脐橙果实成熟过程中主要香气物质含量的变化及其关键基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对柑橘果实香气物质的研究主要集中在发现新的香气物质和建立新的检测方法等方面。尽管在柑橘中已鉴定出200多种香气物质,但有关这些物质的生物合成途径及其调控机制的研究报道却很少。为了探索柑橘果实香气物质的生物合成与其关键基因之间的关系,本论文以红肉脐橙(Citrus sinensis Osbeck cv. Cara Cara)和华盛顿脐橙(Citrus sinensis Osbeck cv. Washington)果实为研究对象,采用固相微萃取(SPME)和气相色谱、质谱联用(GC-MS)技术对实验材料的香气成分进行了分析,克隆了柑橘果实香气代谢过程中的3个关键基因(牻牛儿基焦磷酸合成酶基因Csgpps、d-柠檬烯合成酶基因Csdlims和芳樟醇合成酶基因Cslinas),并通过实时荧光定量PCR技术(RT-qPCR)对这三个基因做了表达分析。主要研究结果如下:
     1.以环己酮为内标,d-柠檬烯为标样,利用SPME-GC-MS定量法测定了红肉脐橙和华盛顿脐橙不同成熟期果皮和果肉中d-柠檬烯的含量。结果表明:红肉脐橙果皮d-柠檬烯呈现先降低后升高最后再降低的变化趋势;果肉d-柠檬烯在早期变化不大,后期含量迅速升高。华盛顿脐橙果皮和果肉d-柠檬烯则呈现出几乎一致的变化趋势,即先升高后再降低的变化趋势。这表明不同的柑橘品种其香气物质的变化规律不同,相同品种不同组织中香气物质呈现出相同或不同的变化规律。
     2.以环己酮为内标,利用SPME-GC-MS半定量法测定了红肉脐橙和华盛顿脐橙不同成熟期果皮和果肉中主要香气物质的含量变化。结果表明:红肉脐橙果皮中的主要香气物质α-蒎烯、β-月桂烯、γ-萜品烯在果实成熟过程中的变化趋势相似,即在花后210d时含量达最高值,β-芳樟醇的变化趋势则与上述3种物质相反。红肉脐橙果肉中的主要香气物质α-蒎烯、β-月桂烯、γ-萜品烯、巴伦西亚橘烯在果实成熟发育过程中也呈现相似的变化趋势,在花后220d时含量均迅速降低为零,果肉中没有检测到β-芳樟醇这种物质。华盛顿脐橙果皮中α-蒎烯、β-月桂烯和γ-萜品烯均呈现直线升高的变化趋势,β-芳樟醇则在花后200d到210d期间略有下降。果肉中α-蒎烯、β-月桂烯和γ-萜品烯在花后190d到200d期间均呈现迅速降低后保持不变的趋势,巴伦西亚橘烯的变化趋势则与上述3种物质不同,果肉中也没有检测到β-芳樟醇这种物质。
     3.利用RT-qPCR技术对克隆到的关键酶基因进行了表达分析。结果发现红肉脐橙和华盛顿脐橙果肉成熟过程中Csdlims基因的上调表达和下调表达的变化趋势与果肉中d-柠檬烯含量的变化趋势一致,Cslinas基因在两种脐橙果肉中表达量很低(表达量几乎为零),这与果肉中检测不到β-芳樟醇这种香气物质相符合,由此说明,柑橘果实中主要香气物质的含量变化与其关键基因的表达具有密切联系。
In recent years, the investigation on aroma of citrus fruits is mainly concentrated on discovering novel volatiles and establishing new qualitative or quantitative determination methods. In spite of that more than 200 kinds of volatiles have been identified in citrus, the biosynthetic pathway and its regulatory mechanism have rarely been studied.
     In this study, we attempted to explore the correlation between the biosynthesis of citrus aroma compounds and its related key genes. Cara Cara navel orange(Citrus sinensis Osbeck cv. Cara Cara) and Washington navel orange(Gitrus sinensis Osbeck cv. Washington) were used as experimental materials. Aroma compounds of these fruits were extracted by head-space solid-phase microextraction and determined by Gas Chromatogram/Mass Spectrum. Three key genes (Csgpps. Csdlims and Cslinas) in the biosynthetic pathway have been cloned. Furthermore, the expression of these genes during citrus fruits maturation was analyzed by real-time quantity PCR. The main results show as follows:
     1. The content of d-limonene from citrus flavedo and pulp was determined by SPME-GC-MS, which used cyclohexanone as internal standard as well as d-limonene as external standard. The content of d-limonene from Cara Cara navel orange flavedo displayed a tendency that decreased at the early mature stage and raised gradually at the middle mature stage, then dropped again at the last stage. While the content of d-limonene from its pulp maintained a stable level at the early mature stage, and then soared at the last stage. As for the Washington navel orange, the content of d-limonene from its flavedo and pulp shared an almost identical trend, which increased at the early mature stage and then decreased. This indicated that the aroma in different citrus varieties presented diverse variation patten. While the aroma in different tissues from the same variety shared the similar or distinct variation patten.
     2. Contents of the main volatiles from Cara Cara and Washington navel orange flavedo and pulp during different stages of maturity were determined using semi-quantitative method by SPME-GC-MS, which utilized cyclohexanone as the internal standard. The main volatiles a-pinene,β-myrcene, r-terpinene from Cara Cara navel orange flavedo had the similar variation patten during fruits maturation, and all of them reached a maximum content at 210 days after flowering. However, the variation patten of B-linalool were contrary to the above three kinds of volatiles. a-pinene,β-myrcene, r-terpinene and valencene from Cara Cara navel orange pulp also showed the similar trends, which decreased rapidly to zero at 220 days after flowering.α-pinene, B-myrcene, and r-terpinene from Washington navel orange flavedo presented a linear increase during fruits maturation, whileβ-linalool declined slightly during 200 days to 210 days after flowering.α-pinene, B-myrcene and r-terpinene from Washington navel orange pulp decreased suddenly during 190 days to 200 days after flowering and then remained unchanged, while valencene showed a different variation patten from the above three kinds of aromas. In addition,β-linalool was not detected in neither Cara Cara nor Washington navel orange pulp.
     3. Expression of key genes for volatile biosyntheis in citrus was analyzed by real-time quantitative PCR. The results declared that the expression variation pattern of Csdlims gene was in accordance with the variation patten of its product during fruit maturation both in Cara Cara and Washington navel orange pulp. The expression of Cslinas gene was very low in the above two citrus varieties, which could be regarded as nearly no expression. Similarly, the product of Cslinas gene was not determined in both of the above citrus. This implied that the content of main volatiles in citrus was closely connected with the expression of its key genes.
引文
1. 卜万锁,牛自勉.套袋处理对苹果芳香物质含量及果实品质的影响.中国农业科学,1998,61:88-90
    2. 陈静静,谷雪贤.从废弃的柑橘皮中提取d一柠檬烯的工艺的研究.化工时刊,2008,22:42-44
    3. 陈美霞,陈学森,周杰.杏果实不同发育阶段的香味组分及其变化.中国农业科学,2005,38:1244-1249
    4. 邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32:1140-1146
    5. 冯涛,陈学森,张艳敏.新疆野苹果与栽培苹果香气成分的比较.园艺学报,2006,33:1295-1298
    6. 金宏,公衍玲,赵文英.佛手挥发油GC—-MS指纹图谱研究.化学与生物工程,2009,26:76-78
    7. 李庆,蒲彪,刘远鹏.柑橘果实芳香物质研究进展.食品工业科技,2008,28:229-232
    8. 李晓磊,沈向,王磊.海棠不同品种果实香气物质分析.中国农业科学,2008,41:1742-1748
    9. 李移,徐美奕,李尚德,蔡春.遂溪产沙田柚果皮中挥发油成分的GC—MS分析.化学世界,2009,1:1-3
    10.刘庆.‘暗柳’甜橙红色突变体性状形成的分子机理研究.[博士学位论文],武汉:华中农业大学图书馆,2008
    11.刘永忠,刘庆,邓秀新.一种适合于成熟脐橙果皮和果肉的RNA提取方法.华中农业大学学报,2006,25:300-304
    12.马培恰,吴文,唐小浪.广东几个汁用甜橙品种的营养成分及香气组分初探.广东农业科学,2008,3:18-20‘
    13.穆启运,陈锦屏.红枣挥发性物质在烘干过程中的变化研究.农业程学报,2001,17:251-255
    14.牛自勉,王贤萍,孟玉萍.不同砧木苹果品种果肉芳香物质的含量变化.果树 科学,1996,13:153—156
    15.齐红岩,魏敏,刘圆.嫁接对薄皮甜瓜果实香气物质影响的初步研究.中国蔬菜,2008,2:21-24
    16.乔宇,范刚,潘思轶.固相微萃取-气质联用分析锦橙果皮香气成分.精细化工,2007,24:801-803b
    17.乔宇,谢笔钧,柴倩,潘思轶.血橙果实香气成分的气相色谱-质谱分析.质谱学报,2008,29,1:1-5
    18.乔宇,谢笔钧,潘思轶.顶空固相微萃取-气质联用技术分析3种柑橘果实的香气成分.果树学报,2007,24:699-704a
    19.汪秋安,碧云.水果在成熟与贮藏时香气的形成与变化.香料香精化妆品,2002,4:42-47
    20.王炎,赵敏.固相微萃取气质联用分析黑龙江百里香的挥发性成分.分析化学,2004,2:272-275
    21.杨菜冬.甜橙特征致香成分的研究.[硕士学位论文],无锡:江南大学图书馆,2007
    22.杨荣华.柚果皮油特征香气成分的分析.浙江农业科学,2003,3:109-111
    23.苑兆和,尹燕雷,李自峰.石榴果实香气物质的研究.林业科学,2008,44:65-69
    24.张春雨,李亚东,张志东等.高丛越橘果实香气成分不同发育阶段的变化.中国农业科学,2009,42:3216-3223
    25.张上隆,陈昆松.果实品质形成与调控的分子生理.北京:中国农业出版社
    26.张运涛,王桂霞,董静等.草莓5个品种的果实香味成分分析.园艺学报,2008,35:433-437
    27.周海燕,乔宇,潘思轶.锦橙和宫川果汁香气成分比较.食品科学,2007,28:292-295
    28. Alexandra S, Jnusez P. Analysis of flavor volatiles using headspace solid-phase micro extraction. Journal of Agricultural and Food Chemistry,1996,44:2187-2193
    29. Alissandrakis E, Tarantilis P A, Harizanis P C, et al. Aroma investigation of unifloral Greek citrus honey using solid-phase microextraction coupled to gas chromatoraphic-mass spectrometric analysis. Food Chemistry,2007,100:396-404
    30. Angerosa F, Basti C. Olive oil volatile compounds from the lipoxygenase pathway in relation to fruit ripeness. Italian Journal of Food Science,2001,13:421-428
    31. Bagchi G D. Essential oil producing glands in some important aromatic plants:struct ure and process of secretion. J Med Aromatic Plant Science,2000,22:605-615
    32. Baldwin EA, Scott JW, Schuch W. Flavour trivia and tomato aroma:biochemistry an d possible mechanisms for control of important aroma components. Hortscience,200 0,35:1013-1022
    33. Bangerth F, Streif J, Song J. Investigations into the physiology of volatile aroma prod uction of apple fruits. Acta Horticulturae,1998,464:189-194
    34. Barry M, Elizabeth G, Jasmine C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell,1995,81:687-693
    35. Bazemore R, Goodner K, Rouseff R.Volatiles from unpasteurized and excessively he ated orange juice analyzed with solid phase microextraction and GC-Olfactometry. J oumal of Food Science,1999,64:800-803
    36. Beaulieu J C, Grimm C C. Identification of volatile compounds in cantaloupe at vario us developmental stages using solid phase microextraction. Journal of Agricultural and Food Chemistry,2001,49:1345-1352
    37. Bemalte M J, Hernadez MT, Vidal Aragon M C. Physical, chemical, f lavor and sensory characteristics of two sweet cherry varieties grown in 'Valte det Jerte'.Journal of Food Quality,1999,22:403-416
    38. Bernreuther A, Schreier, P. Multidimensional gas chromatography/mass spectrometry :a powerful tool for the directchiral evaluation of aroma compounds in plant tissues, linalool in essential oils and fruits. Phytochemistry,1991,2:167-170
    39. Boukobza F, Dunphy P J, Taylor A J.Measurement of lipid oxidation-derived volatiles in fresh tomatoes. Post Bio Tech,2001,23:117-131
    40. Bruno G, Defilippi D M, Kietsuda L. Aroma Volatiles:Biosynthesis and Mechanisms of Modulation During Fruit Ripeing. Advance in Botanical Reasearch,2009,50:1-37
    41. Buck L, Axel R.A. novel multigene family may encodeodorant receptors:a molecular basis for odor recognition. Cell,1991,65:175-187
    42. Bureau S M,Razungles A J, Baumes R L. The aroma of Muscat of Frontignan grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates. J ournal of the Science of Food and Agriculture,2000,80:2012-2020
    43. Chouehi D, Bartn D,Reverchon E. Bigarade peel oil fraction by supercriticalcarbon d ioxide desorption. Journal of Agriculture and Food Chemistry,1996,44:100-104
    44. Croteau R, Karp F. Origin of natural odorants, Perfumes. Art. science and technology. London:Elsevier Applied Science,1991:101-126
    45. Diaz S, EsPinosa S, Brignole EA. Citrus peel oil deterpenation with supercritical flui ds optimal process and solvent cycle design. Journal of Supercritical Fluids,2005,35 :49-61
    46. Dixon J, Hewett E W. Factors affecting apple aroma/flavour volatile concentration. N Z J CropHortic Science,2000,28:155-173
    47. Dominguez T, Hernandez M L, Sanmartin M, et al. Increasing omega-3-desaturase expression in tomato results in altered aroma profile and enchanced resistance to cold stress. Plant Physiology Preview,2010,10:1-22
    48. Dudareva N, Cseke L, Victoria M. Evolution of Floral Scent in Clarkia:Novel Patter ns of S-Linalool Synthase Gene Expression in the C. Breweri Flower. The Plant Cell, 1996,8:1137-1148
    49. Dudareva N, Martin D, Miller B. (E)-beta-ocimene and myrcene synthase genes of fl oral scent biosynthesis in snapdragon:function and expression of three terpene synth ase genes of a new terpene synthase subfamily. Plant Cell,2003,15:1227-1241
    50. Dudareva N, Murfitt L M, Mann C J. Developmental regulation of methyl benzoate b iosynthesis and emission in snapdrogon flowers. Plant Cell,2000,12:949-961
    51. Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physi olgy,2004,135:1893-1902
    52. Dunphy P J, Allcock C. Isolation and properties of a monoterpene reductase from ros e petals. Phytochemistry,1972,11:1887-1891
    53. Elena E S, Miguel A P, Marianny Y C. Volatile by secondary metabolites from Spilant hes americana obtained simultaneous steam distillation-solvent extraction and superc ritical fluid extraction. Journal of Chromatography A,1996,752:223-232
    54. Fan X T, Mattheis J P. Impact of 1-Methylcyclopropene and Methyl Jasmonate on Apple Volatile Production. Journal of Agricultural and Food Chemistry,1999,47:2847-2853
    55. Ferrie B J, Beaudoin N, Burkhart W. The cloning of two tomato lipoxygenase genes a nd their difficultial expression during fruit ripening. Plant Physiology,1994,106:109-118
    56. Flath, R A, Takahashi J M. Volatile constituents of prickly pear (Opuntia ficus indica Mill., de Cas tilla variety). Journal of Agriculture and Food Chemistry.1978,26:835-837
    57. Fridman E, Wang J, Iijima Y. Metabolic, genomic, and biochemical analyses of gland ular trichomes from the wild tomato species lycopersicon hirsutum identify a key enz yme in the biosynthesis of methylketones. Plant Cell,2005,17:1252-1267
    58. Fross D A, Dunstone E A, Zamshaw E H. The flavor of cucumbers. Food Science,19 62,27:90-93
    59. Gang D R, Lavid N, Zubieta C. Characterization of phenylpropene O-methytransfera ses from sweet basil:facile changeof substrate specificity and convergent evolution w ithin a plant OMT family. Plant Cell,2002,14:505-519
    60. Gershenzon J, McCaskill D, Rajaonarivony J. Isolation of secretory cells fromplant g landular trichomes and their use in biosynthetic studies of monoterpenes and other gl and products. Analytical Biochemistry,1992,200:130-138
    61. Goepfert S, Poirier Y.β-Oxidation in fatty acid degradation and beyond. Plant Biolog y,2007,10:245-251
    62. Hall D. E, Robert J. A, Keeling C. I. An integrated genomic, proteomic, and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce(Picea sitchensis)genotypes which are resistant or susceptible to white pine weevil. Plant Journal,2011,65:936-948
    63. Hans Reinhard, Fritz Sager, Otmar Zoller. Citrus juice classification by SPME-GC-M S and electronic nose measurements. LWT Food Science and Technology,2008,41: 1906-1912
    64. Harada M, Ueda Y, Iwata T. Purification and Some Properties of Alcohol Acetyltransf erase from Banana Fruit. Plant Cell Physiology,1985,26:1067-1074
    65. Hatanaka A. The biogeneration of green odour by green leaves. Phytochemistry,1993 ,34:1201-1218
    66. Hawthorne S B. Solventless determination of caffeinein beverages using solid phase micro-extraction with fused-silica fibers. J Chromaogr A,1992,603:185-191
    67. Hiroaki T, Yoshihito U, Masayoshi H. Volatile Constituents of Calamondin Peel and Juice (Citrusmadurensis Lour) Cultivated in the Philippines. J Essent Oil Res,2005, 17:23-26
    68. Holland D, Larkov O, Brandeis E. Developmental and varietal differences in volatile ester formation and acetyl-CoA:alcohol acetyl transferase activities in apple (Malus d omestica Borkh.)fruit. J Agric Food Chem,2005,53:7198-7203
    69. Hort R U. Mechanism effecting analysis of volatiles flavor components by solid phas e microextraction and gas-chromatography. J Chromatogr A,2001,973:107-117
    70. Idstein H, Keller T, Schreier P. Volatile constituents of mountain papaya (Carica cand amarcensis, Syn. C. Pubescens Lenne et Koch) fruit. J Agric Food Chem,1985,33:66 3-666
    71. Itay G, Einat B, Vitaly P. Branched-chain and aromatic amino acid catabolism into ar oma volatiles in Cucumis melo Fruit. Journal of Experimental Botany,2010,61:1111-1123
    72. Jordan M J, Goodner K L, Laeneina J. Deaeration and pasteurization effects on the or ange juice aromatic fraction.Lebensmittel-Wissenschaft and Technologies,2003,36: 391-396
    73. Jordan M J, Shaw P E, Goodner K L. Volatile components in aqueous essence and fre sh fruit of Cucumis melo cv.Athena (muskmelon) by GC-MS and GC-O. J Agric Fo od Chem,2001,49:5929-5933
    74. Keeling C, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phyt ol,2006,170:657-675
    75. Kolosova N, Sherman D, Karison D. Cellular and subcellular locatization Sadenosyl-L-methionine:benzoaic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapadrrgon flowers. Plant Physi ol,2001,126:956-964
    76. Kuentzel H, Bahri D. Synthetic ingredients of food flavourings. Glasgow:Blackie Ac ademic & Professional,1990,115-157
    77. Lalel H, Singh Z, Tans C. The role of ethylene in mango fruit aroma volatiles biosynt hesis. Journal of horticultral science & biotechnology,2003,78:485-496
    78. Leonardos G, Kendall D, Barnard N. Odor threshold determinations of 53 odorant ch emicals. Journal of the Air Pollution Control Association,1969,19:91-95
    79. Lewinsohn E, Dudai N, Tadmor Y, et al. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature Biotechnology,2007,10:1308-1312
    80. Liat S, Moshe S, Ahuva F. Citrus fruit flavor and aroma biosyntheis:isolation, functional, chanactriization, and developmental regulation of Cstps1, a key gene in th e production of the sesquiterpene aroma compound valencene. The Plant Journal,200 3,36:664-674
    81. Liekens S T, Nikerson G B. Detection of certain HOP oil constituents in brewing pro duets. Am Soc Brew Chem,1964,4:5-13
    82. Liu T T, Yang T S. Iptimization of solid phase microextraction analysis for studying c hange of headspace flavor compounds of banana during ripening. J Agric Food Chem ,2002,50:653-657
    83. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method. Methods,2001,25:402-408
    84. Longhurst T J, Tung J F, Brady C J. Developmental regulation of the expression of al cohol dehydrogenase in ripening fruit. J Food Biochem,1990,14:421-423
    85. Luan F, Mosandl A, Munch A. Metabolismof geraniol in grape berry mesocarp of Viti s vinifera L.cv. Scheurebe: demonstration of stereoselective reduction, E/Z isomerizati on, oxidation. Phytochemistry,2005,66:295-303
    86. Lucker J, Mazen K, Schwab W. Monoterpene biosynthesis in lemon(Citrus limon) c DNA isolation and functional analysis of four monoterpene synthases. Eur J Biochem ,2002,269:3160-3171
    87. Maccarone E, Campisi S, Fallico B. Flavor components of Italian orange juices. J Ag ric Food Chem,1998,46:2293-2298
    88. Macleod W D, Buigues N. Sesquiterpenes I. Nootkatone:a new grapefruit flavor cons tituent. J Food Sci,1964,29:565-568
    89. Manriquez D, El-Sharkawy I, Flores F B. Two highly divergent alcohol dehydrogena ses of melon exhibit fruit ripening specific expression and distinct biochemical chara cteristics. Plant Mol Biol,2006,61:675-685
    90. Markus L, Mark R, Einar J. Probing essential oil biosynthesis and secretion by functi onal evaluation of expressed sequence tags from mint glandular trichomes. PNAS,20 00,97:2934-2939
    91. Masakazu H, Mayuko K, Toru K.Changes of d-Limonene Content in Three Citrus Sp ecies during Fruit Development. Food Sci Technol Res,1999,5:80-81
    92. Matich A J, Rowan D, Banks N H. Solid phase microextraction for headspace sampli ng of apple volatiles. Anal Chem,1996,68:4114-4118
    93. Matsui K. Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol,2006,9:274-280
    94. Mauricio G A, Sebastian T, Orianne G. Differential expression levels of aroma-related genes during ripening of apricot(Prunus armeniaca L.). Plant Physiology and Bioch emistry,2009,47:435-440
    95. McConkey M E, Gershenzon J, Croteau R B. Developmental regulation of monoterp ene biosynthesis in the glandular trichomes of peppermint. Plant Physiol,2000,122:2 15-223
    96. Miller T W, Fellman J K, Mettinson D S. Factors that influence volatile ester biosymhesis in 'delicious' apples. Acta Hort,1998,464:195-200
    97. Moriguchi T, Ban Y H, Bessho H. A putative PhODO1 homologous MYB transcripti on factor gene, MdMYBB, is not involved in the regulation of aroma volatile biosynt hesis in apple. Biologia Plantarum,2009,53:755-758,
    98. Moshonas M G, Shaw P E. Changes in composition of volatile components in an espt ieaily packaged orange juice during storage. J Agric Food Chem,1989,37:157-161
    99. Murfitt L M, Mann C J, Dudareva N. Purification and characterization of S-adennsyl-L-methionine:benzoaic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. A rch Biochem Biophys,2000,382:145-151
    100.Negre F, Kish C M, Boatright J. Regulation of methylbenzoate emission after pollinat ion in snapdragon and petunia flowers, Plant Cell,2003,15:2992-3006
    101.Nieuwenhuizen N J, Wang M Y, Matich A J. Two terpene synthases are responsible f or the major sesquiterpenes emitted from the flowers of kiwifruit(Actinidia deliciosa ). Journal of Experimental Botany,2009,10:1-17
    102.Ninio R, Lewinsohn E, Mizrahi Y. Changes in sugars, acids and volatiles during ripen ing of koubo (Cereus peruvianus [L.] Miller) fruits. J Agric Food Chem,2003,51:79 7-801
    103.Nishikawa F, Endo T, Shimada T. Characterization of the 5'Flanking Region of the Citrus d-Limonene Synthase Gene, Which Shows Quantitatively Preferential Expression in Peel. J. Japan. Soc. Hort. Sci.,2009,78:84-89
    104.Okamoto G, Liao K, Fushimi T. Aromatic substances evolved from the whole berry s kin and flesh of Muscat ofAlexandria'grapes. Scientific Reports of the Faculty of Agr iculture,2001,90:21-25
    105.Ong P, Acree T E. Gas chromatography olfactory analysis of lychee (Litchi chinesis S onn.). J Agric Food Chem,1998,46:2282-2286
    106.Pankow JF, Rosen M E, The Analysis of volatile compounds by purge and trap with whole column cryotrapping (WCC) on a fused silica capillary column. Journal of Hig h Resolution Chromatography,1984,7:504-508
    107.Perez A G, Sanz C, Rios J J. Aroma components and free amino acids in strawberry v ariety Chandler during ripening. J Agric Food Chem,1992,40:232-2235
    108.Perez A, Sanz C, Rios J. Aroma components and free amino acids in strawberry varie ty Chandler during ripening. J. Agric Food Chem,1992,40:2232-2235
    109.Perez S, Olias. Aroma Quality Evaluation of Strawberry Cultivars in Southern Spain. Acta Horticulture,1997,439:337-340
    110.Oiao Y, Xie B J, Zhang Y, et al. Characterization of Aroma Active Compounds in Fruit Juice and Peel Oil of Jinchen Sweet Orange Fruit(Citrus sinensis(L.) Osbeck) by GC-MS and GC-O. Molecules,2008,13:1333-1344
    111.Ramteke R S. Prepation and properties of aroma concentrates from some tropical frui t juices and pulps. Food Sci Tech,1990,27:277-279
    112.Restrepo S. Preparation of fruit aroma concentrates technolygy. Flavor Chem,1988, 17:13-18
    113.Rizzolo A, Visai C, Vanell M. Changes in some odour-active compounds in Paclobutr az treated'Starkspur Golden' apples at harvest and afer cold storage. Postharvest Biol ogy and Technology Ⅱ,1997:39-46
    114.Rowan D, Lane H, Allen J. Biosynthesis of 2-methylbutyl,2-methyl-2-butenyl and 2-methyl butanoate esters in 'RedDelicious' and 'Granny Smith' apples using deuterium-1 abeled substrate. J Agric Food Chem,1996,44:3276-3285
    115.Ruth S M. Methods for gas chromatography-olfactometry. Biomolecular engineering. 2001,17:121-128
    116.Ruth S M. Oconor C H. Evaluation of two chromatography-olfactometry methods:th e detection frequency and perceived intensity method. Chromatogr A,2004,1054:33-37
    117. Schwab W, Rachel DR, Efraim L. Biosynthesis of plant-derived flavor compounds. The Plant Journal,2008,54:712-732
    118.Schwab W, Schreier P. Enzymic formation of flavor volatiles from lipids. New York: Marcel Dekker,2002,293-318
    119.Shalit M, Katzir N, Tadmor Y. Acetyl CoA:alcohol acetyl transferase activity and aro ma formation in ripeningmelon fruits. J Agric Food Chem,2001,49:794-799
    120. Shaw P E, Wilson C W. Importance of nootkatone to the aroma of grapefruit oil and t he flavor of grapefruit juice. J Agric Food Chem,1981,29:677-679
    121.Shimada T, Endo T, Fujii H. Isolation and characterization of a new d-limonene synth ase gene with a different expression pattern in Citrus unshiu Marc.. Scientia Horticult urae,2005,105:507-512
    122.Shimada T, Endo T, Fujii H. Molecular cloning and functional characterization of fou r monoterpene synthase genes from Citrus unshiu Marc. Plant Science,2004,166:4 9-58
    123.Simkin A, Schwartz S, Auldridge M. The tomato carotenoid cleavage dioxygenasege nescontribute to the formation of the flavor volatiles B-ionone, pseudoionone, and ger anylacetone. Plant J,2004,40:882-892
    124. Song J, Bangerth F. Production and development of volatile aroma compounds of app le fruits at different times of maturity. Acta Hort,1994,368:150-159
    125.Stumpe M, Feussner I. Formation of oxylipins by CYP74 enzymes. Phytochem,2006 ,5:347-357
    126.Surburg H, Panten J. Common Fragrance and Flavor Materials:Preparation, Properti es and Uses. Weinheim Germany:Wiley-VCH,2005
    127.Takatoshi T, Anton F, Robert H. Identification of new volatile thiols in the aroma of grapefruit. Flavour Fragr J,1985,13:159-162
    128.Tandon K S, Baldwin E A, Shewfelt R L. Aroma perception of individual volatile co mpounds in fresh tomatoes as affected by the medium of evaluation. Postharv Biol Te chnol,2000,20:261-268
    129.Teal T, Schippa C, Cozzdino F. Aroma compounds in fresh pulp of pineapple from Fr ench Polynesia. J Ess Oil Res,2001,13:314-318
    130.Tholl D, Kish C M, Orlova I, Sherman D. Formation of moterpenes in Antirrhinum majus and Clarkia breweir flowers involves heterodimeric geranyl diphosphates. Plant Cell,2004,16:977-992
    131.Thomson D M H. The meaning of flavor. London:Elsevier,1987,1-21
    132.Thorsten J, Joachim B. Monitoring apple flavor by use of quartz microbalances. Anal Bioanal Chemistry,2002,372:611-614
    133.Tressl R, Drawert F. Biogenesis of banana volatiles. Journal of Agricultural and Food Chemistry,1973,21:560-565
    134.Verdonk J C, Haring M A, Tunen A J.ODORANT1 regulates fragrance biosynthesis in petunia flowers, Plant Cell,2005,17:1612-1624
    135.Visai C, Vanoli M. Volatile compound production during growth and ripening of peac hes and nectarines. Science Horticulture,1997,70:15-24.
    136.Vora J D, Matthews R F, Crandall P G. Preparation and chemical composition of oran ge oil concentrates. Journal of Food Science,1983,48:1197-1199
    137.Weckerle B, Borrmann R. Cactus pear (Opuntia ficus indica) flavor constituents-chira 1 evaluation (MDGC-MS) and isotope ratio (HRGC-IRMS) analysis. Flavor Fragra nee Journal.2001,16:360-363
    138.Yahia E M. Apple flavor. Horticultural Reviews,1994,16:197-234
    139.Yang X. Solid phase microextraction for flavor analysis. Journal of Agriculture and Food Chemistry,1994,42:1925-1930
    140.Yoo Z W, Kim N S, Lee D S.Comparative Analyses of the Flavors from Hallabong (C itrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Co mbined with GC-MS.Bull. Korean Chem Soc,2004,25:271-279
    141. Young H, Gilbert J M, Murray S H. Causal effects of aroma compounds on royal Gal a apple flavours. Journal of Science and Food Agriculture,1996,71:329-336
    142.Zualk K G, Lippert D N, Kuztk MA, et al. Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce(Picea abies). Plant Journal,2009,60:1015-1030

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700