天然药物小檗碱抑制烟曲霉作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟曲霉(Aspergillus fum gatus)是一种环境中广泛存在的腐生真菌,也是一种可经空气传播的重要条件致病性真菌。近年来,由于广谱抗生素、抗癌药物、免疫抑制剂的广泛使用,侵入性诊疗技术、器官移植的开展,艾滋病、糖尿病患者的不断增多,人口老龄化等原因,导致侵袭性肺曲霉病(Invasive pulmonary aspergillosis, IPA)的发病率急剧增加,且预后差,死亡率高达50%-95%,已成为临床上仅次于假丝酵母病的第二大真菌感染性疾病。
     目前,抗真菌药种类较少,毒副作用较大,价格昂贵。因此,寻找具有抗真菌能力强,毒副作用低的新型抗真菌药物,具有深远的意义。由于中药历史悠久、疗效显著、天然低毒,因而,从中药中寻找有效的抗真菌药物,促进抗真菌药物的开发,具有广阔的应用前景。
     一、抗烟曲霉中药单体的筛选
     本研究选择了20种中药的单体成分,针对7株烟曲霉临床分离株,通过微量稀释药敏法,测定药物抑菌效果,初步筛选出5种抗菌活性较好的单体,其中小檗碱的抑菌效果最佳。增加受试菌株数量后发现,小檗碱对临床分离的42株烟曲霉均有明显的抑制作用。
     二、小檗碱抗烟曲霉的研究
     1.小檗碱对烟曲霉生物学性状的影响
     本研究以烟曲霉IFM40808做为小檗碱抗烟曲霉作用机制的研究对象。
     形态学研究结果发现:肉眼观察可见小檗碱能抑制烟曲霉的菌丝生长、孢子萌发及孢子色素的生成;扫描电子显微镜观察可见小檗碱使菌丝和孢子形态发生畸变:透射电子显微镜观察可见小檗碱能破坏烟曲霉细胞壁的连续性,使细胞膜部分缺失,细胞器内容物减少。实验结果表明,小檗碱具有抑制烟曲霉的作用。
     2.小檗碱对烟曲霉侵袭力的影响
     本研究利用Transwell细胞小室,在体外模拟建立烟曲霉侵袭细胞基质模型,并探讨了小檗碱对烟曲霉孢子侵袭性的影响。通过激光共聚焦显微镜观察发现,小檗碱作用烟曲霉后,与对照组相比,在下室中FITC纳米粒子和烟曲霉菌丝体较减少,表明小檗碱抑制了烟曲霉孢子的侵袭性和生长发育。同时通过孢子侵染小鼠实验,进一步证明小檗碱处理后的烟曲霉孢子侵袭性下降,这为小檗碱预防用药提供了理论指导。
     本研究建立了小鼠侵袭性肺曲霉病模型,并评价了小檗碱的治疗效果。结果表明,用药后小鼠的生存率明显提高;肺脏免疫组织化学染色后发现,用药后肺内炎性反应下降;Western-blotting结果发现,药物治疗72h后,与对照组相比,小鼠的肺部炎性相关蛋白表达量下降,表明小檗碱对侵袭性肺曲霉病有较好的治疗效果。
     3.小檗碱与常用抗真菌药物的联合应用
     本研究尝试将小檗碱和常用抗烟曲霉药物联合应用。经棋盘式微量稀释实验发现,小檗碱与伊曲康唑、伏立康唑相拮抗;与5-氟胞嘧啶和特比萘芬不相关;与卡泊芬净和两性霉素B相协同。
     目前两性霉素B由于其毒副作用较高,限制了在临床上的应用。而通过联合用药,可以减少两性霉素B的用量,降低其毒副作用。本研究通过体内研究证实,小檗碱和两性霉素B联合应用后,可以减少两性霉素B的药物用量。这为降低两性霉素B在临床治疗中的毒副作用,提供了理论基础。
     4.小檗碱抗烟曲霉的作用机制
     本研究利用Real-time PCR、Western-blotting等分子生物学方法,发现小檗碱通过抑制烟曲霉细胞色素通路相关基因的表达,抑制了孢子色素的形成;并且可以通过抑制烟曲霉钙调磷酸酶信号通路相关基因的表达,抑制了孢子的萌发。
     为了探讨小檗碱抑制烟曲霉侵袭性的作用机制,本研究提取用药组和非用药组的烟曲霉分泌蛋白,分别作用于肺泡上皮细胞和支气管上皮细胞,发现细胞生长均受抑制。结果表明,小檗碱可能是通过抑制烟曲霉分泌蛋白的活性,从而导致烟曲霉孢子的侵袭性下降。
     由于联合药敏实验发现,小檗碱与伊曲康唑相拮抗,而后者又是抗烟曲霉的临床常用药物,同时小檗碱也较为常用,为了进一步探讨二者拮抗的机制,本研究利用Real-time PCR和高效液相色谱分析等方法,发现小檗碱可以抑制烟曲霉麦角固醇通路基因的表达,从而抑制麦角固醇的合成。这一机制与伊曲康唑的作用机制相似,这可能是两者拮抗的原因。
     通过以上研究表明,小檗碱是经多种途径对烟曲霉进行抑制的,这为寻找小檗碱对烟曲霉的作用靶点奠定了基础。
     综上所述,本研究以筛选得到的抗烟曲霉中药单体小檗碱为研究对象,通过体外、体内实验,证明了小檗碱对烟曲霉具有抑制作用,并探讨了其作用机制,这为小檗碱抗烟曲霉的临床应用提供了理论依据和技术支撑。
Aspergillus fumigates is saprophyte fungi which is ubiquitous in the environment. As the airborne filamentous fungal pathogen, it is known to be a major cause of lethal lung infections in immunocompromised hosts and allergic asthma in atopic individuals. Invasive pulmonary aspergillosis has high mortality rates(50%-95%), and its incidence has been increasing gradually.
     Not with standing the increasing need for effective therapy, the range of antifungal agents available is limited, and some of the most effective agents are also toxic. It is necessary to find the new antifungal agents which has good anti-fungal ability and low toxicity. More and more studies showed that it is a good resources to find the antifungal agents.
     1. The screening of antifungal agents to Aspergillus fumigatus
     In this study, we detected the efficacy of20kinds of Chinese medicine for seven Aspergillus fumigatus isolated from clinical patients by microdilution susceptibility method, determination of drug inhibitory effect, the initial screen of five kinds of better antibacterial activity of the monomer, which Berberisthe antibacterial effect of the alkali. Of berberine on42clinical isolates of Aspergillus fumigatus significantly inhibited by increasing the strain number.
     2. The study of Aspergillus fumigatus treated with Berberine
     (1) The study of Aspergillus fumigatus biological properties treated with Berberine
     In this study, we selected the Aspergillus fumigatus IFM40808to study the mechanism of berberine. Morphological data showed that berberine could inhibit the growth of Aspergillus fumigatus hyphae, spore germination and spore pigment formation. Berberine can inhibit Aspergillus fumigatus hyphae and conidia form distortion by scanning electron microscope observation. In addition, berberine can destroy the continuity of the Aspergillus fumigatus cell wall, membrane partial deletion, and reduced contents of the organelle by transmission electron microscopy observation.
     (2) Berberine inhibited Aspergillus fumigatus invasion
     To further study, we used the Transwell cell chambers established in vitro model of Aspergillus fumigatus invades the cell matrix, and invasive experiments to prove that berberine significantly inhibited the invasive A. fumigatus conidia. After the decline of Aspergillus fumigatus invasive, laser confocal microscopy, FITC nanoparticles and Aspergillus fumigatus mycelium less:in the room next to the cell chamber.
     We further established the invasive pulmonary aspergillosis model in mice, and treatment with berberine. Prove that berberine treatment of invasive pulmonary aspergillosis in mice survival. Using immunohistochemistry to identify the untreated group of mice lungs was further confirmed by berberine. We detected the protein expression after72h Aspergillus fumigatus infection by Western-blotting. The results showed that berberine could change in the lungs of mice of different groups on the inflammatory signaling pathways associated protein, which proved that no medication treated group inflammatory protein expression was increased in the drug treatment of inflammatory protein expression declined. At the same time, we detected the effect of mice infected with spores, and the results also support the opinion.
     (3) The combination of berberine with the commonly used antifungal agents
     In this study, we try to examine the effect of the antifungal agent between berberine and anti-Aspergillus fumigatus clinical drugs commonly used in combination. Our studies showed that berberine with itraconazole, voriconazole displayed antagonistic by the checkerboard microdilution experiments; berberine with5-fluorocytosine or terbinafine was no interaction; synergistic with amphotericin B and caspofungin performance. Because of the high incidence of adverse drug reactions the clinical use of amphotericin B is rather limited. With other drug since in combination a lower dose may be used, reducing the risk. This study resulted in the discovery of the theoretical combination of drugs berberine and amphotericin B. It could reduce the doses of amphotericin B. And to reduce the toxicity of amphotericin B in clinical, provides a theoretical basis.
     (4) The mechanisms of berberine anti-Aspergillus fumigates
     We also find that berberine can inhibit the Real-time PCR berberine can inhibit the expression of the spore pigment, which is regulated gene expression of calcineurin signaling pathways. The secreted proteins of Aspergillus fumigatus extract the drug and non-medication, the role of alveolar epithelial cells and bronchial epithelial cells, further evidence of the application of berberine treatment of Aspergillus fumigatus invasive decline. Itraconazole is the commonly used anti-Aspergillus fumigatus in clinic. Berberine is also used as anti-inflammatory in clinic. We studied the mechanism of antagonistic between berberine and itraconazole, by Real-time PCR and HPLC analysis. Our results showed that berberine could inhibit the gene expression of ergosterol pathway. This is similar to the antifungal mechanism of itraconazole. In conclusion, we selected the anti-Aspergillus fumigatus agents berberine in this study, and showed that while BER was effective in restraining the growth of Aspergillus fumigatus in vitro and in vivo. Our results proved that berberine inhibited Aspergillus fumigatus, and tried to discussed the anti-Aspergillus fumigatus mechanism of berberine. We think that our study will provied a theoretical basis and technical support for clinical application of berberine.
引文
[1]Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol.2006.176(6):3717-24.
    [2]Gavalda J, Roman A. [Infection in lung transplantation]. Enferm Infecc Microbiol Clin.2007.25(10):639-49; quiz 650.
    [3]Monforte V, Ussetti P, Lopez R, et al. Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation:pharmacokinetics and safety. J Heart Lung Transplant.2009.28(2):170-5.
    [4]Monforte V, Ussetti P, Gavalda J, et al. Feasibility, tolerability, and outcomes of nebulized liposomal amphotericin B for Aspergillus infection prevention in lung transplantation. J Heart Lung Transplant.2010.29(5):523-30.
    [5]Aydogan S, Kustimur S, Kalkanci A. [Comparison of glucan and galactomannan tests with real-time PCR for diagnosis of invasive aspergillosis in a neutropenic rat model]. Mikrobiyol Bul.2010.44(3):441-52.
    [6]Balloy V, Chignard M. The innate immune response to Aspergillus fumigatus. Microbes Infect.2009.11(12):919-27.
    [7]Spinnler K, Mezger M, Steffens M, et al. Role of glycogen synthase kinase 3 (GSK-3) in innate immune response of human immature dendritic cells to Aspergillus fumigatus. Med Mycol.2010.48(4):589-97.
    [8]Hope WW, Kruhlak MJ, Lyman CA, et al. Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis:implications for antifungal therapy. J Infect Dis.2007. 195(3):455-66.
    [9]Orciuolo E, Stanzani M, Canestraro M, et al. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils:implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol.2007.82(4):839-48.
    [10]Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev.2009.22(3):447-65.
    [11]Grahl N, Puttikamonkul S, Macdonald JM, et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog.2011.7(7):e1002145.
    [12]Zaas AK, Schwartz DA. Innate immunity and the lung:defense at the interface between host and environment. Trends Cardiovasc Med.2005.15(6):195-202.
    [13]Kato A, Schleimer RP. Beyond inflammation:airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol.2007.19(6): 711-20.
    [14]Castranova V, Rabovsky J, Tucker JH, Miles PR. The alveolar type II epithelial cell:a multifunctional pneumocyte. Toxicol Appl Pharmacol.1988.93(3): 472-83.
    [15]Knight DA, Holgate ST. The airway epithelium:structural and functional properties in health and disease. Respirology.2003.8(4):432-46.
    [16]Knight DA, Holgate ST. The airway epithelium:structural and functional properties in health and disease. Respirology.2003.8(4):432-46.
    [17]Schneeberger EE, Lynch RD. Tight junctions. Their structure, composition, and function. Circ Res.1984.55(6):723-33.
    [18]Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction:lessons from mouse models. J Aerosol Med Pulm Drug Deliv.2008. 21(1):13-24.
    [19]Antunes MB, Cohen NA. Mucociliary clearance--a critical upper airway host defense mechanism and methods of assessment. Curr Opin Allergy Clin Immunol.2007.7(1):5-10.
    [20]Zaas AK, Schwartz DA. Innate immunity and the lung:defense at the interface between host and environment. Trends Cardiovasc Med.2005.15(6):195-202.
    [21]Hiemstra PS. Epithelial antimicrobial peptides and proteins:their role in host defence and inflammation. Paediatr Respir Rev.2001.2(4):306-10.
    [22]Bals R, Hiemstra PS. Innate immunity in the lung:how epithelial cells fight against respiratory pathogens. Eur Respir J.2004.23(2):327-33.
    [23]Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol.2001. 9(8):382-9.
    [24]Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus. Med Mycol.2009.47 Suppl 1:S97-103.
    [25]Willger SD, Grahl N, Cramer RA Jr. Aspergillus fumigatus metabolism:clues to mechanisms of in vivo fungal growth and virulence. Med Mycol.2009.47 Suppl 1:S72-9.
    [26]Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA. Heptahelical receptors GprC and GprD of Aspergillus fumigatus Are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol.2010. 76(12):3989-98.
    [27]Li H, Barker BM, Grahl N, et al. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot Cell.2011.10(2): 174-86.
    [28]Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RH. The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol.2011.48(11):1071-5.
    [29]Hartmann T, Cairns TC, Olbermann P, Morschhauser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol.2011.82(4):917-35.
    [30]Paisley D, Robson GD, Denning DW. Correlation between in vitro growth rate and in vivo virulence in Aspergillus fumigatus. Med Mycol.2005.43(5): 397-401.
    [31]Hohl TM, Feldmesser M. Aspergillus fumigatus:principles of pathogenesis and host defense. Eukaryot Cell.2007.6(11):1953-63.
    [32]Panagopoulou P, Filioti J, Farmaki E, Maloukou A, Roilides E. Filamentous fungi in a tertiary care hospital:environmental surveillance and susceptibility to antifungal drugs. Infect Control Hosp Epidemiol.2007.28(1):60-7.
    [33]Panagopoulou P, Filioti J, Petrikkos G, et al. Environmental surveillance of filamentous fungi in three tertiary care hospitals in Greece. J Hosp Infect.2002. 52(3):185-91.
    [34]Schmitt HJ, Blevins A, Sobeck K, Armstrong D. Aspergillus species from hospital air and from patients. Mycoses.1990.33(11-12):539-41.
    [35]Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol.2002.68(4):1743-53.
    [36]Wald A, Leisenring W, van BJA, Bowden RA. Epidemiology of Aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. J Infect Dis.1997.175(6):1459-66.
    [37]Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002.34(7):909-17.
    [38]Minari A, Husni R, Avery RK, et al. The incidence of invasive aspergillosis among solid organ transplant recipients and implications for prophylaxis in lung transplants. Transpl Infect Dis.2002.4(4):195-200.
    [39]Morgan J, Wannemuehler KA, Marr KA, et al. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol. 2005.43 Suppl1:S49-58.
    [40]Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies:the SEIFEM-2004 study. Haematologica.2006.91(8):1068-75.
    [41]Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol.2001. 9(8):382-9.
    [42]Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus. Med Mycol.2009.47 Suppl 1:S97-103.
    [43]Rementeria A, Lopez-Molina N, Ludwig A, et al. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol.2005.22(1):1-23.
    [44]D'Enfert C, Diaquin M, Delit A, et al. Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Infect Immun.1996.64(10):4401-5.
    [45]Brown JS, Aufauvre-Brown A, Brown J, Jennings JM, Arst H Jr, Holden DW. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol.2000.36(6): 1371-80.
    [46]Panepinto JC, Oliver BG, Fortwendel JR, Smith DL, Askew DS, Rhodes JC. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of Invasive pulmonary aspergillosis. Infect Immun.2003.71(5):2819-26.
    [47]Krappmann S, Bignell EM, Reichard U, Rogers T, Haynes K, Braus GH. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol.2004.52(3):785-99.
    [48]Liebmann B, Muhleisen TW, Muller M, et al. Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol.2004.181(5):378-83.
    [49]Hu W, Sillaots S, Lemieux S, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog.2007.3(3):e24.
    [50]Moreno MA, Ibrahim-Granet O, Vicentefranqueira R, et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol.2007.64(5):1182-97.
    [51]Sugui JA, Pardo J, Chang YC, et al. Gliotoxin is a virulence factor of Aspergillus fumigatus:gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell.2007.6(9):1562-9.
    [52]Hissen AH, Chow JM, Pinto LJ, Moore MM. Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin:the role of siderophores. Infect Immun.2004.72(3):1402-8.
    [53]Schrettl M, Bignell E, Kragl C, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004.200(9):1213-9.
    [54]Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated albl gene of Aspergillus fumigatus:its role in modulation of conidial morphology and virulence. J Bacteriol.1998.180(12): 3031-8.
    [55]Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol.2001. 9(8):382-9.
    [56]Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus. Med Mycol.2009.47 Suppl 1:S97-103.
    [57]Hohl TM, Feldmesser M. Aspergillus fumigatus:principles of pathogenesis and host defense. Eukaryot Cell.2007.6(11):1953-63.
    [58]Rhodes JC. Aspergillus fumigatus:growth and virulence. Med Mycol.2006.44 Suppl 1:S77-81.
    [59]Willger SD, Grahl N, Cramer RA Jr. Aspergillus fumigatus metabolism:clues to mechanisms of in vivo fungal growth and virulence. Med Mycol.2009.47 Suppl 1:S72-9.
    [60]Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA. Heptahelical receptors GprC and GprD of Aspergillus fumigatus Are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol.2010. 76(12):3989-98.
    [61]Li H, Barker BM, Grahl N, et al. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot Cell.2011.10(2): 174-86.
    [62]Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RH. The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol.2011.48(11):1071-5.
    [63]Hartmann T, Cairns TC, Olbermann P, Morschhauser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol.2011.82(4):917-35.
    [64]Ibrahim-Granet O, Philippe B, Boleti H, et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun.2003. 71(2):891-903.
    [65]Philippe B, Ibrahim-Granet O, Prevost MC, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun.2003.71(6):3034-42.
    [66]Loeffler J, Haddad Z, Bonin M, et al. Interaction analyses of human monocytes co-cultured with different forms of Aspergillus fumigatus. J Med Microbiol. 2009.58(Pt 1):49-58.
    [67]Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. Observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest.1982.69(3):617-31.
    [68]Levitz SM, Farrell TP. Human neutrophil degranulation stimulated by Aspergillus fumigatus. J Leukoc Biol.1990.47(2):170-5.
    [69]Hohl TM, Feldmesser M. Aspergillus fumigatus:principles of pathogenesis and host defense. Eukaryot Cell.2007.6(11):1953-63.
    [70]Williams DM, Weiner MH, Drutz DJ. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis.1981. 143(5):726-33.
    [71]Willger SD, Grahl N, Cramer RA Jr. Aspergillus fumigatus metabolism:clues to mechanisms of in vivo fungal growth and virulence. Med Mycol.2009.47 Suppl 1:S72-9.
    [72]Gehrke A, Heinekamp T, Jacobsen ID, Brakhage AA. Heptahelical receptors GprC and GprD of Aspergillus fumigatus Are essential regulators of colony growth, hyphal morphogenesis, and virulence. Appl Environ Microbiol.2010. 76(12):3989-98.
    [73]Li H, Barker BM, Grahl N, et al. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot Cell.2011.10(2): 174-86.
    [74]Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RH. The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol.2011.48(11):1071-5.
    [75]Hartmann T, Cairns TC, Olbermann P, Morschhauser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol.2011.82(4):917-35.
    [76]Barnes PD, Marr KA. Aspergillosis:spectrum of disease, diagnosis, and treatment. Infect Dis Clin North Am.2006.20(3):545-61, vi.
    [77]Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol.2005.43 Suppl 1:S207-38.
    [78]Rohatgi PK, Rohatgi NB. Clinical spectrum of pulmonary aspergillosis. South Med J.1984.77(10):1291-301.
    [79]Franquet T, Muller NL, Gimenez A, Guembe P, de La Torre J, Bague S. Spectrum of pulmonary aspergillosis:histologic, clinical, and radiologic findings. Radiographics.2001.21(4):825-37.
    [80]Soubani AO, Chandrasekar PH. The clinical spectrum of pulmonary aspergillosis. Chest.2002.121(6):1988-99.
    [81]Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline:selected new molecules and beyond. Nat Rev Drug Discov.2010.9(9):719-27.
    [82]UTZ JP. AMPHOTERICIN B TOXICITY; GENERAL SIDE EFFECTS. Ann Intern Med.1964.61:340-3.
    [83]Laniado-Laborin R, Cabrales-Vargas MN. Amphotericin B:side effects and toxicity. Rev Iberoam Micol.2009.26(4):223-7.
    [84]Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B:time for a new "gold standard". Clin Infect Dis.2003.37(3):415-25.
    [85]Vicente F, Basilio A, Platas G, et al. Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res.2009.113(Pt 6-7):754-70.
    [86]Paderu P, Garcia-Efrfron G, Balashov S, Delmas G, Park S, Perlin DS. Serum differentially alters the antifungal properties of echinocandin drugs. Antimicrob Agents Chemother.2007.51(6):2253-6.
    [87]Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007.10(3):121-30.
    [88]Niimi K, Niimi M. [The mechanisms of resistance to echinocandin class of antifungal drugs]. Nihon Ishinkin Gakkai Zasshi.2009.50(2):57-66.
    [89]Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections:a comparison. Drugs.2011.71(1):11-41.
    [90]Denning DW. Echinocandins and pneumocandins--a new antifungal class with a novel mode of action. J Antimicrob Chemother.1997.40(5):611-4.
    [91]Denning DW. Echinocandins:a new class of antifungal. J Antimicrob Chemother.2002.49(6):889-91.
    [92]Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med.2002.347(25):2020-9.
    [93]Tunger O, Bayram H, Degerli K, Dine G, Cetin BC. Comparison of the efficacy of combination and monotherapy with caspofungin and liposomal amphotericin B against invasive candidiasis. Saudi Med J.2008.29(5):728-33.
    [94]Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007.45(7):883-93.
    [95]Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin:six years of global surveillance. J Clin Microbiol.2008.46(1):150-6.
    [96]关洪全,李中山.试论抗真菌中药研究战略.辽宁中医杂志.1997.(12):8-9.
    [97]Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol.2006.176(6):3717-24.
    [98]Luong ML, Morrissey O, Husain S. Assessment of infection risks prior to lung transplantation. Curr Opin Infect Dis.2010.23(6):578-83.
    [99]Nakajima T, Palchevsky V, Perkins DL, Belperio JA, Finn PW. Lung transplantation:infection, inflammation, and the microbiome. Semin Immunopathol.2011.33(2):135-56.
    [100]Miossec C, Morio F, Lepoivre T, et al. Fatal invasive infection with fungemia due to Microascus cirrosus after heart and lung transplantation in a patient with cystic fibrosis. J Clin Microbiol.2011.49(7):2743-7.
    [101]Aydogan S, Kustimur S, Kalkanci A. [Comparison of glucan and galactomannan tests with real-time PCR for diagnosis of invasive aspergillosis in a neutropenic rat model]. Mikrobiyol Bul.2010.44(3):441-52.
    [102]Iwazaki RS, Endo EH, Ueda-Nakamura T, Nakamura CV, Garcia LB, Filho BP. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek.2010.97(2):201-5.
    [103]Limper AH, Knox KS, Sarosi GA, et al. An official american thoracic society statement:treatment of fungal infections in adult pulmonary and critical care patients. Am J Respir Crit Care Med.2011.183(1):96-128.
    [104]Billaud EM, Guillemain R, Berge M, et al. Pharmacological considerations for azole antifungal drug management in cystic fibrosis lung transplant patients. Med Mycol.2010.48 Suppl 1:S52-9.
    [105]Portillo A, Vila R, Freixa B, et al. Antifungal sesquiterpene from the root of Vernonanthura tweedieana. J Ethnopharmacol.2005.97(1):49-52.
    [106]Kim HJ, Vinale F, Ghisalberti EL, et al. An antifungal and plant growth promoting metabolite from a sterile dark ectotrophic fungus. Phytochemistry. 2006.67(20):2277-80.
    [107]Skaltsa H, Lazari D, Panagouleas C, Georgiadou E, Garcia B, Sokovic M. Sesquiterpene lactones from Centaurea thessala and Centanrea attica. Antifungal activity. Phytochemistry.2000.55(8):903-8.
    [108]Silva GH, Teles HL, Zanardi LM, et al. Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry.2006.67(17):1964-9.
    [109]Rasoamiaranjanahary L, Marston A, Guilet D, Schenk K, Randimbivololona F, Hostettmann K. Antifungal diterpenes from Hypoestes serpens (Acanthaceae). Phytochemistry.2003.62(3):333-7.
    [110]Jiang RW, Lane AL, Mylacraine L, et al. Structures and absolute configurations of sulfate-conjugated triterpenoids including an antifungal chemical defense of the green macroalga Tydemania expeditionis. J Nat Prod.2008.71(9):1616-9.
    [111]Tabopda TK, Ngoupayo J, Liu J, et al. Bioactive aristolactams from Piper umbellatum. Phytochemistry.2008.69(8):1726-31.
    [112]Muhammad I, Dunbar DC, Takamatsu S, Walker LA, Clark AM. Antimalarial, cytotoxic, and antifungal alkaloids from Duguetia hadrantha. J Nat Prod.2001. 64(5):559-62.
    [113]McCarthy PJ, Pitts TP, Gunawardana GP, Kelly-Borges M, Pomponi SA. Antifungal activity of meridine, a natural product from the marine sponge Corticium sp. J Nat Prod.1992.55(11):1664-8.
    [114]Espinel-Ingroff A, Fothergill A, Fuller J, Johnson E, Pelaez T, Turnidge J. Wild-type MIC distributions and epidemiological cutoff values for caspofungin and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother.2011.55(6):2855-9.
    [115]Kim JH, Campbell BC, Mahoney N, Chan KL, Molyneux RJ, May GS. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett Appl Microbiol. 2007.45(2):134-41.
    [116]Espinel-Ingroff A, Fothergill A, Fuller J, Johnson E, Pelaez T, Turnidge J. Wild-type MIC distributions and epidemiological cutoff values for caspofungin and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother.2011.55(6):2855-9.
    [117]Qiu WY, Yao YF, Zhu YF, et al. Fungal spectrum identified by a new slide culture and in vitro drug susceptibility using Etest in fungal keratitis. Curr Eye Res.2005.30(12):1113-20.
    [118]Rand KH, Houck HJ, Brown P, Bennett D. Reproducibility of the microdilution checkerboard method for antibiotic synergy. Antimicrob Agents Chemother. 1993.37(3):613-5.
    [119]Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother.2003.52(1):1.
    [120]Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot.2005.56(421):2907-14.
    [121]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc.2008.3(6):1101-8.
    [122]Tseng CP, Cheng AJ, Chang JT, et al. Quantitative analysis of multidrug-resistance mdrl gene expression in head and neck cancer by real-time RT-PCR. Jpn J Cancer Res.2002.93(11):1230-6.
    [123]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001. 25(4):402-8.
    [124]Bien CM, Chang YC, Nes WD, Kwon-Chung KJ, Espenshade PJ. Cryptococcus neoformans Site-2 protease is required for virulence and survival in the presence of azole drugs. Mol Microbiol.2009.74(3):672-90.
    [125]Klepser ME. New insights in medical mycology:focus on fungal infections. Introduction. Pharmacotherapy.2001.21(8 Pt 2):109S-110S.
    [126]Ferreira ME, Colombo AL, Paulsen I, et al. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol. 2005.43 Suppl 1:S313-9.
    [127]Alcazar-Fuoli L, Mellado E, Garcia-Effron G, et al. Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids.2008.73(3):339-47.
    [128]Kulkarni SK, Dhir A. Berberine:a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res.2010.24(3):317-24.
    [129]Kulkarni SK, Dhir A. Berberine:a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res.2010.24(3):317-24.
    [130]Cordero CP, Gomez-Gonzalez S, Leon-Acosta CJ, Morantes-Medina SJ, Aristizabal FA. Cytotoxic activity of five compounds isolated from Colombian plants. Fitoterapia.2004.75(2):225-7.
    [131]Hawrelak J. Giardiasis:pathophysiology and management. Altern Med Rev. 2003.8(2):129-42.
    [132]Cecil CE. Davis JM, Cech NB, Laster SM. Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis). Int Immunopharmacol.2011.11(11):1706-14.
    [133]Bian X, He L, Yang G. Synthesis and antihyperglycemic evaluation of various protoberberine derivatives. Bioorg Med Chem Lett.2006.16(5):1380-3.
    [134]Park KS, Kang KC, Kim KY, et al. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albicans. J Antimicrob Chemother.2001.47(5):513-9.
    [135]Park KS, Kang KC, Kim JH, Adams DJ, Johng TN, Paik YK. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. J Antimicrob Chemother.1999.43(5):667-74.
    [136]Xu MG, Wang JM, Chen L, Wang Y, Yang Z, Tao J. Berberine-induced upregulation of circulating endothelial progenitor cells is related to nitric oxide production in healthy subjects. Cardiology.2009.112(4):279-86.
    [137]Liu Z, Liu Q, Xu B, et al. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res. 2009.662(1-2):75-83.
    [138]Holy EW, Akhmedov A, Luscher TF, Tanner FC. Berberine, a natural lipid-lowering drug, exerts prothrombotic effects on vascular cells. J Mol Cell Cardiol.2009.46(2):234-40.
    [139]Zhang W, Xu YC, Guo FJ, Meng Y, Li ML. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin Med J (Engl).2008. 121(21):2124-8.
    [140]Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet-and streptozotocin-induced diabetic rats. Metabolism.2011.60(2):298-305.
    [141]Wang ZS, Lu FE, Xu LJ, Dong H. Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cells. Acta Pharmacol Sin.2010.31(5):578-84.
    [142]Wu N, Sarna LK, Siow YL, O K. Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia. Am J Physiol Regul Integr Comp Physiol.2011.300(3):R635-43.
    [143]Iwazaki RS, Endo EH, Ueda-Nakamura T, Nakamura CV, Garcia LB, Filho BP. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek.2010.97(2):201-5.
    [144]Xu MG, Wang JM, Chen L, Wang Y, Yang Z, Tao J. Berberine-induced upregulation of circulating endothelial progenitor cells is related to nitric oxide production in healthy subjects. Cardiology.2009.112(4):279-86.
    [145]Quan H, Cao YY, Xu Z, et al. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother.2006.50(3):1096-9.
    [146]Han Y, Lee JH. Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol Pharm Bull.2005.28(3):541-4.
    [147]Klepser ME. New insights in medical mycology:focus on fungal infections. Introduction. Pharmacotherapy.2001.21(8 Pt 2):109S-110S.
    [148]Carroll PM, Dougherty B, Ross-Macdonald P, Browman K, FitzGerald K. Model systems in drug discovery:chemical genetics meets genomics. Pharmacol Ther.2003.99(2):183-220.
    [149]Bien CM, Chang YC, Nes WD, Kwon-Chung KJ, Espenshade PJ. Cryptococcus neoformans Site-2 protease is required for virulence and survival in the presence of azole drugs. Mol Microbiol.2009.74(3):672-90.
    [150]Ouyang H, Luo Y, Zhang L, Li Y, Jin C. Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Mol Biotechnol.2010.44(3):177-89.
    [151]Cornell MJ, Alam I, Soanes DM, et al. Comparative genome analysis across a kingdom of eukaryotic organisms:specialization and diversification in the fungi. Genome Res.2007.17(12):1809-22.
    [152]Lis M, Liu TT, Barker KS, Rogers PD, Bobek LA. Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. FEMS Yeast Res.2010.10(5):579-86.
    [153]Reedy JL, Filler SG, Heitman J. Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol. 2010.47(2):107-16.
    [154]冯少华,张春红,廖惠芳.苦参颗粒与苦参煎剂药效及毒性的对比性研究.中华中医药学刊.2007.(08):1602-1604.
    [155]李华,聂芳红,陈进东等.千里光抗菌有效部位化学成分及其急性毒性研究.中兽医医药杂志.2008.(01):7-9.
    [156]甘露双,孙磊,王多,朱强辉,于海玲,金元哲.人参细粉与超微颗粒的急性毒性实验——半数致死量(LD_(50))与最大耐受量(MTD)的测定.海南医学院学报.2009.(01):20-21.
    [157]Wang L, Yokoyama K, Miyaji M, Nishimura K. Mitochondrial cytochrome b gene analysis of Aspergillus fumigatus and related species. J Clin Microbiol. 2000.38(4):1352-8.
    [158]张希恩.小檗碱的临床新用途.人民军医.2003.(12):730-732.
    [159]李卫刚.小檗碱的临床新用途.锦州医学院学报.1999.(02):72-73.
    [160]Wang Y, Tang Z, Xue R, et al. Combined effects of TNF-alpha, IL-lbeta, and HIF-1 alpha on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study. J Orthop Res.2011.29(7):1008-14.
    [161]Gao HS, Xue R, Ding P, et al. Cross-talk of the related bioactivity mediators in serum after injection of soluble TNF-alpha receptor on silicosis model of rats. Toxicol Ind Health.2011.27(7):607-16.
    [162]Fernandes A, Barateiro A, Falcao AS, et al. Astrocyte reactivity to unconjugated bilirubin requires TNF-alpha and IL-lbeta receptor signaling pathways. Glia. 2011.59(1):14-25.
    [163]Lakhdari O, Tap J, Beguet-Crespel F, et al. Identification of NF-kappaB modulation capabilities within human intestinal commensal bacteria. J Biomed Biotechnol.2011.2011:282356.
    [164]Shin JS, Noh YS, Lee YS, et al. Arvelexin from Brassica rapa suppresses NF-kappaB-regulated pro-inflammatory gene expression by inhibiting activation of IkappaB kinase. Br J Pharmacol.2011.164(1):145-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700