Rian基因的表达调控及与Dlk1-Dio3印记区间的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物基因组普遍以发育调控模式转录大量或长或短的非编码RNA(noncodingRNA,ncRNA),其中长非编码RNA(longnoncodingRNA,lncRNA)是一类长度大于200bp的ncRNA。大量研究证据显示,它们能够参与染色质修饰,mRNA运输,pre-RNA剪切及细胞核构建等过程,从而调控基因表达。LncRNARian(NR_028261)是一个被确认的母本表达的印记基因,位于小鼠12号染色体远端的Dlk1-Dio3印记区内,跨越基因组长度约60kb,包括三个转录本Meg8,Irm和AB063319,对于它们的特性和作用还缺乏系统的认识。因此本课题以Rian基因为研究对象,主要分析其转录本在小鼠发育过程的表达模式,以及Rian基因的表达调控机制,并初步探索其在Dlk1-Dio3印记区间潜在的功能作用。
     本研究首先确认Rian基因表达模式,获取着床前各阶段的胚胎,包括卵母细胞期,2-8细胞期,桑葚胚期和囊胚期,通过定量RT-PCR技术分析了Rian以及Dlk1-Dio3印记区内的相关基因的表达,结果表明Rian的三个成熟剪切转录本Meg8,Irm和AB063319以及Gtl2,Mirg和Dio3从桑葚胚期开始表达,在囊葚胚期时的表达量分别为桑胚期的2倍以上,而Dlk1在着床前却未检测到明显的表达。Rian的三个转录本的定量结果显示Irm明显高于另两个转录本,且原位杂交结果表明在囊胚的内细胞团和滋养层细胞中都可观察到Irm的信号,表明Irm在早期胚胎阶段就可能作为Rian基因的主要转录物并开始发挥功能作用。并且,我们分析了Rian在着床前的印记模式,发现影响Rian印记的Dlk1-Dio3的印记调控区(IG-DMR)在8细胞期已经是差异甲基化的,而Gtl2印记调控区(Gtl2-DMR)却是非甲基化的,说明早期发育的印记模式是通过IG-DMR建立的。在胚胎发育的中后期,Rian的三个转录本Meg8,Irm和AB063319通过原位杂交确认了它们在组织间的分布。在E10.5~E11.5全胚胎原位杂交和E15.5天的切片原位杂交实验中,它们在多个组织中存在共表达的现象,尤其是在神经,肌肉和内分泌组织。但Irm的信号主要集中在舌和骨骼肌中,并明显强于Meg8和AB063319。实时定量RT-PCR结果表明Meg8,Irm和AB063319在E12.5天,E15.5天和E18.5天的脑、舌、心、肺、肝和肾等重要器官中具有相似的表达模式,并且Irm和AB063319呈现逐渐增高的趋势,而Meg8多数脏器的表达峰值出现在E15.5天(除舌外)。在小鼠出生后和成体组织中,Rian三个转录本则只限制表达在脑,肌肉和生殖器官中,与母本表达的lncRNAGtl2和Mirg的表达非常相似,但并不与父本编码蛋白基因Dlk1和Dio3的表达完全重叠,暗示这些母本表达的lncRNA可能是被协同调控的。
     其次,鉴于Rian基因具有严格的时空组织特异性表达模式,进一步对其表观遗传调控机制进行了初步研究。利用去甲基化诱导剂(5-Aza-2'-deoxycytidine,5-AZA)和去乙酰化酶抑制剂(4-phenylbutanonic acid,4-PBA)处理N2A细胞后,Rian转录本以及其同簇的lncRNAGtl2和Mirg表达明显上调(除去乙酰化酶抑制剂处理后的Gtl2)。在小鼠睾丸间充质细胞TM3和同源的癌细胞MLTC-1中,Rian的表达只出现在肿瘤细胞。通过DNA甲基化分析揭示出甲基化状态出现差异的区域在Gtl2-DMR区,而非IG-DMR或Rian-MR区。ChIP实验显示Irm转录起始位点到第一外显子长211bp序列内存在组蛋白乙酰化转移酶的结合位点。另外,通过FISH实验检测到Rian的主要转录物Irm(Rian/Irm)以核斑的形式定位于N2A和MLTC-1细胞核中,这与组织水平的亚细胞定位结果相似,而在N2A细胞中的核周也检测到Rian/Irm的信号,提示Rian在不同的细胞型中可能具有不同功能。
     最后,对于Rian与Dlk1-Dio3印记区间的关系通过Rian/Irm的过表达实验进行了初步探索。在N2A细胞中瞬时过表达Rian/Irm的全长和截短体都能够一定程度抑制父源印记基因的表达,而在NIH3T3细胞中却只检测到Rian/Irm的全长序列能够部分抑制Dio3的表达。相反在N2A细胞中,过表达Rian/Irm的全长和截短体时,这一区间的母本lncRNA有表达上升的趋势,尤其是Meg8表达上调了50%左右。
     综上所述,长非编码RNARian本身具有复杂的表达调控机制,在小鼠发育过程中始终维持特异的时空表达活性,并在Dlk1-Dio3印记区间内发挥表观遗传调控作用,这些结果将为进一步阐明lncRNA在胚胎发育过程和印记调控机制中的功能提供理论基础。
Currently, it has been dramatically demonstrated that pervasive mammalian genome is transcribed into long and short non-coding RNAs (ncRNAs) in a developmentally regulated pattern. Long ncRNA (lncRNA) was defined as more than200nt ncRNA, although the molecular functions of lncRNAs remained unknown, emerging evidence implicates the functional involvement of lncRNAs in the regulation of gene expression through the modification of chromatin, transport of specific mRNAs, control of pre-mRNA splicing and maintenance of subnuclear structures. LncRNA Rian gene (NR_028261) was an identified maternal expressed imprinting gene located in Dlkl-Dio3region of mouse distal chromosome12, covered approximately60kb of mouse genome, which contained three of transcripts Meg8, Irm and AB063319, but their characteristics and roles were still lack of systematical recognition. Here, we focused on Rian gene, and mainly analyzed its transcripts expression patterns across mouse development, Rian expression regulation mechanism, then preliminary explored the potential functions at Dlkl-Dio3imprinting region.
     We first collected preimplanation embryos at oocyte,2-,4-,8-cell, morula and blastula stages to analyze the expression profiles of Rian and the other imprinting genes at Dlkl-Dio3. Quantitative real-time RT-PCR (QRT-PCR) results showed Meg8, Irm, AB063319, Gtl2, Mirg and Dio3all started to express at morula stage excepted for Dlk1, and their expression levels were up-regulated more than two times at blastocyst stage. The expression of Irm was obviously higher than the other two Rian transcripts, the fluorescence in situ hybridization (FISH) results showed Irm was expressed both in inner cell mass and trophoblast cells of blastula, suggesting Irm could be regarded as main transcript of Rian and functional at preimplanation stages. Alternatively, we analyzed Rian imprinted pattern at preimplanation stages, the results showed Dlkl-Dio3imprinting control region IG-DMR already maintained differentially methylated at8-cell stage, but Gt/2-DMR was still unmethylated, suggesting the imprinted pattern of the Dlkl-Dio3region was established by IG-DMR. Then, we characterized the spatiotemporal expression pattern of three mature spliced transcripts Meg8, Irm and AB0633I9of Rian gene at later-mid-gestation. The in situ hybridization results showed they were co-expressed in multi-tissues, especially in neural, muscle and endocrine tissues. However, Irm displayed more restricted expression in tongue and skeletal muscle than Meg8and AB063319. QRT-PCR results showed that Meg8, Irm and AB063319 were extremely similarly expressed in main organs including brain, tongue, heart, lung, liver and kidney during mouse development of E12.5, E15.5and E18.5. Furthermore, Rian transcripts were more restricted expressed in brain, muscle and reproductive organs in postnatal and adult mouse, which expression patterns were similar with maternal lncRNAs Gtl2and Mirg, but not overlapping with paternal coding protein genes Dlkl, suggesting these maternal lncRNAs might be coordinately regulated.
     Considering Rian were regulated by strictly temporal expression specificity, we further analyzed Rian epigenetic regulation mechanism. After demethylation treatment (5-Aza-2'-deoxycytidine,5-AZA) in N2A cells, Rian, Gtl2and Mirg expression up-regulated in large degree, and Rian and Mirg expression also up-regulated by histone deacetylases inhibitor treatment (4-phenylbutanonic acid,4-PBA), but not Gtl2. Alternativly, the reason why Rian differently expressed in TM3and MLTC-1cells was mainly regulated by Gtl2-DMR methylation but not IG-DMR or Rian-MR. We also found Irm was obviously activated by histone acetylation roles at its transcription start region in MLTC-1cells by ChIP assay. Rian main transcript Irm(Rian/Irm) was mainly localized in several large speckles along with some weak staining of the nucleoplasm detected by FISH in vitro N2A and MLTC-1cells, which was similar in vivo tissues subcellular location. Of note, we also found Irm expression signals in nuclear periphery of N2A cells, suggesting Rian possibly possessed variant functions in different cell types.
     At last, we preliminarily explored Rian/Irm potential functions in Dlkl-Dio3. Transient transfection assays found overexpressed full-length and truncation of Irm both inhibiting Dlkl and Dio3expression in an extent in N2A cells, but only found full-length of Irm partly inhibiting Dio3in NIH3T3cells. In contrast, we detected the expression of maternal lncRNAs were up-regulated a little in overexpression N2A cells, especially Meg8nearly increased by50%.
     These results described above revealed Rian possessed complicated transcription regulated mechanism, and significant temporal expression specificity across embryonic development, implying that Rian was considered as potential functional RNA molecular in organisms, and participated in epigenetic regulations within Dlkl-Dio3imprinting region. It will supply the extent theory foundation for well understanding lncRNA function in embryonic development and genome imprinting.
引文
[1]Willingham A T, Gingeras T R. TUF Love for "Junk" DNA[J]. Cell.2006,125(7):1215-1220.
    [2]Amaral P P, Mattick J S. Noncoding RNA in Development[J]. Mamm Genome.2008,19(7-8):454-492.
    [3]Ponting C P, Oliver P L, Reik W. Evolution and Functions of Long Noncoding RNAs[J]. Cell.2009,136(4):629-641.
    [4]Costa F F. Non-coding RNAs:Lost in Translation?[J]. Gene.2007,386(1-2):1-10.
    [5]Johnson R, Teh C H, Jia H, et al. Regulation of Neural MacroRNAs by the Transcriptional Repressor REST[J]. RNA.2009,15(1):85-96.
    [6]Stefani G, Slack F J. Small Non-coding RNAs in Animal Development[J]. Nat Rev Mol Cell Biol.2008,9(3):219-230.
    [7]Koerner M V, Barlow D P. Genomic Imprinting—an Epigenetic Gene-Regulatory Model[J]. Current Opinion in Genetics&Development.2010,20:164-170.
    [8]Latos P A, Barlow D P. Regulation of Imprinted Expression by Macro Non-coding RNAs[J]. RNA Biol.2009,6(2):100-106.
    [9]Martha V. Koerner F M P, Ru Huang, et al. The Function of Non-coding RNAs in Genomic Imprinting[J]. Development.2009,136(12):1897-1890.
    [10]Koerner M V, Pauler F M. The Function of Long Non-coding RNAs in Genomic Imprinting[J]. Development.2010,140(11):1771-1783.
    [11]Feil R, Berger F. Convergent Evolution of Genomic Imprinting in Plants and Mammals[J]. Trends Genet.2007,23(4):192-199.
    [12]Struhl K. Transcriptional Noise and the Fidelity of Initiation by RNA Polymerase Ⅱ[J]. Nat Struct Mol Biol.2007,14(2):103-105.
    [13]Ebisuya M, Yamamoto T, Nakajima M, et al. Ripples from Neighbouring Transcription[J]. Nat Cell Biol.2008,10(9):1103-1106.
    [14]Louro R, Smirnova A S, Verjovski-Almeida S. Long Intronic Noncoding RNA Transcription:Expression Noise or Expression Choice?[J]. Genomics.2009,93(4):291-298.
    [15]Blackshaw S, Harpavat S, Trimarchi J, et al. Genomic Analysis of Mouse Retinal Development[J]. PLoS Biol.2004,2(9):E247.
    [16]Rinn J L, Kertesz M, Wang J K, et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs[J]. Cell.2007,129(7):1311-1323.
    [17]Dinger M E, Amaral P P, Mercer T R, et al. Long Noncoding RNAs in Mouse Embryonic Stem Cell Pluripotency and Differentiation[J]. Genome Res.2008,18(9):1433-1445.
    [18]Ravasi T, Suzuki H, Pang K C, et al. Experimental Validation of the Regulated Expression of Large Numbers of Non-coding RNAs from the Mouse Genome[J]. Genome Res.2006,16(1):11-19.
    [19]Mercer T R, Dinger M E, Sunkin S M, et al. Specific Expression of Long Noncoding RNAs in the Mouse Brain[J]. Proc Natl Acad Sci U S A.2008,105(2):716-721.
    [20]Hutchinson J N, Ensminger A W, Clemson C M, et al. A Screen for Nuclear Transcripts Identifies Two Linked Noncoding RNAs Associated with SC35Splicing Domains[J]. BMC Genomics.2007,8:39.
    [21]Sone M, Hayashi T, Tarui H, et al. The mRNA-like Noncoding RNA Gomafu Constitutes a Novel Nuclear Domain in a Subset of Neurons[J]. J Cell Sci.2007,120(Pt15):2498-2506.
    [22]Clemson C M, Hutchinson J N, Sara S A, et al. An Architectural Role for a Nuclear Noncoding RNA:NEAT1RNA Is Essential for the Structure of Paraspeckles[J]. Mol Cell.2009,33(6):717-726.
    [23]Sasaki Y T, Ideue T, Sano M, et al. MENepsilon/beta Noncoding RNAs Are Essential for Structural Integrity of Nuclear Paraspeckles[J]. Proc Natl Acad Sci U S A.2009,106(8):2525-2530.
    [24]Sunwoo H, Dinger M E, Wilusz J E, et al. MEN Epsilon/beta Nuclear-Retained Non-coding RNAs Are Up-regulated upon Muscle Differentiation and Are Essential Components of Paraspeckles[J]. Genome Res.2009,19(3):347-359.
    [25]Costa F F Non-coding RNAs:New players in Eukaryotic Biology[J]. Gene.2005,357(2):83-94.
    [26]Szymanski M, Barciszewska M Z, Erdmann V A, et al. A New Frontier for Molecular Medicine:Noncoding RNAs[J]. Biochim Biophys Acta.2005,1756(1):65-75.
    [27]Prasanth K V, Spector D L. Eukaryotic Regulatory RNAs:an Answer to the 'Genome Complexity'Conundrum[J]. Genes Dev.2007,21(1):11-42.
    [28]Pollard K S, Salama S R, Lambert N, et al. An RNA Gene Expressed during Cortical Development Evolved Rapidly in Humans[J]. Nature.2006,443(7108):167-172.
    [29]Pheasant M, Mattick J S. Raising the Estimate of Functional Human Sequences[J]. Genome Res.2007,17(9):1245-1253.
    [30]Ponjavic J, Ponting C P, Lunter G. Functionality or Transcriptional Noise? Evidence for Selection within Long Noncoding RNAs[J]. Genome Res.2007,17(5):556-565.
    [31]Guttman M, Amit I, Garber M, et al. Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-coding RNAs in Mammals[J]. Nature.2009,458(7235):223-227.
    [32]Wilusz J E, Sunwoo H, Spector D L. Long Noncoding RNAs:Functional Surprises from the RNA World[J]. Genes Dev.2009,23(13):1494-1504.
    [33]Martens J A, Laprade L, Winston F. Intergenic Transcription Is Required to Repress the Saccharomyces Cerevisiae SER3gene[J]. Nature.2004,429(6991):571-574.
    [34]Petruk S, Sedkov Y, Riley K M, et al. Transcription of Bxd Noncoding RNAs Promoted by Trithorax Represses Ubx in cis by Transcriptional Interference[J]. Cell.2006,127(6):1209-1221.
    [35]Hongay C F, Grisafi P L, Galitski T, et al. Antisense Transcription Controls Cell Fate in Saccharomyces cerevisiae[J].Cell.2006,127(4):735-745.
    [36]Houseley J, Rubbi L, Grunstein M, et al. A NcRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster [J]. Mol Cell.2008,32(5):685-695.
    [37]Camblong J, Iglesias N, Fickentscher C, et al. Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae[J].Cell.2007,131(4):706-717.
    [38]Yu W, Gius D, Onyango P, et al. Epigenetic Silencing of Tumour Suppressor Gene p15by its Antisense RNA[J]. Nature.2008,451(7175):202-206.
    [39]Peters J, Robson J E. Imprinted Noncoding RNAs[J]. Mamm Genome.2008,19(7-8):493-502.
    [40]Hellwig S, Bass B L A. Starvation-Induced Noncoding RNA Modulates Expression of Dicer-regulated Genes[J]. Proc Natl Acad Sci U S A.2008,105(35):12897-12902.
    [41]Tam O H, Aravin A A, Stein P, et al. Pseudogene-derived Small Interfering RNAs Regulate Gene Expression in Mouse Oocytes[J]. Nature.2008,453(7194):534-538.
    [42]Watanabe T, Totoki Y, Toyoda A, et al. Endogenous SiRNAs from Naturally Formed DsRNAs Regulate Transcripts in Mouse Oocytes[J]. Nature.2008,453(7194):539-543.
    [43]Czech B, Malone C D, Zhou R, et al. An Endogenous Small Interfering RNA Pathway in Drosophila[J]. Nature.2008,453(7196):798-802.
    [44]Ghildiyal M, Seitz H, Horwich M D, et al. Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells[J]. Science.2008,320(5879):1077-1081.
    [45]Okamura K, Chung W J, Ruby J G, et al. The Drosophila Hairpin RNA Pathway Generates Endogenous Short Interfering RNAs[J]. Nature.2008,453(7196):803-806.
    [46]Feng J, Bi C, Clark B S, et al. The Evf-2Noncoding RNA Is Transcribed from the Dlx-5/6Ultraconserved Region and Functions as a Dlx-2Transcriptional Coactivator[J]. Genes Dev.2006,20(11):1470-1484.
    [47]Kohlmaier A, Savarese F, Lachner M, et al. A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation[J]. PLoS Biol.2004,2(7):E171.
    [48]Shamovsky I, Ivannikov M, Kandel E S, et al. RNA-mediated Response to Heat Shock in Mammalian Cells[J]. Nature.2006,440(7083):556-560.
    [49]Mariner P D, Walters R D, Espinoza C A, et al. Human Alu RNA Is a Modular Transacting Repressor of mRNA Transcription During Heat Shock[J]. Mol Cell.2008,29(4):499-509.
    [50]Bond C S, Fox A H Paraspeckles:Nuclear Bodies Built on Long Noncoding RNA[J]. J Cell Biol.2009,186(5):637-644.
    [51]Prasanth K V, Prasanth S G, Xuan Z, et al. Regulating Gene Expression through RNA Nuclear Retenti on [J]. cell.2005,123(2):249-263.
    [52]Kloc M, Wilk K, Vargas D, et al. Potential Structural Role of Non-coding and Coding RNAs in the Organization of the Cytoskeleton at the Vegetal Cortex of Xenopus Oocytes[J]. Development.2005,132(15):3445-3457.
    [53]Kloc M, Bilinski S, Dougherty M T. Organization of Cytokeratin Cytoskeleton and Germ Plasm in the Vegetal Cortex of Xenopus Laevis Oocytes Depends on Coding and Non-coding RNAs:Three-dimensional and Ultrastructural Analysis[J]. Exp Cell Res.2007,313(8):1639-1651.
    [54]Zhang L F, Huynh K D, Lee J T Perinucleolar Targeting of the Inactive X during S Phase:Evidence for a Role in the Maintenance of Silencing[J]. Cell.2007,129(4):693-706.
    [55]Willingham A T, Orth A P, Batalov S, et al. A Strategy for Probing the Function of Noncoding RNAs Finds a Repressor of NFAT[J]. Science.2005,309(5740):1570-1573.
    [56]Fejes-Toth K, Sotirova V, Sachidanandam R, et al. Post-transcriptional Processing Generates a Diversity of5'-modified Long and Short RNAs[J]. Nature.2009,457(7232):1028-1030.
    [57]Sotirova V, Sachidanandam. et al. Ttranscriptional Processing Generates a Diversity of3'-modified Long RNAs[J]. Cell.2008,381(8):1029-1036.
    [58]Wapinski O, Chang H Y. Long Noncoding RNAs and Human Disease[J]. Trends Cell Biol.2011,21(6):354-361.
    [59]Whitehead J, Pandey G K, Kanduri C. Regulation of the Mammalian Epigenome by Long Noncoding RNAs[J]. Biochim Biophys Acta.2009,1790(9):936-947.
    [60]Wang K C, Chang H Y. Molecular Mechanisms of Long Noncoding RNAs[J]. Mol Cell.2011,43(6):904-914.
    [61]Mohammad F, Mondal T, Kanduri C. Epigenetics of Imprinted Long Noncoding RNAs[J]. Epigenetics.2009,4(5):277-286.
    [62]Hung T, Chang H Y. Long Noncoding RNA in Genome Regulation:Prospects and Mechanisms[J]. RNA Biol.2010,7(5):582-585.
    [63]Kino T, Hurt D E, Ichijo T, et al. Noncoding RNA gas5Is a Growth Arrest-and Starvation-associated Repressor of the Glucocorticoid Receptor[J]. Sci Signal.2010,3(107):ra8.
    [64]Song M S, Carracedo A, Salmena L, et al. Nuclear PTEN Regulates the APC-CDH1Tumor-suppressive Complex in a Phosphatase-independent Manner[J]. cell.2011,144(2):187-199.
    [65]Hung T, Wang Y, Lin M F, et al. Extensive and Coordinated Transcription of Noncoding RNAs within Cell-cycle Promoters[J]. Nat Genet.2011,43(7):621-629.
    [66]Bonasio R, Tu S, Reinberg D. Molecular Signals of Epigenetic States[J]. Science.2010,330(6004):612-616.
    [67]Tsai M C, Manor O, Wan Y, et al. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes[J]. Science.2010,329(5992):689-693.
    [68]Maison C, Bailly D, Roche D, et al. SUMOylation Promotes de novo Targeting of HP1alpha to Pericentric Heterochromatin[J]. Nat Genet.2011,43(3):220-227.
    [69]Washietl S H I, Lukasser M, Huttenhofer A, et al. Mapping of Conserved RNA Secondary Structures Predicts Thousands of Functional Noncoding RNAs in the Human Genome[J]. Nat Biotechnol.2005,23:1383-1390.
    [70]Washietl S, Hofacker I L Identifying Structural Noncoding RNAs Using RNAz[J]. Curr Protoc Bioinformatics.2007, Chapter12:Unit1217.
    [71]Mercer T R, Mattick J S, Qureshi I A, et al. Long Noncoding RNAs in Neuronal-glial Fate Specification and Oligodendrocyte Lineage Maturation[J]. BMC Neuroscience2010,11(14).
    [72]Morison I M, Ramsay J P, Spencer H G. A Census of Mammalian Imprinting[J]. Trends Genet.2005,21(8):457-465.
    [73]Weksberg R. Imprinted Genes and Human Disease[J]. Am J Med Genet C Semin Med Genet.2010,154C(3):317-320.
    [74]Latos P A, Barlow D P. Regulation of Imprinted Expression by Macro Non-coding RNAs[J]. RNA Biol.2009,6(2):100-106.
    [75]Zhao J, Sun B K, Erwin J A, et al. Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome[J]. Science.2008,322(5902):750-756.
    [76]Yoshimizu T, Miroglio A, Ripoche M A, et al. The H19Locus Acts in vivo as a Tumor Suppressor[J]. Proc Natl Acad Sci U S A.2008,105(34):12417-12422.
    [77]Gabory A, Ripoche M A, Le Digarcher A, et al. H19Acts as a Trans Regulator of the Imprinted Gene Network Controlling Growth in Mice[J]. Development.2009,136(20):3413-3421.
    [78]Wan L B, Bartolomei M S. Regulation of Imprinting in Clusters:Noncoding RNAs versus Insulators[J]. Adv Genet.2008,61:207-223.
    [79]Barlow D P. Genomic Imprinting:a Mammalian Epigenetic Discovery Model[J]. Annu Rev Genet.2011,45:379-403.
    [80]Stricker S H, Steenpass L, Pauler F M, et al. Silencing and Transcriptional Properties of the Imprinted Airn NcRNA Are Independent of the Endogenous Promoter[J]. EMBO J.2008,27(23):3116-3128.
    [81]Ball S T, Williamson C M, Hayes C, et al. The Spatial and Temporal Expression Pattern of Nesp and its Antisense Nespas, in Mid-gestation Mouse Embryos[J]. Mech Dev.2001,100(1):79-81.
    [82]Bell A C, Felsenfeld G. Methylation of a CTCF-dependent Boundary Controls Imprinted Expression of the Igf2Gene[J]. Nature.2000,405(6785):482-485.
    [83]Mancini-DiNardo D, Steele S J, Ingram R S, et al. A Differentially Methylated Region within the Gene Kcnql Functions as an Imprinted Promoter and Silencer[J]. Hum Mol Genet.2003,12(3):283-294.
    [84]Lerchner W, Barlow D P. Paternal Repression of the Imprinted Mouse Igf2r Locus Occurs during Implantation and Is Stable in All Tissues of the Post-Implantation Mouse Embryo[J]. Mech Dev.1997,61(1-2):141-149.
    [85]Szabo P E, Mann J R. Allele-specific Expression and Total Expression Levels of Imprinted Genes during Early Mouse Development:Implications for Imprinting mechanisms[J]. Genes Dev.1995,9(24):3097-3108.
    [86]Kelsey G. Imprinting on Chromosome20:Tissue-specific Imprinting and Imprinting Mutations in the GNAS Locus[J]. Am J Med Genet C Semin Med Genet.2010,154C(3):377-386.
    [87]Royo H, Cavaille J. Non-coding RNAs in Imprinted Gene Clusters[J]. Biol Cell.2008,100(3):149-166.
    [88]de Smith A J, Purmann C, Walters R G, et al. A Deletion of the HBII-85Class of Small Nucleolar RNAs (snoRNAs) Is Associated with Hyperphagia, Obesity and Hypogonadism[J]. Hum Mol Genet.2009,18(17):3257-3265.
    [89]Bachellerie J P, Cavaille J, Huttenhofer A. The Expanding SnoRNA World[J]. Biochimie.2002,84(8):775-790.
    [90]Leung K N, Vallero R O, DuBose A J, et al. Imprinting Regulates Mammalian SnoRNA-encoding Chromatin Decondensation and Neuronal Nucleolar Size[J]. Hum Mol Genet.2009,18(22):4227-4238.
    [91]Chambeyron S, Da Silva N R, Lawson K A, et al. Nuclear Re-organisation of the Hoxb Complex during Mouse Embryonic Development J]. Development.2005,132(9):2215-2223.
    [92]Muller W G, Rieder D, Kreth G, et al. Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes[J]. Mol Cell Biol.2004,24(21):9359-9370.
    [93]Cavaille J, Seitz H, Paulsen M, et al. Identification of Tandemly-repeated C/D SnoRNA Genes at the Imprinted Human14q32Domain Reminiscent of Those at the Prader-Willi/Angelman Syndrome Region[J]. Hum Mol Genet.2002,11(13):1527-1538.
    [94]Royo H, Basyuk E, Marty V, et al. Bsr, a Nuclear-retained RNA with Monoallelic Expression[J]. Mol Biol Cell.2007,18(8):2817-2827.
    [95]Friedman R C, Farh K K, Burge C B, et al. Most Mammalian mRNAs Are Conserved Targets of MicroRNAs[J]. Genome Res.2009,19(1):92-105.
    [96]Christian S L, Fantes J A, Mewborn S K, et al. Large Genomic Duplicons Map to Sites of Instability in the Prader-Willi/Angelman Syndrome Chromosome Region (15q11-q13)[J]. Hum Mol Genet.1999,8(6):1025-1037.
    [97]Sharp A J, Mefford H C, Li K, et al. A Recurrent15q13.3Microdeletion Syndrome Associated with Mental Retardation and Seizures[J]. Nat Genet.2008,40(3):322-328.
    [98]Pagnamenta A T, Wing K, Sadighi Akha E, et al. A15q13.3Microdeletion Segregating with Autism[J]. Eur J Hum Genet.2009,17(5):687-692.
    [99]Helbig I, Mefford H C, Sharp A J, et al.15q13.3MicrodeletionsIncrease Risk of Idiopathic Generalized Epilepsy[J]. Nat Genet.2009,41(2):160-162.
    [100]Kagami M, Sekita Y, Nishimura G, et al. Deletions and Epimutations Affecting the Human14q32.2Imprinted Region in Individuals with Paternal and Maternal Upd(14)-like Phenotypes[J]. Nat Genet.2008,40(2):237-242.
    [101]Hagan J P, O'Neill B L, Stewart C L, et al. At Least Ten Genes Define the Imprinted Dlkl-Dio3Cluster on Mouse Chromosome12qF1[J]. PLoS ONE.2009,4(2):e4352.
    [102]Lin S P, Youngson N, Takada S, et al. Asymmetric Regulation of Imprinting on the Maternal and Paternal Chromosomes at the Dlkl-Gt12Imprinted Cluster on Mouse Chromosome12[J]. Nat Genet.2003,35(1):97-102.
    [103]Ogata T, Kagami M, Ferguson-Smith A C. Molecular Mechanisms Regulating Phenotypic Outcome in Paternal and Maternal Uniparental Disomy for Chromosome14[J]. Epigenetics.2008,3(4):181-187.
    [104]Chris Wallace D J S, Meeta Maisuria-Armer, Neil M Walker, et al. The Imprinted DLK1-MEG3Gene Region on cChromosome14q32.2Alters Susceptibility to Type1Diabetes[J]. Nature GenNetics.2010,42(1).
    [105]Tierling S, Dalbert S, Schoppenhorst S, et al. High-resolution Map and Imprinting Analysis of the Gt12-Dnchcl Domain on Mouse Chromosome12[J]. Genomics.2006,87(2):225-235.
    [106]Seitz H, Royo H1n, Bortolin M-L, et al. A Large Imprinted microRNA Gene Cluster at the Mouse Dlkl-Gt12Domain[J]. Genome Research.2004,14(9):1741-1748.
    [107]Takada S, Tevendale M, Baker J, et al. Delta-like and Gt12are Reciprocally Expressed, Differentially Methylated Linked Imprinted Genes on Mouse Chromosome12[J]. Curr Biol.2000,10(18):1135-1138.
    [108]Takahashi N, Okamoto A, Kobayashi R, et al. Deletion of Gt12, Imprinted Non-coding RNA, with Its Differentially Methylated Region Induces Lethal Parent-origin-dependent Defects in Mice[J]. Hum Mol Genet.2009,18(10):1879-1888.
    [109]da Rocha S T, Tevendale M, Knowles E, et al. Restricted Co-expression of Dlkl and the Reciprocally Imprinted Non-coding RNA, Gt12:Implications for Cis-acting Control[J]. Dev Biol.2007,306(2):810-823.
    [110]Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant Silencing of Imprinted Genes on Chromosome12qF1in Mouse Induced Pluripotent Stem Cells[J]. Nature.2010,465(7295):175-181.
    [111]Liu L, Luo G Z, Yang W, et al. Activation of the Imprinted Dlkl-Dio3Region Correlates with Pluripotency Levels of Mouse Stem Cells[J]. J Biol Chem.2010,285(25):19483-19490.
    [112]Zhou Y, Cheunsuchon P, Nakayama Y, et al. Activation of Paternally Expressed Genes and Perinatal Death Caused by Deletion of the Gt12gene[J]. Development.2010,137(16):2643-2652.
    [113]Lin S P, Coan P, da Rocha S T, et al. Differential Regulation of Imprinting in the Murine Embryo and Placenta by the Dlkl-Dio3Imprinting Control Region[J]. Development.2007,134(2):417-426.
    [114]Nan X, Hou J, Maclean A, et al. Interaction between Chromatin Proteins MECP2and ATRX Is Disrupted by Mutations that Cause Inherited Mental Retardation[J]. Proc Natl Acad Sci U S A.2007,104(8):2709-2714.
    [115]Kernohan K D, Jiang Y, Tremblay D C, et al. ATRX Partners with Cohesin and MeCP2and Contributes to Developmental Silencing of Imprinted Genes in the Brain[J]. Dev Cell.2010,18(2):191-202.
    [116]Zhao J, Ohsumi T K, Kung J T, et al. Genome-wide Identification of Polycomb-associated RNAs by RIP-seq[J]. Mol Cell.2010,40(6):939-953.
    [117]Hatada I, Morita S, Obata Y, et al. Identification of a New Imprinted Gene, Rian, on Mouse Chromosome12by Fluorescent Differential Display Screening[J].J Biochem.2001,130(2):187-190.
    [118]Kono T, Obata Y, Wu Q, et al. Birth of Parthenogenetic Mice that Can Develop to Adulthood[J]. Nature.2004,428(22):860-864.
    [119]Ogawa H, Wu Q, Komiyama J, et al. Disruption of Parental-specific Expression of Imprinted Genes in Uniparental Fetuses[J]. FEBS Lett.2006,580(22):5377-5384.
    [120]Wu Q, Kawahara M, Kono T. Synergistic Role of Igf2and Dlkl in Fetal Liver Development and Hematopoiesis in Bi-maternal Mice[J]. J Reprod Dev.2008,54(3):177-182.
    [121]Steshina E Y, Carr M S, Glick E A, et al. Loss of Imprinting at the Dlkl-Gt12Locus Caused by Insertional Mutagenesis in the Gt125' region[J]. BMC Genet.2006,7:44.
    [122]da Rocha S T, Edwards C A, Ito M, et al. Genomic Imprinting at the Mammalian Dlkl-Dio3Domain[J]. Trends Genet.2008,24(6):306-316.
    [123]P L S, N Y, S T Asymmetric. Regulation of Imprinting on the Maternal and Paternal Chromosomes at the Dlkl-Gt12Imprinted Cluster on Mouse Chromosome12.[J]. Nature.2003,35(1):97-102.
    [124]Zhang X, Rice K, Wang Y, et al. Maternally Expressed Gene3(MEG3) Noncoding Ribonucleic Acid:Isoform Structure, Expression, and Functions[J]. Endocrinology.2010151(3):1-9.
    [125]Dupuy A J, Rogers L M, Kim J, et al. A Modified Sleeping Beauty Transposon System that Can Be Used to Model a Wide Variety of Human Cancers in Mice[J]. Cancer Res.2009,69(20):8150-8156.
    [126]Varrault A, Gueydan C, Delalbre A, et al. Zacl Regulates an Imprinted Gene Network Critically Involved in the Control of Embryonic Growth[J]. Developmental Cell.2006,11:711-722.
    [127]Gabory A, Ripoche M-A, Digarcher A L, et al. H19Acts as a Trans Regulator of the Imprinted Gene Network Controlling Growth in Mice[J]. Development.2009,136:3413-3421.
    [128]Mercer T R, Qureshi I A, Gokhan S, et al. Long Noncoding RNAs in Neuronal-glial Fate Specification and Oligodendrocyte Lineage Maturation[J]. BMC Neurosci.2010,11:14.
    [129]Tate P H, Bird A P. Effects of DNA Methylation on DNA-binding Proteins and Gene Expression[J]. Curr Opin Genet Dev.1993,3(2):226-231.
    [130]Reik W. Stability and Flexibility of Epigenetic Gene Regulation in Mammalian Development[J]. Nature.2007,447(7143):425-432.
    [131]Illingworth R, Kerr A, Desousa D, et al. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci[J]. PLoS Biol.2008,6(1):e22.
    [132]Weber M, Hellmann I, Stadler M B, et al. Distribution, Silencing Potential and Evolutionary Impact of Promoter DNA Methylation in the Human Genome[J]. Nat Genet.2007,39(4):457-466.
    [133]Meissner A, Mikkelsen T S, Gu H, et al. Genome-scale DNA Methylation Maps of Pluripotent and Differentiated Cells[J]. Nature.2008,454(7205):766-770.
    [134]Farthing C R, Ficz G, Ng R K, et al. Global Mapping of DNA Methylation in Mouse Promoters Reveals Epigenetic Reprogramming of Pluripotency Genes[J]. PLoS Genet.2008,4(6):e1000116.
    [135]Li E, Bestor T H, Jaenisch R. Targeted Mutation of the DNA Methyltransferase Gene Results in Embryonic Lethality[J]. Cell.1992,69(6):915-926.
    [136]Okano M, Bell D W, Haber D A, et al. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for de novo Methylation and Mammalian Development[J]. Cell.1999,99(3):247-257.
    [137]Bourc'his D, Xu G L, Lin C S, et al. Dnmt3L and the Establishment of Maternal Genomic Imprints[J]. Science.2001,294(5551):2536-2539.
    [138]Roh T Y, Cuddapah S, Zhao K. Active Chromatin Domains Are Defined by Acetylation Islands Revealed by Genome-wide Mapping[J]. Genes Dev.2005,19(5):542-552.
    [139]Hendrich B, Abbott C, McQueen H, et al. Genomic Structure and Chromosomal Mapping of the Murine and Human Mbdl, Mbd2, Mbd3, and Mbd4Genes[J]. Mamm Genome.1999,10(9):906-912.
    [140]Amir R E, Van den Veyver I B, Wan M, et al. Rett Syndrome Is Caused by Mutations in X-linked MECP2, Encoding Methyl-CpG-binding Protein2[J]. Nat Genet.1999,23(2):185-188.
    [141]Zhao X, Ueba T, Christie B R, et al. Mice Lacking Methyl-CpG Binding Protein1Have Deficits in Adult Neurogenesis and Hippocampal Function[J]. Proc Natl Acad Sci U S A.2003,100(11):6777-6782.
    [142]Hutchins A S, Mullen A C, Lee H W, et al. Gene Silencing Quantitatively Controls the Function of a Developmental Trans-activator[J]. Mol Cell.2002,10(1):81-91.
    [143]Kondo E, Gu Z, Horii A, et al. The Thymine DNA Glycosylase MBD4Represses Transcription and Is Associated with Methylated pl6(INK4a) and hMLH1Genes[J]. Mol Cell Biol.2005,25(11):4388-4396.
    [144]Chahrour M, Jung S Y, Shaw C, et al. MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription[J]. Science.2008,320(5880):1224-1229.
    [145]Cohen S, Zhou Z, Greenberg M E. Medicine:Activating a Repressor[J]. Science.2008,320(5880):1172-1173.
    [146]LaSalle J M. The Odyssey of MeCP2and Parental Imprinting[J]. Epigenetics.2007,2(1):5-10.
    [147]Boyer L A, Plath K, Zeitlinger J, et al. Polycomb Complexes Repress Developmental Regulators in Murine Embryonic Stem Cells[J]. Nature.2006,441(7091):349-353.
    [148]Lee T I, Jenner R G, Boyer L A, et al. Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells[J]. cell.2006,125(2):301-313.
    [149]Schuettengruber B, Chourrout D, Vervoort M, et al. Genome Regulation by Polycomb and Trithorax Proteins[J]. cell.2007,128(4):735-745.
    [150]Bracken A P, Dietrich N, Pasini D, et al. Genome-wide Mapping of Polycomb Target Genes Unravels Their Roles in Cell Fate Transitions[J]. Genes Dev.2006,20(9):1123-1136.
    [151]Squazzo S L, O'Geen H, Komashko V M, et al. Suz12Binds to Silenced Regions of the Genome in a Cell-type-specific Manner[J]. Genome Res.2006,16(7):890-900.
    [152]Bernstein B E, Mikkelsen T S, Xie X, et al. A Bivalent Chromatin Structure Marks Key Developmental Genes in Eembryonic Stem Cells[J]. Cell.2006,125(2):315-326.
    [153]Barski A, Cuddapah S, Cui K, et al. High-resolution Profiling of Histone Methylations in the Human Genome[J]. Cell.2007,129(4):823-837.
    [154]Weth O, Weth C, Bartkuhn M, et al. Modular Insulators:Genome Wide Search for Composite CTCF/thyroid Hormone Receptor Binding Sites[J]. PLoS ONE.2010,5(4):e10119.
    [155]Lewis A, Murrell A. Genomic Imprinting:CTCF Protects the Boundaries[J]. Curr Biol.2004,14(7):R284-286.
    [156]Fouse S D, Shen Y, Pellegrini M, et al. Promoter CpG Methylation Contributes to ES Cell Gene Regulation in Parallel with Oct4/Nanog, PcG Complex, and Histone H3K4/K27Trimethylation[J]. Cell Stem Cell.2008,2(2):160-169.
    [157]Laurent L, Wong E, Li G, et al. Dynamic Changes in the Human Methylome during Differentiation[J]. Genome Res.2010,20(3):320-331.
    [158]Lister R, Pelizzola M, Dowen R H, et al. Human DNA Methylomes at Base Resolution Show Widespread Epigenomic Differences[J]. Nature.2009,462(7271):315-322.
    [159]Irizarry R A, Ladd-Acosta C, Wen B, et al. The Human Colon Cancer Methylome Shows Similar Hypo-and Hypermethylation at Conserved Tissue-specific CpG Island Shores[J]. Nat Genet.2009,41(2):178-186.
    [160]Jones P A, Baylin S B. The Epigenomics of Cancer[J]. cell.2007,128(4):683-692.
    [161]Schuster-Gossler K, Bilinski P, Sado T, et al. The Mouse Gt12Gene Is Differentially Expressed during Embryonic Development, Encodes Multiple Alternatively Spliced Transcripts, and may Act as an RNA[J]. Dev Dyn.1998,212(2):214-228.
    [162]Sato S, Yoshida W, Soejima H, et al. Methylation Dynamics of IG-DMR and Gt12-DMR during Murine Embryonic and Placental Development J]. Genomics.2011,98(2):120-127.
    [163]Zhang X, Rice K, Wang Y, et al. Maternally Expressed Gene3(MEG3) Noncoding Ribonucleic Acid:Isoform Structure, Expression, and Functions[J]. Endocrinology.2010,151(3):939-947.
    [164]Nowak K, Stein G, Powell E, et al. Establishment of Paternal Allele-specific DNA Methylation at the Imprinted Mouse Gt12Locus[J]. Epigenetics.2011,6(8):1012-1020.
    [165]Allendoerfer K L, Shatz C J. The Subplate, a Transient Neocortical Structure: Its Role in the Development of Connections between Thalamus and Cortex[J]. Annu. Rev. Neurosci.1994,17:185-218.
    [166]Yevtodiyenko A, Schmidt J V. Dlkl Expression Marks Developing Endothelium and Sites of Branching Morphogenesis in the Mouse Embryo and Placenta[J]. Dev Dyn.2006,235(4):1115-1123.
    [167]McLaughlin D, Vidaki M, Renieri E, et al. Expression Pattern of the Maternally Imprinted Gene Gt12in the Forebrain during Embryonic Development and Adulthood[J]. Gene Expr Patterns.2006,6(4):394-399.
    [168]Zhang X, Zhou Y, Mehta K R, et al. A Pituitary-derived MEG3Isoform Functions as a Growth Suppressor in Tumor Cells[J]. J Clin Endocrinol Metab.2003,88(11):5119-5126.
    [169]Duckett S K, Snowder G D, Cockett N E. Effect of the Callipyge Gene on Muscle Growth, Calpastatin Activity, and Tenderness of Three Muscles across the Growth Curve[J]. J Anim Sci.2000,78(11):2836-2841.
    [170]Fleming-Waddell J N, Olbricht G R, Taxis T M, et al. Effect of DLK1and RTL1but not MEG3or MEG8on Muscle Gene Expression in Callipyge Lambs[J]. PLoS ONE.2009,4(10):e7399.
    [171]da Rocha S T, Charalambous M, Lin S P, et al. Gene Dosage Effects of the Imprinted Delta-like Homologue1(dlkl/prefl) in Development: Implications for the Evolution of Imprinting[J]. PLoS Genet.2009,5(2): e1000392.
    [172]Waddell J N, Zhang P, Wen Y, et al. Dlkl Is Necessary for Proper Skeletal Muscle Development and Regeneration[J]. PLoS ONE.2010,5(11):e15055.
    [173]Bernstein B E, Meissner A, Lander E S. The Mammalian Epigenome[J]. cell.2007,128(4):669-681.
    [174]Kouzarides T. Chromatin Modifications and Their Function[J]. cell.2007,128(4):693-705.
    [175]Lecuyer E, Yoshida H, Parthasarathy N, et al. Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function[J]. cell.2007,131(1):174-187.
    [176]Chen L L, Carmichael G G. Altered NuclearRetention of mRNAs Containing Inverted Repeats in Human Embryonic Stem Cells:Functional Role of a Nuclear Noncoding RNA[J]. Mol Cell.2009,35(4):467-478.
    [177]Braconi C, Kogure T, Valeri N, et al. MicroRNA-29Can Regulate Expression of the Long Non-coding RNA Gene MEG3in Hepatocellular Cancer[J]. Oncogene.2011,30(47):4750-4756
    [178]Venter J C, Adams M D, Myers E W, et al. The Sequence of the Human Genome[J]. Science.2001,291(5507):1304-1351.
    [179]Edwards C A, Mungall A J, Matthews L, et al. The Evolution of the DLK1-DIO3Imprinted Domain in Mammals[J]. PLoS Biol.2008,6(6):e135.
    [180]Xiao Y, Zhou H, Qu L H. Characterization of Three Novel Imprinted SnoRNAs from Mouse Irm Gene[J]. Biochem Biophys Res Commun.2006,340(4):1217-1223.
    [181]Kishore S, Khanna A, Zhang Z, et al. The SnoRNA MBII-52(SNORD115) is Processed into Smaller RNAs and Regulates Alternative Splicing[J]. Hum Mol Genet.2010,19(7):1153-1164.
    [182]Zhou Y, Zhong Y, Wang Y, et al. Activation of p53by MEG3Non-coding RNA[J]. J Biol Chem.2007,282(34):24731-24742.
    [183]Benetatos L, Vartholomatos G, Hatzimichael E. MEG3Imprinted Gene Contribution in Tumorigenesis[J]. Int J Cancer.2011,129(4):773-779.
    [184]Zhang X, Gejman R, Mahta A, et al. Maternally expressed gene3, an Imprinted Noncoding RNA Gene, Is Associated with Meningioma Pathogenesis and Progression[J]. Cancer Res.2010,70(6):2350-2358.
    [185]Golding M C, Magri L S, Zhang L, et al. Depletion of Kcnqlotl Non-coding RNA does not Affect Imprinting Maintenance in Stem Cells[J]. Development.2011,138(17):3667-3678.
    [186]Matouk I J, DeGroot N, Mezan S, et al. The H19Non-coding RNA Is Essential for Human Tumor Growth[J]. PLoS ONE.2007,2(9):e845.
    [187]Wu Q, Kumagai T, Kawahara M, et al. Regulated Expression of Two Sets of Paternally Imprinted Genes is Necessary for Mouse Parthenogenetic Development to Term [J]. Reproduction.2006,131(3):481-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700