网络控制系统的分析与综合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、网络技术的迅猛发展以及控制系统规模的日益扩大,21世纪的控制系统将以网络为主要特征。网络控制系统(Networked Control Systems,简称NCSs)是控制、计算机、通信、网络等多种技术交叉融合的产物,它可以应用于几乎任何带有控制器的分布设备需要进行数据交换的场合,体现了控制系统向网络化、集成化、分布化、节点智能化的发展趋势,NCSs是当前控制系统发展的新阶段。由于具有成本低、连接线数少、易于扩展维护、高效、高可靠性和信息资源共享等诸多优点,使得NCSs已在工业自动化、智能交通、机器人、航空航天、国防等领域获得了广泛的应用。但是,NCSs中由于网络的引入,不可避免地带来了许多问题:如网络传输时滞、数据丢包、多包传输、时钟异步等等。这些问题的存在,不但会降低控制系统的性能,甚至导致系统的不稳定,从而使得对NCSs的分析和设计变得十分复杂。因此,对NCSs的分析与综合是当前控制理论研究的重要内容,也已成为国内外学者研究的热点问题之一。
     本文从控制理论及算法的角度出发,围绕NCSs中的一些基本问题,利用Lyapunov稳定性理论、时滞系统理论、随机系统理论及线性矩阵不等式(LMIs)方法、奇异系统方法、自由权矩阵方法等的一些现有结果对NCSs的建模、稳定性和控制进行了相关研究,在对NCSs的分析与综合过程中给出了这些基本问题的研究结果。
     首先,本文介绍了NCSs的产生背景、发展历程、基本概念特点等,详细阐述了其基本内容。从控制和网络通信两个角度较全面地对国内外NCSs主要研究内容、典型研究方法进行了概括总结,指出了存在的问题及本文待研究的内容。
     由于控制网络是NCSs中的重要组成部分,而时滞问题是NCSs中的核心问题之一,因此本文系统阐述了控制网络的基本概念和基本内容,重点讨论和分析了以太网(Ethernet)、控制网(ControlNet)和CAN总线三种典型控制网络的特点和性能。同时还对NCSs中的时滞问题进行详细的分析,讨论了时滞的组成、定义及其对NCSs的影响等。这些定性的分析和讨论对于研究NCSs的建模、稳定性分析与控制具有重要的指导意义和参考价值。
     针对现有的研究结果大多局限于单回路NCSs的建模与分析,分别建立了多时滞NCSs和一类不确定多时滞MIMO的NCSs的各种模型,基于Lyapunov稳定性理论和LMIs方法研究了多时滞NCSs的时滞相关稳定性和镇定性问题,给出了基于广义Lyapunov矩阵方程(不等式)和LMIs形式的较小保守性的稳定和镇定判据,并设计了无记忆状态反馈控制器。
     针对一类MIMO的NCSs模型,在考虑常时滞、时变时滞和系统不确定性等情形下,分别利用时滞系统理论、LMIs方法、奇异系统方法以及引入自由权矩阵等方法分析了这类不确定多时滞NCSs的鲁棒稳定性问题,给出了基于LMIs形式的与时滞相关/无关、与时滞导数相关/无关的稳定判据。同时还给出了相应的标称系统的稳定结论。与其它文献结论相比,这些结论保守性较小且更具有广泛性和一般性。数字实例和仿真表明了这些方法的有效性。
     考虑到系统的不确定性及外界干扰,建立了具有丢包和时滞的NCSs模型,将其等效为一个不确定马尔可夫切换时滞系统。针对此模型,构造出一种新型的Lyapunov-Krasovskii泛函,利用Lyapunov稳定性理论、随机时滞系统理论并结合LMIs技巧和自由权矩阵等方法,研究了该系统与时滞相关的鲁棒稳定性、镇定性及具有一定干扰抑制水平的Η∞控制器设计等问题。给出了一系列基于LMIs的较小保守性的鲁棒随机稳定和镇定条件,这些结论与现有文献相比保守性更小且更具有广泛性,同时还给出了相应最大允许时滞边界(MADB)的求解算法。实例仿真说明了方法的有效性。
     针对NCSs可能存在的随机扰动,研究了具有时变时滞和不确定性的线性、非线性随机扰动NCSs的鲁棒稳定性和均方指数稳定性问题。通过运用Lyapunov稳定性理论、随机时滞系统理论并结合LMIs技巧和自由权矩阵等方法,得到了一系列基于LMIs的保守性较小的鲁棒随机稳定、均方指数稳定的判据,这些结果对于确定型系统同样适用。同时给出了相应的实例仿真表明了该方法的有效性和优越性。
     设计了一个NCSs的实验仿真平台。实现了对给定系统在实际网络上的仿真实验,从而为NCSs的分析和设计提供了较好的仿真环境。但是,该平台目前只是一个初步的仿真平台,在以后的工作中有待进一步完善。
     最后,对全文研究工作做了总结,并对今后进一步开展的研究工作进行了展望。
With the rapid development of computer technology and network technology, together with the increasing scale of control system, the main feature of control system in 21st is involved with network. Networked control systems (NCSs) come into being by combination control technology with computer technology, communication technology and network technology, etc., wich can be applied in almost any distributed devices with controller requring data exchange. The appearance of NCSs manifest the developed trend of control systems, i.e. neworked, integrated, distributed and nodes intelligentized. NCSs are the new stage of current development of control systems. The enormous advantages of NCSs, including lower cost, reduced weight and power, simpler installation and maintenance, ease of system diagnosis, and increased system flexibility, etc., which have made NCSs increasingly popular in many real-time distributed control applications such as industrial automation, intelligent vehicle systems, mobile robotics, advance aircraft and spacecraft and national defence, etc.. However, the insertion of the network in the feedback control loop brings many new issues inevitably such as network-induced delay, data packet dropouts, multiple-packet transmission, clock synchronization, etc.. These issues can degrade the performance of control systems and can even destabilize the system, which make the analysis and design of NCSs complex. Therefore, analysis and synthesis of NCSs have become one of the most important issues in control theories study, and also have received considerable attention and interest by researchers in recent years.
     In the dissertation, some essential issues of NCSs are dicussed from the point of view on control theory and arithmetic. Modelling, stability analysis and control problems of NCSs are investigated based on some existing results of Lyapunov stability theory, time-delay system theory, stochastic system theory combined with linear matrix inequalities (LMIs) techniques, descriptor system approach and free weighting matrices approach. Some new results are given in the process of analysis and synthesis on NCSs.
     Firstly, the background, history, basic concepts and features of NCSs are introduced, and some essential issues of NCSs are presented in detail. From points of view on control and network communication, the main research contents and methods of NCSs at home and abroad are summarized comprehensively, and also the existing issues and contents to be studied are given.
     Since control network is one of the crucial parts of NCSs and network-induced delay is the essential issues in NCSs, consequently, the basic concepts and contents of control network are introduced. Much emphasis is put on the discussion and analysis for the characteristics and performance of three typical control networks, i.e., Ethernet, ControlNet and CAN Bus. At the same time, the time-delay issues, for example, the components, definition of delay and its impact on NCSs are analyzed detaily. These qualitative analysis and discussion have much important guidance and reference values in studying of modeling, stability analysis and control for NCSs.
     In view of previous results on modeling and analysis for NCSs are almost limited to single feedback control loop, a class of multiple time-delays NCSs and multi-input and multi-output (MIMO) NCSs continuous time models are proposed. Delay-dependent stability and stabilization of the NCSs with multiple time-delays are dealed with by utilizing the Lyapunov stability theory combinied with LMIs techniques. Some new less conservative stability and stabilization criteria in terms of generalized Lyapunov matrix equation (inequality) and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs.
     Considering a class of MIMO NCSs with constant delays, time-varing delays and structured uncertainties, robust stability is investigated for the uncertain NCSs with multiple time-delays based on Lyapunov stability theory approach, LMIs techniques, descriptor system approach, and free weighting matrices approach, respectively. Some new delay-dependent / delay-independent stability criteria, delay-derivative-dependent / delay-derivative-free stability conditions in terms of LMIs are given, and the results of corresponding norminal systems are also presented. These propsed reuslts are much less conservative and are more general than the existing ones. Numerical examples and simulations are provided to illustrate the effectiveness of the proposed methods.
     For the NCSs with data packet dropouts and network-induced delay simultaneously, a model with structured uncertainties and exoteric disturbance is constructed, which is equivalent to an uncertain Markovian switching delayed system. By constructing a new Lyapunov-Krasovskii functional, delay-dependent robust stability, robust stabilization andΗ∞control with a prescribed disturbance attenuation level of the NCSs are investigated by combining Lyapunov stability theory, stochastic delayed system theory with LMIs techniques, descriptor system approach and free weighting matrices approach. A series of robustly stochastically stable and stabilizable criteria in terms of LMIs are obtained, which are much less conservative and more general than the existing ones. Also, the algorithms to get the maximum allowable delay bound (MADB) are given. Numerical examples and simulations show that the methods are effective.
     For the NCSs with potential stochastic perturbations, the problems of robust stability and exponential stability in the mean square for a class of uncertain linear and nonlinear stochastic systems with time-varying delay are investigated. Based on Lyapunov stability theory, stochastic delayed system theroy combined with LMIs techniques and some free weighting matrices approach, some less conservative robustly stochastically stable and exponentially stable in the mean square criteria in terms of LMIs are derived, which also hold for their corresponding deterministic systems with time-varying delay. Numerical examples and simulations are given to show that the proposed methods are more effective and are an improvement over previous ones.
     An experiment simulation platform for NCSs is developed. Some simulation experiments for the given systems on real network are realized on the platform, thus a comparatively better simulation environment for design and analysis of NCSs is provided. However, the plotform is just an elementary simulation software, much work leaves to be done to make it more perfect in subsequent research.
     Finally, a summary has been done for all discussion in the dissertation. The research works in further study are presented.
引文
[1]王飞跃,王成红.基于网络控制的若干基本问题的思考和分析.自动化学报(增刊), 2002, 18: 171-176.
    [2] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. Proc. of the American Control Conference, San Diego, CA, USA, 1999: 2876-2880.
    [3] Walsh G C, Ye H. Scheduling of networked control systems. IEEE Control Systems Magazine, 2001, 21(1): 57-65.
    [4] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control Systems. IEEE Trans. Control Systems Technology, 2002, 10 (3): 438-446.
    [5] Walsh G C, Beldiman O, Bushnell L G. Asymptotic behavior of nonlinear networked control systems. IEEE Trans. on Automatic Control, 2001, 46 (7): 1093-1097.
    [6] Walsh G C, Beldiman O, Bushnell L G. Asymptotic behavior of networked control systems. Proc. of IEEE Int. Conf. on Control Applications, Hawaii, USA, 1999: 1448- 1453.
    [7] Walsh G C, Beldiman O, Bushnell L G. Error encoding algorithms for networked control systems. Proc. of the 38th Conf. on Decision and Control. Phoenix, Arizona, USA, 1999: 4933-4938.
    [8] Branicky M S, Philips S M, Zhang W. Stability of networked control systems: explicit analysis of delay. Proc. of American Control Conference, Chicago, IL, USA, 2000: 2352-2357.
    [9] Zhang W, Branicky M S, Philips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(1): 84-99.
    [10] Zhang W. Stability analysis of networked control systems: [Ph.D. dissertation]. Department of Electrical and Computer Science, Case Western Reserve University, USA, 2001.
    [11] Lian F L. Analysis, design, modeling, and control of networked control systems: [Ph. D. dissertation]. Department of Mechanical Engineering, University of Michigan, USA, 2001.
    [12] Kim Y H, Kwon W H, Park H S. Stability and a scheduling method for network-based control systems. Proc. of the IEEE 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996: 934-939.
    [13] Park H S, Kim Y H, Kim D S. A scheduling method for network-based control systems. IEEE Trans. on Control Systems Technology, 2002, 10(3): 318-330.
    [14] Halevi Y, Ray A. Integrated communication and control systems: Part I-analysis.Journal of Dynamic Systems, Measurement, and Control, 1988, 110(4): 367-373.
    [15] Ray A, Halevi Y. Integrated communication and control systems: Part II-design considerations. Transactions of ASME, 1988, 110(4): 374-381.
    [16] Liou L W, Ray A. An integrated communication and control systems: Part III- nonidentical sensor and controller sampling. Journal of Dynamic Systems, Measurement, and Control, 1990, 112(4): 357-364.
    [17] Liou L W, Ray A. A stochastic regulator for integrated communication and control systems: Part I-Formulation of control law. ASME Journal of Dynamic Systems, Measurement and Control, 1991, 113(4): 604-611.
    [18]顾洪军,张佐,吴秋峰.网络控制系统的机理描述模型.控制与决策, 2000,15(5): 634-636.
    [19]顾洪军.网络控制系统建模及性能分析方法的研究: [博士学位论文].北京:清华大学, 2001.
    [20] Nilsson J. Real-time control systems with delays: [Ph. D. dissertation]. Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998.
    [21] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays. Automatica, 1998, 34(1): 57-64.
    [22] Luck R, Ray A. An Observer based compensation for distributed delays. Automatica, 1990, 26(5): 903-908.
    [23] Ray A. Output feedback control under randomly varying distributed delays. Journal of Guidance, Control and Dynamics, 1994, 17(4): 701-711.
    [24] Hu S Q, Zhu Q X. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 2003, 39(11): 1877-1884.
    [25] Krotolica R, Ozguner U, Chen H, et al. Stability of linear feedback system with random communication delays. International Journal of Control, 1994, 59(4): 925- 953.
    [26] Lin X, Arash H, Jonathan P H. Control with random communication delays via a discrete-time jump system approach. Proc. of the American Control Conference, Chicago, Illinois, USA, 2000: 2199-2204.
    [27]黄剑.网络化控制系统的建模、稳定与控制研究: [博士学位论文].武汉:华中科技大学, 2005.
    [28]邱占芝,张庆灵,杨春雨.基于广义系统的网络控制系统的分析与建模.东北大学学报, 2005, 26(5): 409-412.
    [29]邱占芝,张庆灵.一类多输入多输出网络控制系统的稳定性分析.控制与决策, 2005, 20(5): 525-538.
    [30]樊卫华,蔡骅,陈庆伟等.基于异步动态系统的网络控制系统建模.东南大学学报(自然科学版), 2003, 33(2): 194-196.
    [31]樊卫华,蔡骅,周川等. MIMO网络控制系统的建模与分析.控制理论与应用, 2005, 22(3): 487-490.
    [32]朱其新,胡寿松.网络控制系统的随机状态反馈控制.南京航空航天大学学报, 2003, 35(6): 616-620.
    [33]朱其新,胡寿松.网络控制系统的随机输出反馈控制.应用科学学报, 2004, 22(1): 71-75.
    [34]朱其新,胡寿松,候霞.长时滞网络控制系统的随机稳定性研究.东南大学学报, 2003, 33(3): 368-371.
    [35]于之训,陈辉堂,王月娟.具有随机通信延迟和噪声干扰的网络控制系统.控制与决策, 2000, 15(5): 518-522.
    [36]于之训,陈辉堂,王月娟.时延网络控制系统均方指数稳定的研究.控制与决策, 2000, 15(3): 278-281.
    [37]于之训,陈辉堂,王月娟.基于Markov延迟特性的网络系统的控制研究.控制理论与应用, 2002,19(2): 263-267.
    [38] Yu Z X, Chen H T, Wang Y Q. Research on control of network system with Markov delay characteristic. Proc. of the 3rd World Congress on Intelligent Control and Automation, Heifei, China, 2002: 3636-3640.
    [39] Hassibi A, Boyd S P, How J P. Control of asynchronous dynamical systems with rate constraints on events. Proc. of 38th Conference on Decision & Control, Phoenix, Arizona, USA, 1999: 1345-1351.
    [40] Davrazos G N, Koussoulas N T. Stability of networked hybrid systems. IFAC 15th Triennial World Conference, Barcelona, Spain, 2002: 748-751.
    [41] Chan H, Ozgüner U. Closed-loop control of systems over a communication network with queues. International Journal of Control, 1995, 62(3): 493-510.
    [42] Chan H, Ozgüner U. Optimal control of systems over a communication network with queues via a jump systems approach. Proc. of the 4th IEEE Conference on Control Applications, Albany, New York, USA, 1995: 1148-1153.
    [43] Yook J K, Tilbury D M, Soparkar N R. Trading computation for bandwidth: reducing communication in distributed control systems using state estimators. IEEE Trans. on Control Systems Technology, 2002, 10(4): 503-518.
    [44] Beldiman O, Walsh G C, Bushnell L. Predictors for networked control systems. Proc. of the American Control Conference, Chicago, Illinois, USA, 2000: 2230-2234.
    [45] Lee K C, Lee S. Remote controller design of networked control system using genetic algorithm. Proc. of IEEE Int. Symposium on Industrial Electronics. Pusan, Korea, 2001, 3: 1845-1850.
    [46] Lee S, Lee S H, Lee K C. Remote fuzzy logic control for networked control system. Proc. of the 27th Annual Conf. of the IEEE Industrial Electronics Society. Denver, Cousa, USA, 2001, 3: 1822-1827.
    [47] Almutairi N B, Chow M Y. PI Parameterization using adaptive fuzzy modulation (AFM) for networked control systems-Part I: Partial Adaptation. IEEE Proc. of IECON 2002, Sevilla, Spain, 2002: 3152-3157.
    [48] Almutairi N B, Chow M Y, Tipsuwan Y. Network-based controlled DC motor with fuzzy compensation. The 27th Annual Conference of the IEEE Industrial Electronics Society, NewYork, USA, 2001, 3:1844-1849.
    [49] Goktas F. Distributed control of systems over communication networks: [Ph.D. dissertation]. Department of Electrical and Computer, University of Pennsylvania, USA, 2000.
    [50]于之训,陈辉堂,王月娟.基于Η∞和μ综合的闭环网络控制系统的设计.同济大学学报, 2001, 29(3): 307-311.
    [51]姜培刚,姜偕富,李春文,徐文立.基于LMI方法的网络化控制系统的Η∞鲁棒控制.控制与决策, 2004, 19(1): 17-26.
    [52]黄剑,关治洪,王仲东.不确定网络控制系统具有Η∞性能界的鲁棒控制.控制与决策. 2005, 20(9): 1002-1005.
    [53]谢林柏,方华京,纪志成,郑英.时延网络化控制系统的Η2/Η∞混合控制.控制理论与应用, 2004, 21(6): 1020-1024.
    [54]朱张青,周川,胡维礼.短时延网络控制系统的鲁棒Η2/Η∞状态观测器设计.控制与决策, 2005, 20(3): 280-284.
    [55] Kim D S, Lee Y S, Kwon W H, et al. Maximum allowable delay bounds of networked control systems. Control Engineering Practice, 2003, 11(2): 1301-1313.
    [56] Wang C H, Wang Y F, Gao H J. Compensation time-varying delays in networked control systems via delay-dependent stabilization approach. Proc. of the 2004 IEEE International Conf. On Control Applications, Taipei, Taiwan, 2004: 248-253.
    [57] Li S B, Wang Zhi, Sun Y X. Delay-dependent controller design for networked control systems with long time de1ays: an iterative LMI method. Proc. of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004: 1338-1342.
    [58] Lei X, Zhang J M, Wang S Q. Stability analysis of networked control systems. Proc. of the First International Conf. on Machine Learning and Cybernetics, Beijing, China, 2002: 757-759.
    [59] Zheng Y, Fang H J, Wang H, et al. Fault detection approach for networked control system based on a memoryless reduced-order observer. ACTA AUTOMATICASINICA, 2003, 29(4): 559-566.
    [60]郑英,方华京.不确定网络化控制系统的鲁棒容错控制.西安交通大学学报. 2004, 38(8): 804-807.
    [61] Liu Y Z, Yu H B. Stability of networked control systems based on swithched technique. Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003: 1110-1113.
    [62] Yu M, Wang L, Xie G M, Chu T G. Stabilization of networked control systems with data packet dropout via swithched system approach. Proc. of the 2004 IEEE International Symposium on computer aided control systems design, Taipei, Taiwan, 2004: 362-366.
    [63] Yu M, Wang L, Xie G M. A swithched system approach to stabilization of networked control systems. Journal of Control Theory and Application, 2006, 1: 86-95.
    [64]窦连旺,刘鲁源,陈玉柱.基于时滞理论的网络控制系统稳定性分析.天津大学学报, 2005, 38(1): 22-26.
    [65]熊远生,俞立,余世明.网络控制系统的滑模多步预估控制.控制理论与应用, 2005, 22(2): 301-306.
    [66] Wang Q, Yi J Q, Zhao D B, et al. Time delay compensation for networked control system based on SMC. Proc. of the 2004 IEEE Intelligent Transportation Systems Conference, Washington, D.C., USA, 2004: 831-835.
    [67]田仲,岳继光,李永东. DMC在网络控制系统中的应用.控制工程, 2004, 11(2): 121-123.
    [68] Zhivoglyadov P V, Middleton R H. Networked control design for linear systems. Automatica, 2003, 39: 743-750.
    [69]刘玉忠,于海斌.具有大时延的网络控制系统的稳定性分析.控制与决策, 2004, 19 (10): 1133-1136.
    [70]杨珺,王向东.一类非线性网络控制系统的稳定性分析. Proc. of the 5th World Congress on Intelligent Control and Automation, 2004, Hangzhou, China, 2004: 1401 - 405.
    [71]杨珺,王向东.一类带有不确定性的网络控制系统的稳定性分析.沈阳工业大学学报, 2004, 26(5): 535-538.
    [72] Otanez P G, Moyne J R, Tilbury D. Using dead bands to reduce communication in networked control systems. Proc. of the American Control Conference, Anchorage, Alaska, USA, 2002, 4: 3015-3020.
    [73] Hong S H. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Trans. on Control System Technology. 1995, 3(2): 225-230.
    [74]白涛,吴智铭,杨根科.网络化控制系统中的抖动优化调度算法.控制与决策, 2004, 19(4): 297-401.
    [75] Park H S, Kim Y H, Kim D S, et al. A scheduling method for network-based control systems. IEEE Trans. On Control Systems Technology, 2002, 10(3): 318-330.
    [76]沈钢.网络控制系统实时介质访问控制的研究: [博士学位论文].上海:上海交通大学, 2002.
    [77]魏震.网络化控制系统在线时延估计及其控制的综合研究:[博士学位论文].上海:上海交通大学, 2002.
    [78]魏震,马向华,谢剑英.网络控制系统中在线时延评估方法及其控制.上海交通大学学报, 2003, 37(4): 574-577.
    [79]魏震,李长虹,谢剑英.网络控制系统在线时延估计控制.控制与决策, 2003, 18(5): 545-549.
    [80] Ye H, Walsh G C, Bushnell L G. Real-time mixed-traffic wireless networks. IEEE Trans. on Industrial Electronics, 2001, 48(5): 883-890.
    [81] Branicky M S, Philips S M, Zhang W. Scheduling and feedback co-design for networked control systems. Proc. of 41th IEEE Conference on Decision and Control, Las, Vegas, USA, 2002: 10-13.
    [82] Tipsuwan Y, Chow M Y. Network-based controller adaptation for network QoS negotiation and deterioration. Proc. of the 27th Annual Conf. of IEEE Industrial Electronics Society, Denver, CO, USA, 2001:1794-1799.
    [83]杨丽曼,李运华,袁海滨.网络控制系统的时延分析及数据传输技术研究.控制与决策, 2004, 19(4): 361-366.
    [84]谢林柏,方华京,王华.网络化控制系统的信息调度及稳定性研究.控制与决策, 2004, 19(5): 589-591.
    [85] Tipsuwan Y, Chow M Y. Control methodologies in networked control systems. Control Engineering Practice, 2003, 11: 1099-1111.
    [86]白涛,吴智铭,杨根科.网络化的控制系统.控制理论与应用,2004, 21(4):584-589.
    [87]邓士普,王树青.基于网络的控制系统研究综述.化工自动化及仪表.2003,30(6):1-5.
    [88]黎善斌,王智,张卫东等.网络控制系统的研究现状与展望.信息与控制, 2003, 32(3): 240-244.
    [89]杨月全,江泽民,徐德等.基于网络的控制系统的建模与控制.吉林大学学报, 2004, 34(3): 439-444.
    [90]于之训,陈辉堂,王月娟.闭环网络控制系统研究综述.信息与控制, 2001, 30(7): 689-695.
    [91]戴冠中,郑应平.网络化系统及其建模、分析、控制与优化.自动化学报(增刊),2002, 28: 60-65.
    [92]王征,谈大龙,王向东.网络控制系统稳定性研究.控制与决策(增刊), 2002, 17: 802-807.
    [93] Schickhuber G, McCarthy O. Distributed fieldbus and control network systems. Computing and Engineering, 1997, 8(1): 21-32.
    [94]谢希仁.计算机网络(第三版).大连:大连理工出版社, 2002.
    [95] Tipsuwan Y, Chow M Y. Fuzzy logic microcontroller implementation for DC motor speed control. The 25th annual conf. of the IEEE industrial electronics society, San Jose, CA, USA, 1999, 3: 1271-1276.
    [96] Phoojaruenchanachai S, Furuta K. Memoryless stabilization of uncertain time- varying state delays, IEEE Trans. on Automatic Control, 1992, 37(5):1022-1026.
    [97] Lee J H, Kim S W, Kwon W H. MemorylessΗ∞controllers for state delayed systems. IEEE Trans. on Automatic Control, 1994, 9(1): 159-162.
    [98] Kim J H, Jeung E T, Park H B. Robust control for parameter uncertain delay systems in state and control input. Automatica, 1996, 32: 1337-1339.
    [99] Kapila V, Haddad W M. MemorylessΗ∞controllers for discrete time systems with time delay. Automatica, 1998, 35 (5): 1443-1451.
    [100] Park J H. Robust stabilization for dynamic systems with multiple time varying delays and nonlinear uncertainties. J. Optim. Theory Applicat., 2001, 108(4): 155-174.
    [101] Lien C H, Chen J D. Discrete-delay-independent and discrete delay dependent criteria for a class of neutral systems. J. Dyna. Syst. Measure, Control, 2003, 125(3): 33-41.
    [102] Li X, de Souza C E. Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach. IEEE Trans. on Automatic Control, 1997, 42(8): 1144-1148.
    [103] De Souza C E, Li X. Delay-dependent robustΗ∞control of uncertain linear state- delayed systems. Automatica, 1999, 22(7): 1313-1321.
    [104] Kharitonov V, Melchor-Aguilar D. On delay-dependent stability conditions. Systems and Control Letters, 2000, 40(1): 71-76.
    [105] Gu K, Niculescu S I. Additional dynamics in transferred time-delay systems. IEEE Trans. on Automatic Control, 2000, 45(3): 572-575.
    [106] Niculescu S I. On delay-dependent stability under model transformations of some neutral linear systems. International Journal of Control, 2001, 74(6): 1447-1455.
    [107] Kolmanovskii V, Richard J P. Stability of some linear systems with delays. IEEE Trans. on Automatic Control, 1999, 44(5): 984-989.
    [108] Lien C H, Yu K W, Hsieh J G. Stability conditions for a class of neural systems with multiple time delays. Journal of Mathematic Analysis and Applications, 2000, 245(1):20-27.
    [109] Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems and Control Letters, 2001, 43(2): 309-319.
    [110] Park P. A delay-dependent stability criterion for systems with uncertain time- invariant delays. IEEE Trans. on Automatic Control, 1999, 44(4): 876 -877.
    [111] Moon Y S, Park P G, Kwon W H, et al. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447- 1455.
    [112] Park J H. A new delay-dependent criterion for neutral systems with multiple delays. Journal of Computational and Applied Mathematics, 2001, 136(1): 177-184.
    [113] Fridman E, Shaked U. A descriptor system approach toΗ∞control of linear time-delay systems. IEEE Trans. on Automatic Control, 2002, 47(2): 253-270.
    [114] Fridman E, Shaked U. An improved stabilization method for linear time-delay systems. IEEE Trans. on Automatic Control, 2002, 47(11): 1931-1937.
    [115] Wu M, He Y, She J H, et al. Delay-dependent criteria for robust stability of time-varying delays systems. Automatica, 2004, 40: 1435-1439.
    [116] He Y, Wang Q G, Lin C, Wu M. Delay-range-dependent stability for systems with time-varing delay. Automatica, 2007, 43: 371-376.
    [117]段广仁,刘湘黔.线性时滞系统时滞独立稳定的充分条件.控制与决策, 1996, 11(3): 420-424.
    [118] Su J H. Further results on the robust stability of linear systems with a single time delay. Syst. Contr. Lett., 1994, 23 (2): 375-379.
    [119] Liu P L, Su T J. Robust stability of interval time-delay systems with delay- dependence. Syst. Contr. Lett. 1998, 33: 231-239.
    [120] Lu C Y, Tsai J S H, Su T J. On improved delay-dependent robust stability criteria for uncertain systems with multiple-state delays. IEEE Trans. On Circuits and Systems, 2002, 49(2): 253-256.
    [121] Li X, de Souza C E. Criteria for robust stability and stabilization of uncertain linear systems with state delays. Automatica, 1997, 33(1): 1657-1662.
    [122] Su T J, Lu C Y, Tsai J S H. LMI delay-dependent robust stability criteria for uncertain systems with multiple-state delays. IEEE Trans. On Circuits and Systems, 2002, 49 (2): 253-256.
    [123] Su N J, Su H Y, Chu J. Delay-dependent robustΗ∞control for uncertain time-delay systems. Proc. of Inst. Elect. Eng. Control Theory Applicat., CA, USA, 2003, 150: 489-492.
    [124] Kwon O M, Park J H. On improved delay-dependent robust control for uncertain time-delay systems. IEEE Trans. Automat. Control, 2004, 49(11): 1991-1995.
    [125] Wang Y, Xie L, de Souza C E. Robust control of a class of uncertain nonlinear systems. Systems and Control Letters, 1992, 19(1): 139-149.
    [126] Kim J H. Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty. IEEE Trans. Automat. Contr., 2001, 46(5): 789-792.
    [127] Yue D, Won S. An improvement on‘Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty’. IEEE Trans. Automat. Contr., 2002, 47(2): 407-408.
    [128] Su T J, Huang C G. Robust stability of delay dependence for linear uncertain systems. IEEE. Trans. Automat. Control, 1992, 37(10): 1656-1659.
    [129] Xu B. Comments on‘Robust stability of delay dependent for linear uncertain systems’. IEEE Trans. Automat. Contr., 1994, 39(2): 2365-2368.
    [130] Cao Y Y, Sun Y X, Cheng C W. Delay-dependent robust stabilization of uncertain systems with multiple state delays. IEEE Trans. Automat. Control, 1998, 43(11): 1608-1612.
    [131]景兴建.网络遥操作机器人系统稳定性分析和规划方法研究:[博士学位论文].沈阳:中国科学院沈阳自动化所, 2004.
    [132] Niculescu S I, de Souza C E, Dion J M, et al. Robust stability and stabilization of uncertain linear systems with state delay: single delay case (I). Proc. IFAC Symp. Robust Control Design, Rio de Janeiro, Brazil, 1994: 469-474.
    [133] Li X, de Souza C E. Criteria for robust stability of uncertain linear systems with time-varying state delays. IFAC 13th World Congr., San Francisco, CA, USA, 1996, 1: 137-142.
    [134] Fridman E, Shaked U. New bounded real lemma representations for time-delay systems and their applications. IEEE Trans. Automat. Contr., 2001, 46(12): 1973- 1979.
    [135]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社, 2002.
    [136] Body S, El Ghaoui L, Eron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
    [137] Petersen R, Hollot C V. A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 1986, 22: 397–411.
    [138] Schmitendorf W E. Designing stabilizing controllers for uncertain systems using the Riccati equation approach. IEEE Trans. Automat. Contr., 1988, 33(2): 376-379.
    [139] Krasovskii N N, Lidskii. Analytical design of controllers in systems with random attributes. Automation Remote Control, 1961, 22(8): 1021-1025.
    [140] Boukas E K, Liu Z K, Liu G X. Delay-dependent robust stability andΗ∞control of jump linear systems with time delay. Int. J. Control, 2001, 74(4): 329-340.
    [141] Gao J P, Huang B, Wang Z D. LMI-based robustΗ∞control of uncertain linear jump systems with time-delays, Automatica, 2001, 37(7): 1141-1146.
    [142] Xu S Y, Lam J, Chen T W. RobustΗ∞control for uncertain discrete stochastic time-delay systems. Systems and Control Letters, 2004, 51: 203-215.
    [143] Cao Y Y, Lam J. RobustΗ∞control of uncertain markovian jump systems with time-delay. IEEE Trans. Automat. Control, 2000, 45(1):77-83.
    [144] Chen W H, Guan Z H, Yu P. Delay-dependent stability andΗ∞control of uncertain discrete-time Markovian jump systems with mode-dependent time delays, Systems Control Lett., 2004, 52: 361-376.
    [145] Chen W H, Xu J X, Guan Z H. Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays. IEEE Trans. Automat. Control, 2003, 48 (12): 2270-2277.
    [146] Xie L. Output feedbackΗ∞control of systems with parameter uncertainty. International Journal of Control, 1996, 63: 741-750.
    [147] Shi P, Boukas E K.Η∞control for Markovian jumping linear systems with parametric uncertainty. Journal of Optimization Theory and Applications, 1997, 95(1): 75-99.
    [148] Cao Y Y, Lam J, Hu L S. Delay-dependent stochastic stability andΗ∞analysis for time-delay systems with Markovian jumping parameters. J. Franklin Inst. 2003, 340 (1): 423-434.
    [149] Benjelloun K, Boukas E K, Mean square stochastic stability of linear time-delay system with Markovian jumping parameters. IEEE Trans. Automat. Control, 1998, 43 (10): 1456-1460.
    [150] Wang S S, Chen B S, Lin T P. Robust stability of uncertain time-delay systems. Internat. J. Control, 1987, 46: 963-976.
    [151] Lee Y S, Moon Y S, Kwon W H, et al. Delay-dependent robustΗ∞control for uncertain systems with a state-delay. Automatica, 2004, 40: 65-72.
    [152] Khasminskii K L. Stochastic Stability of Differential Equations, Amsterdam: Sijthoff and Noordhoff, 1980.
    [153] Yue D, Won S. Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties. Electron. Lett., 2001, 37(15): 992–993.
    [154] Kolmanovskii V B, Myshkis A D. Introduction to the Theory and Applications of Functional Differential Equations, Norwell, MA: Kluwer, Academic Publishers, Dordrecht, 1999.
    [155] Mao X, Koroleva N, Rodkina A. Robust stability of uncertain stochastic differential delay equations. Systems and Control Letters, 1998, 35: 325-336.
    [156] Mao X. Exponential stability of stochastic delay interval systems with markovian switching. IEEE Trans. Automat. Control, 2002, 47(10): 1604-1612.
    [157] Yue D, Han Q L. Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and markovian switching. IEEE Trans. Automat. Control, 2005, 52(2): 217–222.
    [158] Xie S, Xie L. Stabilization of a class of uncertain large-scale stochastic systems with time delays. Automatica, 2000, 36: 161-167.
    [159] Xu S, Chen T. RobustΗ∞control for uncertain stochastic systems with state delay. IEEE Trans. Automat. Control, 2002, 47(12): 2089-2094.
    [160] Lu C Y, Tsai J S H, Jong G J, et al. An LMI-based approach for robust stabilization of uncertain stochastic systems with time-varying delays. IEEE Trans. Automat. Control, 2003, 48(2): 286-289.
    [161] Gao H J, Wang C H, Zhao L. Comments on‘An LMI-based approach for robust stabilization of uncertain stochastic systems with time-varying delays’. IEEE Trans. Automat. Control, 2003: 48(11): 2073-2074.
    [162] Miyamura A, Aihara K. Delay-dependent robust stability of uncertain delayed stochastic systems: an LMI-based approach. Proc. of 5th Asian Control Conference, 2004: 449-455.
    [163] Chen W H, Guan Z H, Lu X M. Delay-dependent robust stabilization andΗ∞control of uncertain stochastic systems with time-varying delay. IMA J. Mathematical Control and Information, 2004, 21: 345-358.
    [164] Chen W H, Guan Z H, Lu X M. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach. Systems and Control Letters, 2005, 54: 547-555.
    [165] Blythe S, Mao X, Liao X. Stability of stochastic delay neural networks. Journal of Franklin Institute, 2001, 338: 481-495.
    [166] Chen W Y. Some new results on the asymptotic stability of uncertain systems with time-varying delays. Internat. J. Systems Sci., 2002, 33(11): 917-921.
    [167] Gu Y R, Wang S C, Li Q Q, et al. On delay dependent stability and decay estimate for uncertain systems with time varying delay. Automatica, 1998, 34(8): 1035-1039.
    [168] Jing X J, Tan D L, Wang Y C. An LMI approach to stability of systems with severe time-delay. IEEE Trans. Automat. Contol, 2004, 49(7): 1192-1195.
    [169] Mao X. Robustness of exponential stability of stochastic differential delay equation. IEEE Trans. on Automatic Control, 1996, 41(3): 442-447.
    [170]汪晓平,钟军. VC++网络通信协议分析与应用实现.北京:人民邮电出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700