,无CA-10),采用RPMI1640培养基(含10%的小牛血清),37℃,连续传代培养7天,共转种12次,记录不同观察时间菌丝相和酵母相细胞数,计算菌丝相细胞形成率。分别提取酵母相和菌丝相细胞的基因组DNA。设计7对引物,分段扩增白念珠菌酵母相和菌丝相细胞的ERG11基因。扩增产物单链变性后,进行非变性聚丙烯酰胺凝胶电泳(PCR-SSCP),观察结果并选择两种细胞形态间具有差异的片段行DNA序列测定。
     结果:
     1.以RPMI1640(pH=7.5,含10%小牛血清)为培养基,37℃传代培养7天(转种12次)后,每株白念珠菌的菌丝相细胞形成率均达99%以上;
     2.ERG11的分段扩增结果显示每株白念珠菌均能扩增出目的片段,不存在敏感菌株和耐药菌株的差异;
     3.SSCP分析及DNA序列测定结果显示白念珠菌的酵母相和菌丝相细胞ERG11基因序列存在多位点的差异。
     结论:
     1.RPMI1640(pH=7.5,含10%小牛血清),37℃传代培养7天(转种12次)是获得白念珠菌菌丝相细胞的理想条件;
     2.白念珠菌的酵母相和菌丝相细胞间部分基因序列存在差异;
     3.白念珠菌的菌丝相细胞是进行其病原真菌学研究的适宜研究对象。
Objective:
    To confirm the suitable hyphal form inducing medium which we have known. To analyze the
    differences on gene sequences between yeast form and hyphal form of Candia albicans, ERG 11
    gene encoding the target enzyme of fluconazole and its sequences were compared in this study. The evidence for selecting the form of Candiada albicans in medical mycology would be provided.
    Methods:
    A series of 16 strains Candida albicans from the same body (CA-1, CA-2, …A-17, but without CA-10 ) were induced to form hyphae or/and pseudo-hyphae in RPMI1640 medium with 10% calf serum at 37癈 for seven days by
    transferring twelve times. The yeast form and hyphal form cells were counted and the
    I ratio of hyphal form cells was caculated. Seven sets of primers were designed to
    amplify the ERG 11 gene. DNA sequences of these fragments were compared through Single-strand conformation polymorphism (SSCP) analysis and DNA sepquencing.
    Results:
    1. The ratio of hyphal form cells of all the strains was more than 99% afer being
    cultured for seven days by transferring twelve times in RPMI1640 medium with 10% calf serum at 37℃.
    2. The ERG 11 gene of all strains had been amplified triumphantly.
    3. There were some differences on ERG11 DNA sequences between yeast forrh and hyphal form of Candida albicans.
    Conclusion:
    1. RPMI1640 medium with 10% calf serum to induce hyphal form at 37℃ for
    seven days was thought to be the favorable condition for Candida albicans hyphal form indution.
    
    
    
    
    2. There were some differences on gene sequences between yeast form and hyphal form of Candida albicans.
    3. Hyphal form of Candida albicans was thought to be the appropriate object of medical mycology.
引文
1. St-Germain G, Laverdiere M, Pelletier R, Bourgault AM, Libman M, Lemieux C, Noel G. Prevalence and antifungal susceptibility of 442 Candida isolates from blood and other normally sterile sites: results of a 2-year (1996 to 1998) multicenter surveillance study in Quebec, Canada. J Clin Microbiol, 2001, 39(3): 949-953.
    2. Newman SL, Flanigan TP, Fisher A, Rinaldi MG, Stein M, Vigilante K. Clinically significant mucosal candidiasis resistant to fluconazole treatment in patients with AIDS. Clin Infect Dis, 1994, 19(4): 684-686.
    3. White TC, Marr KA, Bowden RA. Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance. Clin Microbiol Rev, 1998, 11(2): 382-402.
    4. Joseph HT, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett, 1997, 149(2): 141-149.
    5.苏英,李春阳,吴绍熙.念珠菌对唑类抗真菌药耐药机理及其相关因素的研究进展.国外医学皮肤性病学分册,1999,25(4):200-203.
    6. Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun, 2000, 68(6): 3485-3490.
    7. Odds FC. Recent advances in the biology of Candida. Ann Biol Clin (Paris), 1987, 45(5): 553-557. .
    8. Zakula D, Capobianco JO, Goldman RC. Novel antifungal agents which inhibit lanosterol 14alpha-demethylase in Candida albicans CCH442. J Antimicrob Chemother. 1997, 39(2): 261-264.
    9. Ansari S, Prasad R. Effect of miconazole on the structure and function of plasma membrane of Candida albicans. FEMS Microbiol Lett, 1993, 15,114(1): 93-98.
    10. Tuck SF, Aoyama Y, Yoshida Y. Active site topology of Saccharomyces cerevisiae lanosterol 14 alpha-demethylase (CYP-51) and its G310D mutant (cytochrome P-450SG1). J Biol Chem, 1992, 267(19): 13175-13179.
    
    
    11.吴绍熙,郭宁如,廖万清主编.现代真菌病诊断治疗学.北京:北京医科大学、中国协和医科大学联合出版社.1997,第一版:187—220.
    12. Slavin MA, Osborne B, Adams R, Levenstein MJ, Schoch HG, Feldman AR, Meyers JD, and Bowden RA. Efficacy and safety of fluconazole prophylaxis for fungal infections after marrow transplantation-a prospective, randomized, double-blind study. J Infect Dis, 1995, 171(6): 1545-1552.
    13. Goodman JL, Winston JD, Greenfield RA, Chandrasekar PH, Fox B, Kaizer H, Shadduck RK, Shea TC, Stiff P, Friedman DJ, Powderly WG, Silber, H. Horowitz JL, Lichtin A, Wolff SN, Mangan SF, Silver SM, Weisdorf D, Ho WG, Gilbert G, and Buell D. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med, 1992, 326(13): 845-851.
    14. Walsh TJ, Lee JW. Prevention of invasive fungal infections in patients with neoplastic disease. Clin Infect Dis, 1993, 17(2): S468-S480.
    15. Pittet D, Monod M, Suter PM, Frenk E, and Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg, 1994, 220(6): 751-758.
    16. Solomkin JS. Timing of treatment for nonneutropenic patients colonized with Candida. Am J Surg, 1996, 172(6A): 44S-48S.
    17. Rex JH, Bennett JE, Sugar AM, Pappas PG, Vander Horst CM, Edwards JE, Washburn RG, Scheld WM, Karchmer AW, Dine AP, Levenstein MJ, and Webb CD. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med, 1994, 331 (20): 1325-1330.
    18. Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med, 1994, 330(4): 263-272.
    19. Pappas PG, Bradsher RW, Kauffman CA, Cloud GA, Thomas CJ, Campbell GD, Chapman SW, Newman C, and Dismukes WE. Treatment of blastomycosis with higher doses of fluconazole. Clin Infect Dis, 1997, 25(2): 200-205.
    20. Law D, Moore CB, Wardle HM, Ganguli LA, Keaney MG, and Denning DW.
    
    High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother, 1994, 34(5): 659-668.
    21. Baily GG, Perry FM, Denning DW, and Mandal BK. Fluconazole-resistant candidosis in an HIV cohort. AIDS, 1994, 8(6): 787-692.
    22. Vuffray A, Durussel C, Boerlin P, Boerlin F, Boerlin-Petzold F, Bille J, Glauser MP, and Chave JP. Oropharyngeal candidiasis reisitant to single-dose therapy with fluconazole in HIV-infected patients. AIDS, 1994, 8(5): 708-709.
    23. Sangeorzan JA, Bradley SF, He X, Zarins LT, Redenour GL, Tiballi RN, and Kauffman CA. Epidemiology of oral candidiasis in HIV infected patients: colonization, infection, treatment, and emergence of fluconazole resistance. Am J Med, 1994, 97(4): 339-346.
    24. Redding SW, Smith JA, Farinacci G, Rinaldi MG, Fothergil AW, Rhine-Chalberg J, Pfaller MA. Resistance of candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis, 1994, 18(2): 240-242.
    25. Ruhnke M, Eigle A, Engelmann E. Geiseler B. and Trautmann M. Correlation between antifungal susceptibility testing of Candida isolates from patients with HIV infection and clinical results after treatment with fluconazole. Infection, 1994, 22(2): 132-136.
    26. Maenza JR, Metz WG, Romagnoli MJ, Keruly JC, Moore RD, and Gallant JE. Infection due to fluconazole-resistant Candida in patients with AIDS: prevalence and microbiology. Clin Infect Dis, 1997, 24(1): 28-34.
    27. Martins MD, LozanoChiu M, and Rex JH. Point prevalence of oropharyngeal carriage of fluconazole-resistant Candida in human immunodeficiency virus-infected patients. Clin Infect Dis, 1997, 25(4): 843-846
    28. Revankar SG, Kirkpatrick WR, McAtee RK, Dib OP, Fothergill AW, Redding SW, Rinaldi MG, and Patterson TF. Detection and significance of fluconazole resistance in oropharyngeal candidiasis in Human Immunodeficiency Virus-infected patients. J Infect Dis, 1996, 174(4): 821-827.
    
    
    29. Millon L, Manteaux A, Reboux G, Drobacheff C, Monod M, Barale T, and Michel-Briand Y. Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J Clin Microbiol, 1994, 32(4): 1115-1118.
    30. Laguna F, Rodriguez-Tudela JL, Martinez-Suarez JV, Polo R, Valencia E, Diaz-Guerra, F. Dronda TM, and Pulido F. Patterns of fluconazole susceptibility in isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis due to Candida albicans. Clin Infect Dis, 1997, 24(2): 124-130.
    31. Albertson GD, Niimi M, Cannon RD, and Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother, 1996, 40(12): 2835-2841.
    32. Balan I, Alarco AM, and Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol, 1997, 179(23): 7210-7218.
    33. Kentaro Asai, Noboru Tsuchimori, Kenji Okonogi, John R. Perfect, Osamu Gotoh, and Yuzo Yoshida. Formation of Azole-Resistant Candida albicans by Mutation of Sterol 14-Demethylase P450. Antimicrob Agents Chemother, 1999, 43(5): 1163-1169.
    34. White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14-alpha-dernethylase in Candida albicans. Antimicrob Agents Chemother, 1997, 41(7):1488-1494.
    35. Lamb DC, Kelly DE, Schunck WH, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, and Kelly SL. The mutation T315A in Candida albicans sterol 14 alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem, 1997, 272(9): 5682-5688.
    36. Lamb DC, Kelly DE, White TC, and Kelly SL. The R467K Amino Acid Substitution in Candida albicans Sterol 14 α-Demethylase Causes Drug Resistance through Reduced Affinity. Antimicrob Agents Chemother, 2000, 44(1): 63-67.
    37. Lockhart SR, Fritch JJ, Meier AS, Schroppei K, Srikantha T, Galask R, and Soll
    
    DR. Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C-1 fragment reorganization as demonstrated by DNA fingerprinting and C-1 sequencing. J Clin Microbiol, 1995, 33(6): 1501-1509.
    38. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M. and Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother, 1995, 39(11): 2378-2386.
    39. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from an HIV-infected patient. Antimicrob Agents Chemother, 1997, 41(7):1482-1487.
    40. Kelly R, Miller SM, Lai MH, and Kirsch DR. Cloning and characterization of the 2,3-oxidosqualene cyclase-coding gene of Candida albicans. Gene, 1990, 87(2): 177-183.
    41. Kirsch DR, Lai MH, and O'Sullivan J. Isolation of the gene for cytochrome P450L1A1 (lanosterol 14 alpha-demethylase) from Candida albicans. Gene, 1988, 68(2): 229-237.
    42. Lai MH, and Kirsch DR. Nucleotide sequence of cytochrome P450 L1A1 (lanosterol 14 alpha-demethylase) from Candida albicans. Nucleic Acids Res, 1989, 17(2): 804.
    43. Miyazaki Y, Geber A, Miyazaki H, Falconcer D, Parkinson T, Hitchcock C, Grimberg B, Nyswaner K, Bennett JE. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene, 1999, 263(1): 43-51.
    44. Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffier J, Hebart H, Schumacher U, and Einsele H. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective steroi Delta (5,6) desaturation. FEBS Lett, 1997, 400(1): 80-82.
    45. Lamb DC, Kelly DE, Manning NJ, and Kelly SL. Reduced intracellular accumulation of azole antifungal results in resistance in Candida albicans isolate NCPF 3363. FEMS Microbiol. Lett, 1997, 147(2): 189-193.
    
    
    46. Venkateswarlu K, Denning DW, Manning NJ, and Kelly SL. Resistance to fluconazole in Candida albicans from AIDS patients correlated with reduced intracellular accumulation of drug. FEMS Microbiol. Lett, 1995, 131(3): 337-341.
    47. Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother, 2001, 45(4): 1174-1183. I
    48. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother, 1999, 43(11): 2753-2765.
    49. Michaelis S, and Berkower C. Sequence comparison of yeast ATP binding cassette proteins. Cold Spring Harbor Symp Quant Biol, 1993, 60: 291-307.
    50. Paulsen IT, Brown MH, and Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev, 1996, 60(4): 575-608.
    51. Prasad R, De Wergifosse P, Goffear A, Balzi E. Molecular cloning a characterization of a novle gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet, 1995, 27(4): 320-329.
    52. Sanglard D, lscher F, Monod M, and Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother, 1996, 40(10): 2300-2305.
    53. Sanglard D, Ischer F, Monod M, and Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology, 1997, 143(2): 405-416.
    54. Lyons CN, White TC. Transcriptional analyses of antigungal drug resistance in Candida albicans. Antimicrob Agents Chemother, 2000, 44(9): 2296-2303.
    55. Goldway M, Teff D, Schmidt R, Oppenheim AB, and Koltin Y. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother, 1995, 39(2): 422-426.
    56. Wirsching S, Michel S, Morschhuser J. Targeted gene disruption in Candida
    
    albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol, 2000, 36(4): 856-865.
    57.吴绍熙主编.现代医学真菌检验手册.北京:北京医科大学、中国协和医科大学联合出版社.1998,第一版,32-36.
    58. Liu h, Khler J, Fink GR. Suppressing of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science, 1994, 266(519l): 1723-1726.
    59. Feng Q, Summers E, Guo B, Fink GR. Ras singnaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol, 1999, 181(20): 6339-6346.
    60. Jonathan DJ, Loeb, Mansa SB, Idit H, Liu. A G1 cyclin is necessary fou maintenance of filamentous growth in Candida albicans. Mol and Cell Biol, 1999, 19(6): 4019-4027.
    61. Felicitas R, Verena K, Volker R, Stoldt R, Joachin F. Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in Candida albicans and Saccharo mycescerevisiae. Microbiology, 1998, 144:2951-2960.
    62. Birse CE, Irwin MY, Sypherd PS. Cloning and characterization of ECE1, a gene expressed in associtation with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun, 1993, 61(9): 3648-3655.
    63. Staab JF, Ferrer CA, Sundstrom P. Developmental expression of a tandemly repeated, proline and glutamine rich amino acid motif on hyphal surfaces on Candida albicans.J Biol Chem, 1996, 271(11): 6298-6305. -
    64. Bailey DA, Feldmann PJ, Bovey M, Gow NAR, Brown AJP. The Candida albicans HYR1 gene, which is activated in reponse to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol, 1996, 178(18): 5353-5360.
    65. Hoyer LL, Scherer S, Shatzman AR, Livi GP. Candida albicans ALS1: Domains related to a Saccharomyces cerevisiae sexual agglutinin sepatated by a repeating motif. Mol Mirobiol, 1995, 15(1): 39-54.
    66. Hoyer LL, Payne TL. Bell M, Myers AM, Scherer S. Candida albicans ALS3 and
    
    insights into the mture of the ALS gene family. Curr Genet, 1998, 33(6): 451-459.
    67. Lo H, Khler JR, Di Domenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell, 1997, 90(5): 939-949.
    68.刘云彤,李少平.白念珠菌毒力因子研究进展.中国微生态学杂志,2000,12(1):60-61.
    69. Ashman RB, Papadimitriou JM, Ott AK, Warmington JR. Antigens and immune response in Candida albicans. Infection Immunol Cell Biol, 1990, 68(1): 1-13.
    70. Sundstrom PM, Kenny GE. Enzymatic release of germ tube-specific antigens from cell walls of Candida albicas. Infect Immun, 1985, 49(3): 609-614.
    71. Ponton J, Jones JM. Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulface-polyacry-lamide gel electrophoresis and Western blot technique. Infect Immun, 1986, 53(3): 565572.
    72.邵海风,秦卫松,李保仝,宗永兰,李珍大.用白念珠菌菌丝相蛋白抗原诊断白念珠菌病的探讨.中华医学检验杂志,1997,20(2):81-83.
    73. Ryder NS, Favre B. Antifungal activity and mechanism of action of tcrbinafine. Rev Contemp Pharmacother, 1997, 8(5): 275-287.
    74.肖异珠,李桂明.尼克霉素Z与氟康唑或特比萘芬抗白念珠菌的体外实验.中华皮肤科杂志,2001,34(5):379.
    75. Schaude M, Ackerbauer H, Mieth H. Inhibitory effect of antifungal agents on germ tube formation in Candida albicans. Mykosen, 1987, 30(6): 281-287.
    76. Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. J British Dermatology, 1992, 126(39): 2-7.
    77.吴绍熙,郭宁如,廖万清主编.现代真菌病诊断治疗学.北京:北京医科大学、中国协和医科大学联合出版社.1997,第一版:187—220.
    78. White TC, Pfaller MA, Rinaldi MG, Smith J, Redding SW. Stable azole drug resisitance associated with a substrain of Candida albicans from an HIV-indected patient. Oral Dideases, 1997, 3(suppl 1): s102-109.
    79. NCCLS: National Committee for Clinical Laboratory Standards Reference methd for broth dilution antifugal susceptibility testing of yeast: approved standard. NCCLS document M27-A Wayne, Pennsylvania: NCCLS, 1997.
    
    
    80. Pfaller MA, Rhine-Chalberg J, Redding SW, Smith J, Farinacci G, Fothergill AW, Rinaldi MG. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J Clin Microbiol, 1994, 32(1): 59-64.
    81. Schmid J, Voss E, and Soll DR. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol, 1990, 28(6): 1236-1243.
    82. Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun, 2000, 68(6): 3485-3490.
    83.金艳,张宏.菌丝相白念珠菌对氟康唑耐药机制的研究.暨南大学硕士学位论文,2002,5:15.
    84. Maruya E, Saji H, Yokoyama S. PCR-LIS-SSCP (low ionic strength single-strand conformation polymorphism)-a simple method for high-resolution allele typing of HLA-DRBI, -DQBI, and -DPBI. Genome Res, 1996, 6(1): 51-57.
    85.刘晓红,廖万清,户惠民,姚志荣.白念珠菌与宿主细胞粘附机制的探讨.中国皮肤性病学杂志,1999,1(2)3:83-84.
    86.郭宁如,吴绍熙,吕桂霞.白念珠菌体外粘附条件的探讨.中华皮肤科杂志,1994,27(1):22-25.
    87. Bailey A, Wadsworth E, Calderone R. Adherence of Candida albicans to human buccal epithelial cell: host-induced protein synthesis and signaling event, Infeat Immun, 1995, 63(2): 569-572.
    88.秦启贤主编.临床真菌学.上海:复旦大学出版社.2001,第(?)版:92-97.
    89.金艳,张宏.菌丝相白念珠菌对氟康唑耐药机制的研究.暨南大学硕士学位论文,2002,5:35-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700