基于空频域信息的单站被动目标跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着战场环境的日益复杂,传统的探测系统(如雷达、声纳等)受到越来越多的威胁,被动定位与跟踪技术以其隐蔽性强、探测距离远、适用性广等优点越来越受到人们的重视。本文就基于空频域信息的单站被动跟踪中的一些关键问题进行了研究,包括模型和可观测性、跟踪滤波算法、机动目标跟踪、跟踪误差理论下限等,并通过仿真和实测数据对算法进行了验证。
     模型和可观测性分析是被动定位与跟踪技术的基础,只有在系统满足可观测的条件下才能对目标的状态进行求解。对匀速直线运动目标的可观测分析已有较多的研究,但对机动目标的可观测分析在很大程度上仍是空白。有鉴于此,论文第二章对两类常规机动(匀加速和匀转弯)的可观测性进行了较为系统的分析,得出了一些有意义的结论,这也是机动目标跟踪的理论前提。
     被动目标跟踪的实质是非线性最优滤波问题,即通过非线性观测得到目标状态(包括位置、速度、加速度等)的估计,其关键是求解后验状态分布。基于后验状态分布的高斯解析近似前提,本文第三章首先总结了扩展卡尔曼滤波(EKF)框架下的跟踪算法并指出其可能存在的问题和缺陷。在此基础上,结合实际应用背景对UKF框架下的滤波算法进行了深入研究:1)鉴于被动跟踪系统可观测性弱、初始误差大的问题,提出了一种迭代型UKF算法(IUKF),能明显提高跟踪收敛速度和跟踪精度;2)针对被动目标跟踪模型的特点,提出了一种适合实时应用的简化UKF算法(SUKF),可在保证跟踪性能的条件下有效降低运算开销;3)考虑到转弯目标跟踪的实际特点,提出了一种能同时完成对参数(转弯率)和状态估计的联合估计UKF算法(JEUKF),可利用单个模型实现对转弯目标的有效跟踪。
     对目标后验状态分布近似的另一条途径是Monte Carlo仿真。近年来迅速发展起来的粒子滤波技术为求解非线性问题提供了通用的框架,它通过Monte Carlo仿真产生的带权粒子来对状态分布进行逼近。论文第四章首先对粒子滤波的基本原理进行了阐述,在此基础上深入研究了粒子滤波框架下的被动目标跟踪算法,主要工作包括三个方面:1)鉴于传统粒子滤波算法直接从先验进行采样导致的效率低下问题,提出了一种基于最优采样函数近似的改进粒子滤波(IPF)算法,使滤波器的跟踪性能得以明显提高;2)针对UPF算法在实际应用中出现的数值敏感和性能恶化问题,提出了一种修正的UPF(MUPF)算法,有效减轻了粒子贫化现象,降低了跟踪误差;3)结合被动跟踪系统的实际特点,对“边缘化”粒子滤波技术进行了研究,提高了跟踪算法的费效比。在初始误差大、可观测性弱的被动跟踪应用背景下,粒子滤波技术由于其粒子散布特性,在跟踪收敛速度和稳定性方面表现出独特的优势。
     在军事应用背景下,目标可能随时会出现各种机动运动。因此,研究机动目标的被动跟踪算法具有重要意义,本文第五章正是应此需求展开研究的。对机动目标的跟踪是通过自适应地改变模型或滤波参数来实现的,本章主要对模型匹配自适应、噪声方差自适应、神经网络自适应这三类算法进行了研究,在此基础上提出了带动态修正能力的神经网络跟踪算法以及神经网络与交互多模相结合的融合算法。与传统机动目标跟踪算法相比,文中提出的方法不存在检测时延,具有稳定性高、反应速度快等优点,因此在被动跟踪环境下具有更好的适应性。
     在非线性跟踪条件下,最优滤波算法通常很难建立,实际应用的都是各种次优算法。克拉美-罗下限(CRLB)是不依赖于算法本身而能达到的理论误差下限,它表明了各种次优算法的优劣程度以及和最优算法的接近程度。论文第六章旨在通过对跟踪误差下限的分析和研究,为算法的性能评估提供统一的理论框架。首先,对于匀速运动目标,将其跟踪误差分析转化为参数估计的CRLB求取来处理;其次,采用航迹分段策略,解决了机动目标跟踪的误差下限计算问题;最后,通过引入后验克拉美-罗限(PCRB)概念,对存在过程噪声条件下的近匀速运动目标跟踪误差进行了有效分析。
     论文最后对全文进行了总结,并对今后工作进行了展望。
Conventional detection systems, such as radar and sonar, have encountered more and more threats with the increasing complexity of circumstances in modern battlefield. Passive localization and tracking technology has been paid more and more attention because of its significant advantage in self-hiding, far-distance detection and extensive applicability. In this dissertation, some critical issues on single observer passive tracking are touched based on the observed information of spatial-frequency domain. These issues include localization model and observability conditions, tracking algorithms, maneuvering target tracking, and lower bound analysis of tracking errors, etc. Both theory and algorithms presented in the dissertation are validated using simulated data or real measurement data.
     System model and observability are the basis for passive localization and tracking, and the state of the target can be estimated only when the system is observable. As for the observability analysis, much attention has been paid to motion target with constant velocity; however, analysis of observability for maneuvering target is still a blank to some extent. In view of these facts, observability analysis for two classes of conventional maneuvers (constant acceleration and constant turn rate) are investigated in Chapter II, and some meaningful conclusions are drawn too, which lays the base for maneuvering target tracking discussed in Chapter V.
     Passive target tracking is in essence the problem of nonlinear optimal filtering, i.e., the aim is to estimate the state (including position, velocity, and acceleration etc) of the target based on nonlinear measurements, and the key is to obtain the distribution of desired posterior state. On the premise of Gaussian analytic approximation to posterior distribution, Chapter III begins with the discussion of filtering algorithms and their potential drawbacks under the framework of extended Kalman filtering (EKF), on which basis the tracking algorithms are fully investigated under unscented Kalman filtering (UKF) framework: 1) in view of the large initial error and weak observability of passive system, an iterated UKF is proposed to improve the convergence speed and tracking precision; 2) a simplified UKF is proposed to reduce the computional complexity of standard UKF, which makes the algorithm more suitable for real-time application; 3) considering the particularity of CT (constant turn) model, a joint estimation algorithm referred to as JEUKF is proposed to estimate the maneuvering parameter (turn rate) and target state simutaniously, making it possible to track CT target successfully with only one single model.
     Another way to approximate the posterior state distribution is Monte Carlo simulation. The recently developed particle filtering technology provides a general framework for nonlinear problem, and posterior state distribution is approximated by weighted particles which are generated through Monte Carlo simulation. Chapter IV concentrates on passive tracking algorithms based on particle filtering, and the work is done from three main aspects: 1) in view of the inefficiency of general particle filter which samples the particles directly from the prior, an improved algorithm is proposed using optimal function approximation; 2) a modified unscented particle filter (MUPF) is proposed to address the numerical problem and performance deterioration found in conventional UPF; 3) considering the real characteristic of passive tracking system, the marginalized particle filtering approach is presented. Under the background of passive tracking, the initial estimate error is usually very large, and the system is subject to weak observability. In this case, the particle filtering methods exhibit obvious advantage in robustness and convergent speed because of the decentralization of particles.
     In the application of military background, the target may exhibit different motions from time to time. In such case, it is of great significance to investigate the problem of maneuvering target tracking, and the work in Chapter V is just done under this requirement. Usually, track of maneuvering target is realized by adaptively adjusting the model and filter parameters. In this chapter, three tracking approaches have been discussed. These include the model matched adaptation method, the noise covariance adaptation method, and the neural network adaptation method. Following the discussion, two novel algorithms, i.e., neural network algorithm with dynamic correction ability and neural network algorithm integrated by interacting multiple model (IMM), are proposed to improve the tracking performance. Compared to conventional methods used in maneuvering target tracking, the proposed algorithms are not subject to detection delay and have the advantage of high stability, prompt response, so they have better applicability in passive tracking circumstance.
     Under nonlinear condition, the optimal filtering algorithm is generally difficult to construct, so in real application all kinds of suboptimal algorithm are used instead. The well known Cramer-Rao lower bound (CRLB) gives an indication of performance limitation which is independent upon specified algorithm, and it is usually used to determine whether improved performance requirements are realistic for any suboptimal algorithm. Chapter VI is aimed at providing a unified framework for performance assessment of tracking algorithms by investigating the tracking error CRLB. Firstly, for the uniform velocity target, the tracking accuracy is evaluated by analyzing the general CRLB of parameter estimate; secondly, error lower bound calculation for maneuvering target tracking is solved by dividing the trajectory into multiple segments; lastly, by introducing the concept of posterior Cramer-Rao bound (PCRB), the tracking accuracy of near uniform velocity target is analyzed.
     The dissertation concludes with a summary of the accomplished work and future research recommendations.
引文
[1]陈文英.“空防暗哨”-无源雷达[J].电子工程信息,2006,(3):9-13.
    [2]许为武.引人注目的维拉无源雷达系统[J].国际航空杂志,2004,(7):10-11.
    [3]Litton develops phased interferometers for passive accurate target fixing[J].Aviation Week and Space Technology,1990,(10):73-74.
    [4]Gershanoff H.Experimental passive range and AOA system shows promise[J].Journal of Electronic Defence,1992,15(12):31-33.
    [5]A COTS solution for single platform passive targeting[J].Journal of Electronics Defense,1996,19(7):42.
    [6]Lum Z.Killin EW on the offensive[J].Journal of electronics defense,1997,20(7):37-39.
    [7]Wilson J.Precision Location and identification:A revolution in threat warning and situational awareness[J].Journal of Electronic Defence,1999,11(1):43-48.
    [8]许耀伟.一种快速高精度无源定位方法的研究[D].国防科学技术大学博士学位论文,1998.
    [9]许耀伟,孙仲康,周一宇.利用相位变化率对运动辐射源无源定位的研究[J].系统工程与电子技术,1999,21(8):7-8.
    [10]许耀伟,孙仲康.利用相位变化率对固定辐射源无源被动定位[J].系统工程与电子技术,1999,21(3):34-37.
    [11]许耀伟,周一宇,孙仲康.引入测频信息进行无源被动定位的方法研究[J].国防科技大学学报,1998,20(5):61-65.
    [12]邓新蒲.运动单观测器无源定位与跟踪方法研究[D].国防科学技术大学博士学位论文,2000.
    [13]邓薪蒲,祁颖松.相位差变化率的测量方法及其测量精度分析[J].系统工程与电子技术,2001,23(1):20-23.
    [14]孙仲康.基于运动学原理的无源定位技术[C].雷达无源定位跟踪技术研讨会论文集,2001:1-8.
    [15]郭福成.基于运动学原理的单站无源定位与跟踪关键技术研究[D].国防科学技术大学博士学位论文,2002.
    [16]Ho K C,Chan Y T.An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis[J].IEEE Transactions on Signal Processing,2006,54(3):809-822.
    [17]Nardone S C,Graham M L.A closed-form solution to beatings-only target motion analysis[J].IEEE Journal of Oceanic Engineering,1997,22(1):168-178.
    [18]Nardone S C,Aidala V J.Observability Criteria for Beatings-Only Target Motion Analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1981,AES-17(2):162-166.
    [19]Lindgren A G,Gong K F.Position and velocity estimation via bearing observations[J].IEEE Transactions on Aerospace and Electronic Systems,1978,AES- 14(4):564-577.
    [20]Poirot J L,Ghassan A.Position location:triangulation versus circulation[J].IEEE Transactions on Aerospace and Electronic Systems,1978,AES-14(1):48-53.
    [21]Baron R,Davis K P,Hofmann C P.Passive direction finding and signal location[J].Microwave Journal,1982,25(9):59-76.
    [22]Aidala V J.Kalman filter behavior in bearing-only tracking applications[J].IEEE Transactions on Aerospace and Electronic Systems,1979,AES-15(1):29-39.
    [23]Aidala V J,Hammel S.Utilization of modified polar coordinates for bearings-only tracking[J].IEEE Transactions on Automatic Control,1983,AC-28(3):283-294.
    [24]Nardone S C,Lingeren A,Gong K F.Fundamental properties and performance of conventional beatings-only target motion analysis[J].IEEE Transactions on Automatic Control,1984,AC-29(9):775-787.
    [25]Weinstein E,Levanon N.Passive array tracking of a continuous wave transmitting projectile[J].IEEE Transactions on Aerospace and Electronic Systems,1980,AES- 16(5):721-726.
    [26]Chan Y T,Towers J J.Sequential localization of a radiating source by Doppler-shifted frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1084-1090.
    [27]Statman J I,Rodemich E R.Parameter estimation based on Doppler frequency shifts[J].IEEE Transactions on Aerospace and Electronic Systems,1987,AES-23(1):31-39.
    [28]Chan Y T,Rudnicki S.Bearings-Only and Doppler-Bearing Tracking Using Instrumental Variables[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1076-1082.
    [29]Becker K.Three-dimensional target motion analysis using angle and frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):284-301.
    [30]Ho K C,Chan Y T.An Unbiased Estimator for Bearing-only Tracking and doppler-bearing tracking[C].Proceedings of International Conference on Acoustics,Speech,and Signal Processing,2003:169-172.
    [31]Becker K.An efficient method of passive emitter location[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):1091-1104.
    [32]安玮,孙仲康.利用多普勒变化率的单站无源测距技术[C].雷达无源定位跟踪技术研讨会论文集,2001:41-45.
    [33]孙仲康.基于运动学原理的无源定位技术[J].制导与引信,2001,22(1):40-44.
    [34]Hermann R,Krener A J.Nonlinear controllability and observability[J].IEEE Transactions on Automatic Control,1977,AC-22(5):728-740.
    [35]Jauffret C,Pillon D.Observability in passive target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1290-1300.
    [36]Becker K.Simple linear theory approach to TMA observability[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):575-578.
    [37]Fogel E,Gavish M.Nth-order dynamics target observability from angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1988,AES-24(3):305-308.
    [38]Schneider A M.Observability of Relative Navigation Using Range-Only Measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1985,AES-21(4):569-581.
    [39]Song T L.Observability of target tracking with range-only measurements[J].IEEE Journal of Oceanic Engineering,1999,24(3):383-387.
    [40]Le Cadre J E,Jauffret C.Discrete-time observability and estimability analysis for Bearings-only target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):178-201.
    [41]Guan X,Yi X,He Y.Research on unobservability problem for two-dimensional beatings-only target motion analysis[C].Proceedings of International Conference on Intelligent Sensing and Information Processing,2005:56-60.
    [42]Le Cadre J E.Properties of estimability criteria for target motion analysis[J].IEE Proceedings -Radar,Sonar & Navigation,1998,145(2):92-99.
    [43]Hammel S E,Aidala V J.Observability requirements for three-dimensional tracking via angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1985,AES-21(2):200-207.
    [44]Becker K.A general approach to TMA observability from angle and frequency measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):487-494.
    [45]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社,1996.
    [46]郭福成,孙仲康.方向角及其变化率的单站无源定位的可观测性[J].系统工程与电子技术,2002,24(9):30-32.
    [47]Aidala V J,Nardone S.Biased estimation properties of the pseudo-linear tracking filter[J].IEEE Transactions on Aerospace and Electronic Systems,1982,AES-18(4):432-441.
    [48]Song T L,Speyer J L.A stochastic analysis of a modified gain extend Kalman filter with application to estimation with beatings only measurements[J].IEEE Transaction on Automatic Control,1985,30(10):940-949.
    [49]Galkowski P G,Islam M A.An alternative derivation of the modified gain function of Song and Speyer[J].IEEE Transaction on Automatic Control,1991,36(11):1323-1326.
    [50]Guerci J R,Goetz R,Dimodica J.A method for improving extended kalman filter performance for angle-only passive ranging[J].IEEE Transactions on Aerospace and Electronic Systems,1994,30(4):1090-1093.
    [51]Fagin S L.Comments on" a method for improving extended kalman filter performance for angle-only passive ranging"[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):1148-1150.
    [52]邓薪蒲,周一宇,万钧力.测角目标定位的协方差矩阵旋转变换滤波算法[J].电子学报,2000,28(12):122-124.
    [53]Song T L.Observabilty of target tracking with bearing-only measurements[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1468-1471.
    [54]Payne A N.Observability problem for bearing-only tracking[J].International Journal of Control,1989,49(3):761-768.
    [55]杨莘元,郑思海.基于运动辐射体TOA和DOA测量的单站被动定位算法[J].电子学报,1996,24(12):66-69.
    [56]李宗华,郭福成,周一宇等.测量TOA和DOA的单站无源定位跟踪可观测条件[J].国防科技大学学报,2004,26(2):30-34.
    [57]Li X R,Jilkov V P.Survey of maneuvering target tracking.Part Ⅰ:Dynamic models[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.
    [58]Watson G A,Blair W D.IMM algorithm for tracking targets that maneuver through coordinated turns[C].Proceedings of SPIE Signal and Data Processing of Small Targets,1992:236-246.
    [59]Matsuzaki T,Kameda H,Tsujimichi S,et al.Maneuvering Target Tracking Using Constant Velocity and Constant Angular Velocity Model[C].Proceedings of the 38th SICE Annual Conference,1999:3230-3234.
    [60]Ronghui Z,Jianwei W.Passive Maneuvering Target Tracking Using 3D Constant-Turn Model[C].Proceedings of IEEE Radar Conference,2006:404-411.
    [61]刘福声,罗鹏飞.统计信号处理[M].长沙:国防科技大学出版社,1999.
    [62]占荣辉,王玲,万建伟.基于方位角和多普勒的机动目标无源定位跟踪可观测条件[J].国防科技大学学报,2007,29(1):54-58.
    [63]Le Cadre J E,Jauffret C.On the convergence of iterative methods for bearings-only tracking[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):801-818.
    [64]Ho Y C,Lee R C K.A Bayesian approach to problems in stochastic estimation and control[J].IEEE Transactions on Automatic Control,1964,AC-9(4):333-339.
    [65]Norgaard M,Poulsen N K,Ravn O.New developments in state estimation for nonlinear systems[J].Automatica,2000,36(11):1627-1638.
    [66]Ito K,Xiong K Q.Gaussian filters for nonlinear filtering problems[J].IEEE Transactions on Automatic Control,2000,45(5):910-927.
    [67]Alspach D L,Sorenson H W.Nonlinear Bayesian estimation using Gaussian sum approximations[J].IEEE Transactions on Automatic Control,1972,17(4):439-448.
    [68]Kwok N M,Dissanayake G,Ha Q P.Bearing-only SLAM Using a SPRT Based Gaussian Sum Filter[C].Proceedings of the IEEE International Conference on Robotics and Automation,2005:1109-1114.
    [69]Caputi M J,Moose R L.A modified Gaussian sum approach to estimation of non-Gaussian signals[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(2):446-451.
    [70]Tam W I,Plataniotis K N,Hatzinakos D.An adaptive Gaussian sum algorithm for target tracking[J].Signal Processing,1999,77(1):85-104.
    [71]A.Gelb.Applied optimal Estimation[M].Cambridge:MIT press,1974.
    [72]Bar-shalom Y,Li X R,Kirubarajan T.Estimation with Application to Tracking and Navigation:Theory,Algorithm,and Software[M].New York:Wiley,2001.
    [73]Fucheng G,Zhongkang S,Kan H.A modified covariance extended Kalman filtering algorithm in passive location[C].Proceedings of the IEEE International Conference on Robotics,Intelligent Systems and Signal Processing,2003:307-311.
    [74]Julier S J,Uhlrnann J K,Durrant-whyte H F.A New Approach for Filtering Nonlinear Systems[C].Proceedings of the American Control Conference,1995:1628-1632.
    [75]Julier S J,Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [76]Ronghui Z,Jianwei W.Neural network-aided adaptive unscented Kalman filter for nonlinear state estimation[J].IEEE Signal Processing Letters,2006,13(7):445-448.
    [77]Li W,Leung H,Yifeng Z.Space-time registration of radar and ESM using unscented Kalman filter[J].IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):824-836.
    [78]Lingji C,Seereeram S,Mehra R K.Unscented kalman filter for multiple spacecraft formation flying[C].Proceedings of the American Control Conference,2003:1752-1757.
    [79]Xu Y,Liping L.Single observer beatings-only tracking with the unscented Kalman filter[C].Proceedings of International Conference on Communications,Circuits and Systems,2004:901-905.
    [80]Wu J F,Huang C.Unscented Kalman filter and its application In GPS-based satellite orbit determination[J].Acta Astronomica,2005,46(1):55-61.
    [81]Wan E A,Van Der Merwe R.The unscented Kalman filter for nonlinear estimation[C].Proceeding of IEEE Symposium on Adaptive Systems for Signal Processing,Communications and Control,2000:153-158.
    [82]Wan E A,Van De Merwe R.The unscented Kalman filler[A].Kalman Filtering and Neural Networks[M].Wiley Publishing,2001.
    [83]Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
    [84]Lefebvre T,Bruyninclcx H,De Schutter J.Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Transactions on Automatic Control,2002,47(8):1406-1408.
    [85]Julier S J.The Scaled Unscented Transformation[C].Proceedings of The American Control Conference,2002:4555-4559.
    [86]Tenne D,Singh T.The higher order unscented filter[C].Proceedings of American Control Conference,2003:2441-2446.
    [87]Bell B M,Cathey F W.The iterated Kalman filter update as a Gauss-Newton method[J].IEEE Transactions on Automatic Control,1993,38(2):294-297.
    [88]龚享铱.利用频率变化率和波达角变化率单站无源定位与跟踪的关键技术研究[D].国防科学技术大学博士学位论文,2004.
    [89]Johnston L A,Krishnamurthy V.Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm[J].IEEE Transactions on Signal Processing,2001,49(9):1899-1909.
    [90]Ronghui Z,Jianwei W.Iterated Unscented Kalman Filter for Passive Target Tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1155-1162.
    [91]Van De Merwe R,Wan E A.The square-root unscented Kalman filter for state and parameter estimation[C].Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,2001:3461-3464.
    [92]占荣辉,郁春来,万建伟.一种简化的UKF算法及其在单站无源目标跟踪中的应用[J].现代雷达,2007,29(3):42-46.
    [93]Nelson A T.Nonlinear estimation and modeling of noisy time-series by dual Kalman filtering methods[D].Oregon Graduate Institute,2000.
    [94]Malcolm W P,Doucet A.Sequential Monte Carlo Tracking Schemes For Maneuvering Targets With Passive Ranging[C].Proceedings of the Fifth International Conference on Information Fusion,2002:482-488.
    [95]占荣辉,郁春来,万建伟.基于角度和频率信息的机动目标无源自适应跟踪算法[J].信号处理,2007,23(5):待刊.
    [96]Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.
    [97] Fearnhead P. Sequential Monte Carlo methods in filter theory[D]. University of Oxford, 1998.
    [98] Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems[J].Journal of the American Statistical Association, 1998, 93(443): 1032-1043.
    [99] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
    [100] Andrieu C, Doucet A. Particle filtering for partially observed Gaussian state space models[J]. Journal of the Royal Statistical Society-Series B, 2002, 64(4):827-836.
    [101] Djuric P M, Kotecha J H, Zhang J, et al. Particle filtering[J]. IEEE Signal Processing Magazine, 2003, 20(5): 19-38.
    [102] Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transaction on Signal Processing, 2001,49(3): 613-624.
    [103] Crisan D, Doucet A. A Survey of convergence results on particle filtering methods for practitioners[J]. IEEE Transactions on Speech and Audio Processing,2002, 10(3): 173-185.
    [104] Doucet A, De Freitas N, Gordon N. Sequential Monte-Carlo Methods in Practice[M]. Springer-Verlag, 2001.
    [105] Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems[J]. Journal of the American Statistical Association, 1994, 89(425):278-288.
    [106] Doucet A. On sequential Monte Carlo methods for Bayesian filtering[R].Cambridge University Engineering Department, 1998.
    [107] Arulampalam S, Maskell S, Gordan N, et al. A tutorial on particle filter for on-line nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
    [108] Douc R, Cappe O, Moulines E. Comparison of Resampling Schemes for Particle Filtering[C]. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005: 64-69.
    [109] Carpenter J, Clifford P, Fearnhead P. Improved particle filter for nonlinear problems[J]. IEE Proceedings-Radar,Sonar & Navigation, 1999, 146(1): 2-7.
    [110] Higuchi T. Monte Carlo filtering using genetic algorithm operators[J]. Journal of Statistical Computation and Simulation, 1997, 59(1): 1-23.
    [111] Kitagawa G. Monte Carlo filter and smoother for non-gaussian nonlinear state-space[J]. Journal of Computational and Graphical Statistics, 1996, 5(1):1-25.
    [112] Gilks W R, Berzuini C. Following a moving target-Monte Carlo inference for dynamic Bayesian models[J]. Journal of the Royal Statistical Society-Series B,2001,63(1): 127-146.
    [113] Fearnhead P. MCMC, sufficient statistics and particle filter[J]. Journal of Computuational and Graphical Statistics, 2002, 11(4): 848-862.
    [114] Carlin B P, Poison N G, Stoffer D S. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling[J]. Journal of the American Statistical Association, 1992, 87(418): 493-500.
    [115] Berzuini C, Best N G, Gilks W, et al. Dynamic conditional independence models and Markov chain Monte Carlo methods[J].Journal of the American Statistical Association,1997,92(5):1403-1412.
    [116]Musso C,Oudjane N,Legland F.Improving regularised particle filters[A].Sequential Monte Carlo Methods in Practice[M].New York:Springer-Verlag,2001.
    [117]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973.
    [118]Pitt M,Shephard N.Filtering via simulation:Auxiliary particle[J].Journal of the American Statistical Association,1999,94(446):590-599.
    [119]Van De Merwe R,De Freitas N,Doucet A,et al.The Unscented Particle Filter[R].Cambridge University Engineering Department,2000.
    [120]Robert C P,Casella G.Monte Carlo Statistical Methods[M].New York:Springer-Verlag,1999.
    [121]占荣辉,王玲,万建伟.基于最优采样函数的粒子滤波算法与贝叶斯估计[J].信号处理,2007,23(6):待刊.
    [122]Kotecha J H,Djuric P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2592-2601.
    [123]Gordon N J,Salmon D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-Radar &Signal Processing,1993,140(2):107-113.
    [124]Xiao-long D,Jian-ying X,Hong-wei N.Interacting Multiple Model Algorithm with the Unscented Particle Filter(UPF)[J].Chinese Journal of Aeronautics,2005,18(4):366-371.
    [125]Rui Y,Chen Y.Better proposal distributions:Object tracking using unscented particle filter[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2001:786-793.
    [126]袁健,张文霞,隋树林.一种目标轮廓跟踪的UPF方法[J].青岛科技大学学报(自然科学版),2006,27(4):355-358.
    [127]van der Merwe R,Doucet A,de Freitas N,et al.The unscented particle filter[A].Advances in Neural Information Processing Systems[M].Cambridge:MIT Press,2001.
    [128]Ronghui Z,Qin X,Jianwei W.A Modified Unscented Particle Filter for Nonlinear Bayesian Tracking[J].Journal of Systems Engineering and Electronics,2008,19(1):In proof.
    [129]Kotecha J H,Djuric P M.Gaussian sum particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2602-2612.
    [130]Schon T B,Gustafsson F,Nordlund P.Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transactions on Signal Processing,2005,52(7):2279-2289.
    [131]Eidehall A,Schon T B,Gustafsson F.The Marginalized Particle Filter for Automotive Tracking Applications[C].Proceedings of IEEE Intelligent Vehicle Symposium,2005:369-374.
    [132]Li P,Goodall R M,Kadirkamanathan V.Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter[J].IEE Proceedings-Control Theory & Application,2004,151(6):727-738.
    [133]Grisetti G,Stachniss C,Burgard W.Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters[J].IEEE Transactions on Robotics,2007, 23(1): 34-46.
    [134] Xu X, Li B. Adaptive Rao-Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance[J]. IEEE Transactions on Image Processing, 2007, 16(3):838-849.
    [135] Vihola M. Rao-blackwellised particle filtering in random set multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(2): 689-705.
    [136] Ronghui Z, Ling W, Jianwei W, et al. Passive Target Tracking Using Marginalized Particle Filter[J]. Journal of Systems Engineering and Electronics,2007, 18(3): 503-508.
    [137] Schon T B, Karlsson R, Gustafsson F. Complexity Analysis of the Marginalized Particle Filter[J]. IEEE Transactions on Signal Processing, 2005, 53(11):4408-4411.
    
    [138] 周宏仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社, 1991.
    
    [139] Chan Y T, Hu A G, Plant J B. A Kalman filter based tracking scheme with input estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979,15(2): 237-244.
    [140] Bogler P L. Tracking a maneuvering target using input estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(3): 298-310.
    [141] Bar-shalom Y, Birmiwal K. Variable dimension filter for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982,AES-18(5): 621-629.
    [142] Bar-shalom Y. Tracking a maneuvering target using input estimation versus interacting multiple model algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, AES-25(2): 296-300.
    [143] Mazor E, Averbuch A, Bar-shalom Y, et al. IMM methods in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):103-123.
    [144] Wu W R, Cheng P P. A nonlinear IMM algorithm for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(3): 875-886.
    [145] Li X R, Bar-shalom Y. Performance prediction of the interacting multiple model algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993,29(3): 755-771.
    [146] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part V:Multiple-Model Method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(4): 1255-1321.
    [147] Jilkov V P, Angelova D S, Semerdjiev T A. Design and comparison of mode-set adaptive IMM algorithms for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 343-350.
    [148] Mcginnity S. Fuzzy logic approach to manoeuvring target tracking[J]. IEE Proceedings-Radar, Sonar & Navigation, 1998, 145(6): 337-341.
    [149] Chan K C, Lee V, Leung H. Generating fuzzy rules for target tracking using a steady-state genetic algorithm[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(3): 189-200.
    [150] Duh F, Lin C. Tracking a Maneuvering Target Using Neural Fuzzy Network[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004,34(1): 16-33.
    [151]Jang J S R,Sun C T,Mizutani E.Neuro-Fuzzy and Soft Computing[M].New Jersey:Prentice-Hall,1997.
    [152]Chan K C,Lee V,Leung H.Radar Tracking for Air Surveillance in a Stressful Environment Using a Fuzzy-Gain Filter[J].IEEE Transactions on Fuzzy Systems,1997,5(1):80-89.
    [153]Iiguni Y,Sakai H,Tokumaru H.A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter[J].IEEE Transactions on Signal Processing,1992,40(4):959-966.
    [154]Zhang Y,Li X R.A Fast U-D Factorization-Based Learning Algorithm with Applications to Nonlinear System Modeling and Identification[J].IEEE Transactions on Neural Networks,1999,10(4):930-938.
    [155]Zhang L,Luh P B.Neural Network-Based Market Cleating Price Prediction and Confidence Interval Estimation With an Improved Extended Kalman Filter Method[J].IEEE Transactions on Power Systems,2005,20(1):59-66.
    [156]Kay S M,罗鹏飞等译.统计信号处理基础-估计与检测理论[M].北京:电子工业出版社,2001.
    [157]Tichavsky P.Posterior Cramér-Rao bounds for adaptive harmonic retrieval[J].IEEE Transactions on Signal Processing,1995,43(5):1299-1302.
    [158]Tichavsky P,Muravchik C H,Nehorai A.Posterior Cramér-Rao bounds for discrete-time nonlinear filtering[J].IEEE Transactions on Signal Processing,1998,46(5):1386-1396.
    [159]占荣辉,郁春来,万建伟.机动目标跟踪误差CRLB计算与分析[J].国防科技大学学报,2007,29(5):待刊.
    [160]Ronghui Z,Jianwei W.PCRB Analysis for Passive Target Tracking[J].Journal of Electronics,2008,25(1):In proof.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700