基于磁流变技术的车辆半主动悬挂系统理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆在人们日常生活中的地位和对国民经济发展所起的作用越来越突出,当前国际汽车工业的发展形势,以及国内铁路提速的现实,都说明进一步提高车辆舒适性和安全性势在必行。
     本文结合“基于复合结构的半主动减振关键技术研究”国家自然基金项目(50275132)和“开发研制准高速列车油压减振器”横向项目的研究,在综合分析国内外车辆悬挂系统的发展、现状及其存在问题的基础上,重点针对基于磁流变技术的车辆半主动悬挂系统,从悬挂系统的减振器性能到车辆系统的运行品质进行理论和试验研究。具体内容如下:
     (1) 考虑被动悬挂系统仍是现有普通车辆的主要悬挂方式,结合国内列车提速的大背景,研究了准高速列车一系垂向油压减振器的主参数优化方法。为克服单个部件优化以及单纯将油压减振器阻尼系统作为定值的优化方法的缺陷,本文提出以整车平稳性为目标,将阻尼可调油压减振器阻尼特性进行等效线性化后,在整车系统中优化主参数。分析结果表明,采用部件优化方法所得值在整车系统中并非最优,验证了该方法的有效性和实用性。
     (2) 针对被动悬挂系统的高可靠性和半主动悬挂系统的可控性,提出一种复合结构半主动悬挂系统,该悬挂系统中的磁流变减振器在控制系统断电后,可以自动切换成阻尼可调的被动悬挂系统,以避免车辆高速行驶时悬挂系统功能完全崩溃,起到一定的安全保护作用。
     进而分析在设计阶段对复合结构半主动悬挂系统中磁流变减振器数学模型简化所产生的误差,并提出具体的误差消除方法,在此基础上建立优化模型,并以实例说明简化误差不可忽略以及本文所提出的误差消除方法的实用性。
     (3) 在对随机过程功率谱吋域再现仿真方法进行研究的基础上,综合考虑道路激励以及车辆系统参数的不确定性,进一步研究实现车辆舒适性和安全性的鲁棒控制策略,并结合阻尼无级变化半主动悬挂的阻尼调节方式,提出基于H∞控制的状态判断归一法和加速度滤波法策略。比较分析得出,这两种方法优于已有的参考模型法。
     (4) 基于磁流变技术的车辆半主动悬挂系统试验研究,不仅需要识別分析关键部件——磁流变减振器的可控性能及动态特性,而且需分析说明其对整体
    
    车辆系统的减振控制效果。针对此要求提出将拟动力试验技术用于半主动悬挂
    系统综合性能试验的具体思路和方法。针对此方法,在总结现有一准高速列车用
    悬挂系统性能、并考虑部分路面车辆悬挂系统性能范围的基础上,兼顾垂向和
    横向悬挂系统研制出试验系统样机系统,并以实测数据验证试验系统的功能及
    其精确性和可靠性。
     (5)在从控制应用的角度,综合分析磁流变减振器动态模型滞环特性的基
    础上,提出一种较简洁且适宜于控制应用的S型滞环模型,并通过实际试验数
    据对所提模型的参数进行识别及分析,进而不仅以试验数据验证了所提出模型
    的动态滞环特性与实际测试值的一致性,而且以试验验证了用于控制器的有效
    性。
     (6)应用S型滞环模型,对基于状态判断归一法、加速度法和参考模型法
    的H。控制策略进行了试验验证和对比分析,结果表明状态归一法应用于车辆半
    主动悬挂系统效果佳,能耗低。
    关键词:被动悬挂系统,变阻尼油压减振器,优化设计,半主动悬挂系统,
    复合结构,磁流变减振器,状态判断归一法,Hoo控制
    拟动力试验,S型滞环模型
The ride comfort and safety of vehicle is more important than before. It can be concluded from the trend of international automobile industry and the reality of improving speed in domestic railway. All above is because of the vehicles' distinguished effect in maintaining people living and boosting national economy.This dissertation combine some content which have finished for the national science foundation Research on the Key Technology of Semi-active Vibration Control Based on Composite Structure(Granted No.50275132) and enterprise project Development and Research of oil damper for high speed railway with semi-active suspension researching. The theory and test is investigated on vehicle semi-active suspensions employing the magnetorheological fluid to solve some limitations of suspension.Because the passive suspension is still the main mode of common vehicles now, the oil damper used for high-speed railway is optimized only focused on its key structure. On the purpose to obtain high ride comfort, the modeling strategy which coupling the damper into the whole vehicle system is presented by equivalent linearization the oil damper model. The optimized data indicates that this idea is more suitable than the method by separated damper alone.Based on the reliability of passive suspension and controllable of semi-active suspension, a kind of compounded structure of magnetorheological damper(CMRD) is concluded. The modifying skill is acquired after analyze the error of its design mathematical model. And the next work, which using the optimized CMRD dimension, prove this skill is necessary.Influenced by road irregularities exciting by stochastic process simulation in time domain and the parameter variable of vehicle system, the Robust control which improving the ride comfort and safety is analyzed, considering the semi-active damping adjustable continuously. Then, the novel judging state and filtering acceleration H control strategy is discovered. The conclusion that these two methods is better than Reference model stems from analysis.The difference of semi-active with MRD from the others needs a multi-functional test system which resorts to the pseudodynamic tests. This test system which can be used for vertical or lateral damper alone and semi-active pseudodynamic tests is verified by experiment.
    
    In view of controlling the vibration, A sigmoid hysteretic loop model orienting to using for controller is presented by studying the hysteretic characteristic of MRD dynamic model. This model inosculates the experiment data well in precision after the parameter is identified according to the experiment data.In the end of this thesis, the matching property of sigmoid hysteretic loop model and judging state, filtering acceleration, reference model H control strategy is contrasted each other, judging state Hoo control strategy capture the essential contribution of all the work for its efficient and less energy needs.
引文
[1] Segel L and Lang H H. The mechanics of automobile hydraulic dampers at high stoking frequencies. Vehicle System Dynamics, 1981, 10:82~85
    [2] Rakheja S, Su H and Sankar T S. Analysis of a passive sequential hydraulic damper for vehicle suspension. Vehicle System Dynamics, 1990, 19:289~312
    [3] Mollica R and Youcef-Toumi K. A nonlinear dynamic model of a monotube shock absorber. Proceedings of the American Control Conference, New Mexico, June 1997: 704~708
    [4] Wallaschek J. Dynamics of non-linear automobile shock-absorbers. International Journal of Non-linear Mechanics, 1990, 25(2/3): 299~308
    [5] 赵云.汽车筒式减振器阻尼测试及分析.江苏理工大学学报,1998, 19 (4):59~65
    [6] Sincebaugh P and Green W. A neural network based diagnostic test system for armored vehicle shock absorbers. Expert System with Application, 1996, 11(2): 237~244
    [7] Duym S, Stiens R and Reybrouck K. Evaluation of shock absorber models. Vehicle System Dynamics, 1997, 27:109~127
    [8] Nozaki H and Inagaki Y. Technology for measuring and diagnosing the damping force of shock absorbers and the constant of coil springs when mounted on a vehicle. JSAE Review, 1999, 20:413~419
    [9] 王文林,潘双夏,冯培恩.可调式线性油压减振器阻尼孔的精度设计研究.中国机械工程,2002,13(1):18~20
    [10] 杨景义等译,来恩华等校.机动车悬架手册.北京:国防工业出版社,1987:231~242
    [11] Katsuya T, Chuuji Y, Toshiharu K and Toshinori F. Study on dynamic characteristic analysis of air spring with auxiliary chamber. JSAE Review, 1999, 20(3): 349~355
    [12] 曹树平,易孟林,罗晓玉.油气悬架非线性阻尼模型的统计线性化分析.机床与液压,2002(6):139~140,205
    [13] Thompson A G. Design of active suspensions. Proceedings of the Institution of Mechanical Engineers, 1970-1971, 185:553~563
    [14] Sarma G N and Kozin F. An active suspension system design for the lateral dynamics of a high-speed wheel-rail system. Transactions of the ASME Journal of Dynamic systems, Measurement, and Control, 1971(9): 233~241
    [15] Sinha P K, Wormley D N and Hedrick J K. Rail passenger vehicle lateral dynamic performance improvement through active control. Transaction of the ASME Journal of Dynamic systems, Measurement, and Control, 1978, 100(12): 270~283
    [16] Hedlick J K. Railway vehicle active suspension. Vehicle System Dynamics, 1981 (10): 267~283
    [1
    
    [17] Williams R A. Active suspensions: classical or optimal?. Proceedings of 9th IAVSD symposium,, Linkoping, Sweden, 1985:607~620
    [18] Sharp R S and Hassan S A. The relative performance capabilities of passive, active and semi-active car suspension systems. Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 1986, 200:219~228
    [19] Thompson A G and Davis B R. Optimal linear active suspensions with vibration absorbers and integral output feedback control. Vehicle System Dynamics, 1989, 18:321~344
    [20] Mei T X, Foo E and Goodall R M. Genetic algorithms for optimising active controls in railway vehicles. The Institution of Electrical Engineerings, 1998:1~8
    [21] 陈志林,金志锋,赵六奇.汽车主动悬架系统的渐近稳定自适应控制.清华大学学报(自然科学版),1997, 37 (12): 106~110
    [22] Esat I. Genetic algorithm-based optimization of a vehicle suspension system. International Journal of Vehicle Design, 1999, 21 (2/3): 148~160
    [23] Hrovat D. Applications of optimal control to advanced automotive suspension design. Transactions of the ASME, 1993, 115:328~342
    [24] Yeh E C and Tsao Y J. A fuzzy preview control scheme of active suspension for rough road. International Journal of Vehicle Design, 1994, 15(1/2): 166~180
    [25] Ramsbottom M and Crolla D A. Simulattion of an adaptive controller for limited-bandwidth active suspension. International Journal of Vehicle Design, 1999, 21 (4/5): 355~371
    [26] Huang S J and Chao H C. Fuzzy logic controller for a vehicle active suspension system. Proceedings of the Institution of Mechanical Engineers, Part D, 2000, 214:1~12
    [27] Thompson A G and Davis B R. RMS values of force, stroke and tyre deflection in a half-car model with preview controlled active suspension. Vehicle System Dynamics, 2003, 39(3): 245~253
    [28] Barbieri N. The optimal active suspension systems for an off-road vehicle. International Journal of Vehicle Design, 1995, 16 (2/3): 219~228
    [29] Pratt I and Goodall R M. Control strategies to improve ride quality in railway trains. IEE Conference, 1994, 389 (3) : 21~24
    [30] Pratt I and Goodall R M. Controlling the ride quality of the central portion of a high-speed railway vehicle. Proceedings of the American Control Conference, Jun 4~6, 1997, 1
    [31] Foo E and Goodall R M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magetic actuators. Control Engineering Practice, 2000, 8(5): 507~518
    [32] Li H and Goodall R M. Linear and non-linear skyhook damping control laws for active railway suspensions. Control Engineering Practice, 1999, 7(7): 843~850
    
    [33] Kynan E G. Electromagnetic regenerative damping in vehicle suspension systems. International Journal of Vehicle Design, 2000, 24 (2/3): 182~197
    [34] Yokoya Y and Kizu R. Integrated control system between active control suspension and four wheel steering for the 1989 Celica. SAE paper 901748, 1990:1545~1561
    [35] Lijima T and Akastu Y. Devlopment of a hydraulic active suspension. SAE paper 931971, 1993: 2142~2153
    [36] Hoogterp F B. Active suspension in the automotive industry and the military. SAE paper 961037, 1996: 96~101
    [37] Nagai M. Recent researches on active suspensions for ground vehicles. JSME International Journal, series C, 1993, 36 (2): 161~170
    [38] Sharp R S and Wilson D A. On control law for vehicle suspensions accounting for input correlations. Vehicle System Dynamics, 1990, 19:353~363
    [39] Watanabe Y and Sharp R S. Neural network learning control of automotive active suspension systems. International Journal of Vehicle Design, 1999, 21(2/3): 124~147
    [40] Yagiz N, Yuksek I and Sivriglu S. Robust control of active suspensions for a full vehicle model using sliding mode conrol. JSME International Journal, Series C, 2000, 43(2): 253~257
    [41] 马国新,赵六奇,金达峰,陈志林.油气主动悬架非线性模型的建立、仿真与试验验证.汽车工程,2000,22(3):162~165,213
    [42] 王庆丰,韩波.电液主动悬架的H∞控制研究.汽车工程,2000,22(2):77~80
    [43] 张汉全,戴焕云.H∞与u鲁棒控制方法在车辆悬挂中应用.铁道学报,1997,19(5):121~128
    [44] 彭忆强,张汉全.车辆悬挂系统的辨识建模.西南交通大学学报,1999,34(5):512~517
    [45] 戴焕云,张汉全.车辆主动悬挂的鲁棒稳定性及鲁棒性能研究.铁道车辆,1998,20(4):50~55
    [46] 杨名利.摆式列车的H∞鲁棒控制研究.铁道学报,1999,21(1):19~22
    [47] 张开林,金鼎昌.车辆横向主动悬挂试验对比研究.铁道学报,1998,20(5):35~39
    [48] Karnopp D C and Trikha A K. Comparative study of optimization techniques for shock and vibration isolation. Journal of Engineering for Industry, 1969:1128~1132.
    [49] Karnopp D C and Crosby M J. The active damper—a new concept for shock and vibration control. The Shock and Vibration Bulletin, 1973, 43, The Shock and vibration Information Center, Naval Research Laboratory, Washington, D. C.
    [50] Karnopp D C Crosby M J and Harwood R A. Vibration control using semi-active fore generatorrs. Transactions of the ASME Journal of Engineering for Industry, series B, 1974, 96(2): 619~626
    [51] Margolis D L, Tyle J L and Hrovat D. Heave mode dynamics of a tracked air custion vehicle with semi-active airbag secondary suspension. Transactions of the ASME Journal of Dynamic System, Measurement and control, 1997, 119(4): 399~407
    
    [52] Valasek M, Novak M and Sika Z. Extended ground-hook - new concept of semi-active control of truck's suspension. Vehicle System Dynamics, 1997, 27(6): 5~6
    [53] Toyofuku K. Study on dynamic characteristic analysis of air spring with auxiliary chamber. JSME Review , 1999, 20(3): 349~355
    [54] Guy Y, Kerastas W and Bruckman R E. A Solenoid-actuated pilot valve in a semi-active damping system. SAE paper 881139, 1988
    [55] Besinger F H, Cebon D and Cole D J. Experimental investigation into the use of semi-active dampers on heavy lorries. Proceedings of 12th IAVSD symposium, Lyon, 1991: 57~71
    [56] Stribersky A, Kienberger A, Wagner G and Müller H. Design and evaluation of a semi-active damping system for rail vehicles. Vehicle System Dynamics, Supplement, 1998, 28: 669~681
    [57] Kitching K J, Cole D J and Cebon D. Performance of a semi-active damper for heavy vehicles. Transaction of the ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122 (9): 498~506
    [58] Heo S J and Park K. Performance and design consideration for continuously controlled semi-active suspension systems. International Journal of Vehicle Design, 2000, 23 (3/4): 376~389
    [59] Heo S J, Park K and Son S H. Modeling of continuously variable damper for design of semi-active suspension systems. International Journal of Vehicle Design, 2003, 31 (1): 41~57
    [60] Karnopp D C. Permanent magnet linear motors used as variable mechanical dampers for vehicle suspension. Vehicle System Dynamics, 1989, 18: 187~200
    [61] Karnopp D C. Design principles for vibration control systems suing semi-active dampers. Transactions of the ASME Journal of Dynamic systems, Measurement, and Control, 1990, 112(9): 448~455
    [62] Nakai H. Application of practical observer to semi-active suspension for rough road. International Journal. of Vehicle Design, 1994, 15(1/2): 166~180
    [63] 陆正刚.铁道车辆主动、半主动空气弹簧悬挂系统的研究.铁道学报,2001,23(1):33~38
    [64] 王月明.车辆半主动悬挂开关控制特性的研究.机械工程学报,2002,38(6):248~151
    [65] 张庙康,胡海岩.车辆悬挂振动控制系统研究的进展.振动、测试与诊断,1997,17(1):7~15
    [66] Wu X M, Wong J Y, Struk M and Russel D L. Simulation and experimental study of a semi-active suspension with an electrorheological damper. Electrorheological Fluids, Mechanisms, Properties, Technology and Applications, Proceedings of the 4th Intemational Conference, Feldkirch, July 20~23, 1993
    
    [67] Sturk M X, Wu M and Wong J Y. Development and evaluation of a high voltage supply unit for electrorheological fluid dampers. Vehicle System Dynamics, 1995, 24:101~121
    [68] Laura M J and Shirley J D. Semi-active control strategies for MR damper: comparative study. Journal of Engineering Mechanics, 2000, 126(8): 795~803
    [69] Milecki A. Investigation and control ofmagneto-rheological fluid dampers. International Journal of Machine Tools & Manufacture, 2001, 41:379~391
    [70] Spencer Jr B F, Carlson J D, Sain M K and Yang G. On the current status of magnetorheological dampers: seismic protection of full-scale structures. Proceedings of the American Control Conference, New Mexion June 1997:458~462
    [71] Sims N D and Stanway R. Semi-active control of fexural vibrations with an MR Fluid actuator. Smart Structures & Materials, 1999(6): 167~174
    [72] Carlson J D and Weiss K D. A growing attraction to magnetic fluids. Machine Design, 1994(8): 61~64
    [73] Dyke S J, Spencer Jr B F, Sain M K and Carlson J D. Modeling and control of magnetorheological dampers for seimic response, reduction. Smart Materials & Structures, 1996(5): 565~575
    [74] Occhiuzzi A, Spizzuoco M and Serino G. Experimental analysis of magnetorheological dampers for structural control. Smart Materials & Structures, 2003(10): 703~711
    [75] Dyke S J, Spencer Jr B F, Sain M K and Carlson J D. An experimental study of MR dampers for seismic protection. Smart Materials & Structures, 1998(7): 693~703
    [76] Spencer Jr B F, Dyke S J, Sain M K and Carlson J D. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 1997(3): 230~238
    [77] Gamdhi F, Wang K W and Xia L. Mangnetorheological fluid damper feedback linearization control for helicopter rotor application. Smart Materials & Structures, 2001(10): 96~103
    [78] Kim K, Lee J and Jeon D. Vibration suppression of an MR fluid damper system with frequency shaped LQ control. Proceedings of the 7th International Conference on Electro-Rheological fluids and Magneto-Rheological suspensions, July 19~23, 1999
    [79] Krakov M S. Influence of rheological properties of magnetic fluid on damping ability of magnetic fluid shock-absorber. Journal of Magnetism and Materials, 1999, 201 : 368~371
    [80] Sunakoda K. Dynamic characteristic of magneto-rheological fluid damper, Proceedings of the SPIE , No3989, 1994
    [81] 张峰,余景池,张学军,谭庆昌.对磁流变抛光技术中磁场的分析.仪器仪表学报,2001,22(1):42~44,48
    [82] 程海斌,李立春,官建国,张洁杰,瞿伟廉,袁润章.纳米铁钻磁流变液的流变特性研究.武汉理工大学学报,2003,25(8):5~7
    
    [83] 胡林,张朝平,罗玉萍,王作维,蔡绍洪,周鲁卫.铁/蛋白质复合微粒的结构及其磁流变性能.复合材料学报,2001,18(3):14~17
    [84] 金昀,周刚毅,张培强,李卫华.两种磁流变液测试系统的比较研究.实验力学,1999,14 (3):288~293
    [85] 汪建晓,孟光.磁流变液阻尼器用于振动控制的及实验研究.振动与冲击,2001,20(2).39~45
    [86] Hale A L, Lisowdki R J, Dahl W. E. Optimal structural and control of maneuvering flexible spacecraft. Journal of Guidance, Control and Dynamics, 1985, 8(1): 86~93
    [87] Runhua T, Ying C. Complex nonlinear mathematical model for a kind of vehicle shock absorbers. Chinese Journal of Mechanical Engineering, 1999, 12(1): 32~39
    [88] Gavin H P, Hanson R D and Filisko F E. Electrorheological damper Ⅰ: analysis and design. Transactions of the ASME Journal Applied Mechanic, 1996, 63:669~675
    [89] Gavin H P, Hanson R D and Filisko F E. Electrorheological damper Ⅱ: testing and modeling. Transactions of the ASME Journal Applied Mechanics, 1996, 63:676~682
    [90] Kyle C S and Paul N R. Fuzzy modeling of a magnetorheological damper using ANFIS. http://www. zju. edu. cn homepage:(IEEE/IEE Electronic Library)
    [91] Patter W N, Mo C, Kuehn J and Lee J. A primer on design of semiactive vibration absorber(SAVA). Journal of Engineering Mechanics, 1998(8): 61~68
    [92] Castillo J M. Optimization for vehicle suspension Ⅱ : Frequency domain. Vehicle System Dynamics, 19(1990): 331~352
    [93] Pintado P and Benitez F G. Vehicle suspension optimization. Mathematical and Computer Modeling, 1988, 11:946~949
    [94] 王文林,潘双夏,冯培恩.铁路车辆多级线性拟合线性油压减振器.中国机械工程,2000(10):1165~1168
    [95] Yeh E C, Lu S H, Yang T W and Hwang S S. Dynamic analysis of a double-tube shock absorber forrobust design. JSME Journal, series C, 1997, 40(2): 335~345
    [96] 王福天.车辆动力学.北京:中国铁道出版社,1994
    [97] 檀润华,陈鹰,赵凡,路甬祥.汽车减震器新型数学模型的研究.汽车王程,1998,20(2):113~117
    [98] 庄表中.非线性随机振动理论及应用.杭州:浙江大学出版社,1986
    [99] Nigam N C. Introlduction to random vibration, the MIT Press, 1983
    [100] Satoru O, Tomomi N, Ichisei K, Yoshikazu M. Nonlinear H∞ control for semi-active suspension. JSAE Review, 1999, 20(4): 447~452
    [101] 张格明.160km/h线路轨道不平顺管理标准的研究.中国铁道科学,1995,16(4):31~41
    [102] 曾三元,吴应暄.悬挂参数对车辆垂向振动性能的影响.铁道车辆,1984(9):8~13
    
    [103] 陈果,翟婉明,蔡成标,王其昌.传统车辆模型与车辆轨道耦合模型的垂向随机振动响应分析及比较.铁道学报,1999,21(5):70~74
    [104] 王新锐.高速客车转向架悬挂参数灵敏度及耦合关系探讨.铁道机车车辆,2000(2):13~18
    [105] GB5599-85.中华人民共和国铁道部.铁道车辆动力学性能评定和试验鉴定规范
    [106] 焦俊芬.客车运行评定中应用于IS02631标准的研究.国外内燃机车,1995(4):36~40
    [107] 铃木,浩明[日].振动舒适性的国际标准草案.国外铁道车辆,2000,37(1):42~45
    [108] 胡用生,谭复兴.随机振动与谱分析.上海:上海铁道学院,1990:162~163
    [109] ISO2631-1:1997. Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration, Part 1 : General requirements
    [110] Dodds C J and Robson J D. The description of road surface roughness. Journal of Sound and Vibration, 1973, 31(2): 175~183
    [111] Kamath K M A and Robson J D. Implications fo isotropy in random surfaces. Journal of Sound and Vibration, 1977, 54(1): 131~145
    [112] Kamath K M A and Robson J D. The application of isotropy road surface modeling. Journal of Sound and Vibration, 1978, 57(1): 89~100
    [113] 长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究.长沙铁道学院学报,1985(2):1~36
    [114] 胡广书编著.数字信号处理——理论、算法与实现.北京:清华大学出版社,2000
    [115] 王宏禹著.随机数学信号处理.北京:科学出版社,1988
    [116] 夏禾著.车辆与结构动力相互作用.北京:科学出版社,2002
    [117] Redfield R C and Karnopp D C. Roadway elevation profile generation for vehicle simulation. Vehicle System Dynamics, 1988, 17:267~280
    [118] 孙宁,李瑰贤.随机振动信号的一种简单模型计算方法.振动与冲击,2000,19(2):50~51,63
    [119] 钱雪军.轨道不平顺的时域模拟法.铁道学报,2000,22(4):94~98
    [120] Marzbanrad J. Optimal active control of vehicle suspension system including time delay and preview for rough roads. Journal of Vibration and Control, 2002 (8): 967~991
    [121] Shinozuka M. Monte Carto solution of structural dynamics. Computer & Structures, 1972(2): 855~874
    [122] Shinozuka M and Deodatis G. Simulation of stochastic process by spectral representation. Applied Mechanics Review, 1991, 44:191~204
    [123] 朱位秋.随机振动.北京:科学出版社,1998
    [124] 檀润华.汽车减振器及乘座动力学非线性建模研究:[学位论文].杭州:浙江大学机械与能源学院,1998
    
    [125] GB 5902-86.中华人民共和国国家标准.汽车平顺性脉冲输入行驶试验方法
    [126] 威鲁麦特H P著.车辆动力学模拟及其方法.北京:北京理工大学出版社,1998
    [127] 米奇克M著,陈荫三译.汽车动力学.北京:人民交通出版社,1994
    [128] GB/T4970—1996.中华人民共和国国家标准,平顺性评价指标的意义与计算(附录A)
    [129] 康展权主编.汽车工程手册·设计篇.北京:人民交通出版社,2001
    [130] 周克敏[美],Doyle J C[美],Glover K[美]著,毛剑琴译.鲁棒与最优控制.北京:国防工业出版,2002
    [131] Safonov G., Limebeer D J and Chiang R C. Simplifying the H∞ theory vis loopshifting, matrix-pencil and descriptor concepts. International Journal of Control, 1989, 50(6): 2467~2488
    [132] Yue C, Butsuen T and Hedrick J K. Alternative control laws for automotive active suspensions. Transactions of the ASME Journal of Dynamic systems, Measurements, and Control, 1989, 111(6): 286~291
    [133] 陈虹,赵桂军,孙鹏远,郭孔辉.H_2和H_∞主动悬架统—理论框架与比较.汽车工程,2003,25(1):1~6
    [134] 余志生.汽车理论.北京:机械工业出版社,2000
    [135] Choi S B, Choi Y T and Park D W. A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation. Transactions of the ASME Journal of Dynamic systems, Measurement, and Control, 2000, 122(3): 114~121
    [136] Patten W N, Mo C, Kuehn J and Lee J. A primer on design of semi-active vibration absorbers. Journal of Engineering Mechanics, 1998(1): 61~67
    [137] Andrzej M. Investigation and control of magneto-rheological fluid dampers. International Journal of Machine Tools & Manufacture, 2001, 41:379~391
    [138] Choi S B, Choi Y T, Chang E G, Han S J and Kim C S. Control characterristics of a continuously variable ER damper. Mechatronics, 1998, (8): 143~161
    [139] Jansen L M and Dyke S J. Semi-active control strategies for MR damper: comparative study. Journal of Engineering Mechanics, 2000, 126 (8): 795~803
    [140] Nagarajaiah S, Sahasrabudhe S and lyer R. Seismic response of sliding isolated bridges with MR dampers. Proceedings of the American Control Conference, Chicago Illinois, June 2000:4437~4441
    [141] Besinger F H, Cebon D and Cole D J. Force control of a semi-active damper. Vehicle System Dynamics, 1995, 24:695~723
    [142] 白国良,秦福华著.型钢钢筋混凝土原理与设计.上海:上海科学技术出版社,2000
    [143] Hakuno M S and Hara T. Dynamic-destructive test of a cantilevers beam controlled by an analog computer. Transactions of the Japan Society of Civil Engineering, 1969, 171(11).邱法维,钱稼茹,陈志鹏著.结构抗震实验方法.北京:科学出版社,2000, 115
    [1
    
    [144] Takanashi K.Seismic failure analysis of structures by computer-pulsator on-line system. Journal of the Institute Science,University of Tokyo,1 974,26(11).邱法维,钱稼茹,陈志鹏著.结构抗震实验方法.北京:科学出版社,2000:115
    [145] 邱法维,潘鹏.建筑结构拟动力实验软件的开发与应用.建筑结构学报,2000,21(5):22~32
    [146] Merritt H E. Hydraulic control systems. New York: Willey, 1967
    [147] 徐灏主编.机械设计手册(第5卷).北京:机械工业出版社,1992
    [148] 路甬祥主编.液压气动技术手册.北京:机械工业出版社,2002
    [149] 铁道部四方车辆研究所.J95型双向油压减振器试验台——使用说明书,1997
    [150] JB3901-85.汽车筒式减振器台架试验方法
    [151] 宋志强.铁轨车辆横向油压减振器研制.铁道车辆,2000,38,增刊:128~129
    [152] 董冠军,牛毅民.ERF减振器可行性研究.噪声与振动控制,1996(4):5~8,20
    [153] Technical Drawing. Lord Corporation. Thomas Lord research Center, 110 Lord Drive Cary, NC 27511
    [154] Snyder R A, Kamath G M and Wereley N M. Characterization and analysis of magnetorheological damper behavior due to sinusoidal loading. Proceedings of SPIE 2000, No 3989:213~218
    [155] 沈仲棠,刘鹤年.非牛顿流体力学及其应用.北京:高等教育出版社,1989
    [156] Gamota D R and Filisko F E. Dynamic mechanical studies of electrorheological materials: moderate frequencies. Journal of Rheology, 1991, 35:399~425
    [157] Dimock G A, Lindler J E and Werwley N M. Bingham biplastic analysis of shear thinning and theickening in magnetorheological damper. Proceedings of SPIE, No3985, 2000, paper No. 49
    [158] Li W H, Yao G Z, Chen G., Yeo S H and Yap F F. Testing and steady state modeling of a linear MR damper under sinusoidal loading. Smart Materials & Structures, 2000(9): 95~102
    [159] 冯培悌.系统辨识.杭州:浙江大学出版社,1999
    [160] 闻新,周露,王丹力,熊晓英编著.MATLAB神经网络应用设计.北京:科学出版社,2001
    [161] Rabinow J. The Magnetic Fluid Clutch. AIEE Transaction, 1948, 67: 1308~1315. In: Jolly M R, Bender J W and Carlson J D. Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures, 1999, 10(1): 5~13
    [162] Tang X, Zhang X and Tao R. Enhance the yield shear stress of magnetorheological fluids. Proceedings of the 7th international Conference on Electro-Rheological fluids and Magneto-Rheological suspensions, July 19-23, 1999:3~9
    
    [163] 王凯编著.非牛顿流体的流动、混合和传热.杭州:浙江大学出版社,1988
    [164] 韩式方著.非牛顿流体本构方程和计算解析理论.北京:科学出版社,2000
    [165] Li W H, Chen G and Yeo S H. Viscoelastic properties of MR fluids. Smart Materials & Structures, 1999(8): 460~468
    [166] Gordaninejd F and Kelso S P. Magneto-rheological fluid shock absorbers for HMMWV. Proceedings of SPIE, No3989, 2000:266~273
    [167] Lee D Y, Wereley N M. Quasi-steady Herschel-Bulkey analysis of electro- and magnetro-rheologcal flow mode dampers. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 761~769
    [168] Lindler J and Wereley N M. Quasi-steady Bingham plastic analysis of an electrorheological flow mode bypass damper with piston bleed. Smart Materials & Structures, 2003(12): 305~317
    [169] Jolly M R, Bender J W and Carlson J D. Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures, 1999, 10(1): 5~13
    [170] 张玉民,戚伯云编.电磁学.北京:科学出版社,合肥:中国科学技术大学出版社,2000
    [171] 张绍贤,陈鼎瑞主编电力工程(电工手册)第一分册.北京,水利电力出版社,1988
    [172] Wereley N M, Pang L. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Materials & Structures, 1998(7): 732~743
    [173] Choi S B, Lee H S, Hong S R, and Cheong C C. Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles. Proceedings of SPIE, No 3985, 2000:438~443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700