基于变权的多目标物流网络流量分配问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物流网络的效率和效益直接取决于网络的拓扑结构以及网络中各物流节点和运输线路的流量分配情况。物流网络拓扑结构一旦确定,将在相当长的一段时间内不会发生变化,而物流网络中流量的分配则会受到供给、需求、网络能力等诸多因素的影响。在实际应用中,物流网络的每个物流节点和运输线路都与多个评价准则有关,在进行物流网络流量分配时,往往不仅需要考虑物流成本,还应考虑货物的运送时间、运送距离、网络的可靠性等其他因素。因此,如何在具有固定拓扑结构的物流网络中实现科学合理地流量分配,在满足货物从供应地到需求地的运输、存储和配送等物流需求的前提下获得多个目标整体最优的物流网络流量分配方案是一个值得深入研究的重要问题。
     本论文在回顾总结已有的相关研究的基础上,对多对多二级物流网络的多目标流量分配问题进行了研究。本论文所做的主要工作如下:
     1.物流网络变权方法。针对物流网络流量分配的目标多样性、决策过程中决策者偏好的局限性和不确定性,提出了物流网络变权方法,包括物流网络的因素(物流节点、运输线路、子路径和路径)表示方法以及它们的变权状态值计算方法。首先,通过隶属度函数对优化目标函数值进行评价;然后,利用基于决策者偏好的状态变权函数以及变权综合方法将目标评价值分阶段地集成为物流节点、运输线路、子路径和路径的状态值,路径的状态值是进行最优路径选择的依据;最后,提出了基于物流网络变权方法的流量分配方法。
     2.中间节点无供应能力的多目标物流网络流量分配问题。针对具有固定拓扑结构的多对多二级物流网络,分别对运输线路的容量确定和随机变化两种情况,以物流节点和运输线路的容量为约束,以物流成本(考虑规模经济效应,将物流成本定义为流量的凹函数)最小、最长单程运送时间最短以及网络使用率(容量确定)或网络的容量可靠性(容量随机)最高为优化目标,寻求最优的物流网络流量分配方案。首先,建立了上述两种情况下问题的数学模型;然后,考虑到多目标物流网络流量分配问题属于NP-难问题,网络路径的数量会随着网络规模的扩大成指数增长,设计了基于物流网络变权方法的遗传算法作为问题模型的求解算法;最后,通过算例验证了求解方法的有效性。
     3.中间节点有供应能力的多目标物流网络流量分配问题。在第2部分研究工作的基础上,增加了对物流网络中间节点供应能力的考虑。分别考虑物流节点和运输线路的容量确定以及运输线路、中间节点和供应节点的容量随机变化两种情况,以物流节点和运输线路容量为约束,以物流成本最小、最长单程运送时间最短以及网络使用率(容量确定)或网络的容量可靠性(容量随机)最高为优化目标,寻求最优的物流网络流量分配方案。首先,建立了上述两种情况下问题的数学模型;然后,提出了模型的求解方法,将物流网络分解为上下两级网络分别进行求解,每级物流网络再分解为若干个多对一子网络,每个子网络的流量分配通过基于物流网络变权方法的流量分配方法实现,再采用动态规划方法依次完成下级和上级物流网络的流量分配;最后,通过算例验证了求解方法的有效性。
The efficiency and effectiveness of logistics network are directly dependent on the network topology and the allocation method of flow in logistics nodes and transportation lines of the network. Once the logistics network topology is formed, it will not be changed in quite a long period of time. However, the flow allocation method for logistics network will be influenced by supply, demand, network capacity and many other factors. In practical application, every node or line of the logistics is related to many evaluation criterias. When allocating freight flow in logsitics network, cost is not the only consideration, other fators such as transport time, distance and reliability should be also considered. Therefore, in order to meet the need of freights'transportation, storage and delivery from suppliers to the customers and obtain the maximum efficiency and benefit of the logistics network, how to allocate the flow in the logistics networks with fixed topology scientifically and rationally is an important issue worthy of depth study.
     On the basis of the review of existing researches, the problems of flow allocation in a tow level logistics network with many to many structure are studied in this dissertation, and the main contents of the dissertation are as follows:
     1. Variable weight method for logistics network is proposed. Aiming at the diversity of optimization objective, the limitations and uncertainty of the decision makers'preferences about the problem of flow allocation in logistics network, a logistics network variable weight method is proposed, including representation for the factors of logistics network, such as logistics nodes, transportation lines, sub-paths and paths, and calculation method for their variable weight state values. First of all, values of optimization objective functions are evaluated by membership function; then, using state variable weight function which has considered the decision makers'preferences and variable weight sum method, the state values of logistics nodes, transportation lines, sub-paths and paths are obtained by integrating all of objective evaluations in stages, and operation of choosing the best path is in accordance with the state values of all paths; finally, the method for flow allocation which based on the logistics network variable weight method is proposed.
     2. Multi-objective optimization problems for flow allocation in logistics network of which intermediate nodes has no supply capability are studied. For a two level logistics network with fixed many to many topology, aiming at the two situations that capacity of transportation lines are certain and stochastic, the problem of flow allocation is studied based on the constraints of transportation lines'and logistics nodes'capacity with the minimum logistics cost which is defined as a concave function because of the consideration of economics of scale, the minimum maximal delivery time for single path and the maximum logistics network's utilization ratio when capacity is certain or the maximum logistics network's reliability when capacity is stochastic as optimal objectives. Firstly, the mathematical models of the problem in both cases are built; and then, due to multi-objective optimization problem for flow allocation in logistics network is belong to NP-hard problem, the number of network paths will increase exponentially with the network scale growing. So, a Genetic Algorithm based on logistics network variable weight model is proposed to solve the problem; finally, a numerical example is given to verify the effectiveness of the algorithm.
     3. Multi-objective optimization problems for flow allocation in logistics network of which intermediate nodes has supply capability are studied. Based on the work of section2, the supply capability of intermediate nodes is considered. Two situations are taken into account that capacity of both transportation lines and logistics nodes are certain and transport lines, stochastic. Aiming at the two situations that capacity of transportation lines and logistics nodes are certain and that of transportation lines, intermediate nodes and supply nodes are stochastic, the problem of flow allocation is studied based on the constraints of transportation lines'and logistics nodes'capacity with the minimum logistics cost, the minimum maximal delivery time for single path and the maximum logistics network's utilization ratio when capacity is certain or the maximum logistics network's reliability when capacity is stochastic as optimal objectives. Firstly, the mathematical models of the problem in both cases are built; then, the solution is proposed that logistics network is decomposed into lower and upper level network which are again decomposed into some many-to-one sub-network, and the problem of flow allocation for each sub-network can be solved by the method proposed in section1, and then the problems of lower and upper level network can be solved successively by the dynamic programming method; finally, a numerical example is given to verify the effectiveness of the solution.
引文
[1]苏雄义.企业物流导论[M].华泰文化事业公司(台湾),1998:4-26.
    [2]张锦.L_OD预测理论与现代物流规划方法研究[D].博士学位论文,成都:西南交通大学,2004.
    [3]物流术语(GB/T18354-2001).中华人民共和国国家标准化委员会,2001:2
    [4]王之泰.现代物流管理[M].北京:中国物资出版社,2002.
    [5]鞠颂东.物流网络:物流资源的整合与共享[M].北京:社会科学文献出版社,2008.
    [6]中国物流与采购联合会,中国物流学会.第二次全国物流园区(基地)调查报告[R].2008(9).
    [7]李国旗.具有多属性特征的城市物流设施布局优化研究[D].博士学位论文,成都:西南交通大学,2010.
    [8]王保华,何世伟.不确定环境下物流中心选址鲁棒优化模型及其算法[J].系统工程理论与方法,2009,9(2):69-74.
    [9]Liu N., Chen Y. G., Li Y. M.. Comprehensive decision making method for optimal location of logistics hubs [J]. Journal of Southeast University (English Edition),2007,23:71-75.
    [10]严冬梅.城市物流中心选址问题研究[D].博士学位论文,天津:天津大学,2004.
    [11]余福茂.关于物流系统规划若千关键技术的研究[D].博士学位论文,浙江浙江大学,2003.
    [12]龚延成,蔡团结.带时效性约束的物流中心选址研究[J].公路交通科技,2004,21(12):141-143.
    [13]Sun H. J., Gao Z. Y., Wu J. J.. A bi-level programming model and solution algorithm for the location of logistics distribution centers [J]. Applied Athematical Modelling,2008,32:610-616.
    [14]Lee D. H., Dong M.. A heuristic approach to logistics network design for end-of-lease computer products recovery [J]. Transportation Research Part E, 2008,44:455-474.
    [15]Cordeau J. F., Laporte G., Pasin F.. An iterated local search heuristic for the logistics network design Problem with single assignment [J]. International Journal of Production Economics,2008,113(2):626-640.
    [16]Dileep R. Sule.. Logistics of facility location and allocation [M], Marcel Dekker,2001.
    [17]Lu Z. Q., Bostel N.. A facility location model for logistics systems including reverse flows:The case of remanufacturing activities [J]. Computers and Operation Research,2007,34(2):299-323.
    [18]Melo T., Niekel S., Saldanha-da-Gama F.. Facility location and supply chain management-a review [J]. European Journal of Operational Research,2009, 196(2):401-412.
    [19]Klose A., Drexl A.. Facility location models for distribution system design [J]. European Journal of Operational Research,2005,162(1):4-29.
    [20]Moon I., Kang S.. Rationing policies for some inventory systems [J]. Journal of the Operational Research Society,1998,49:509-518.
    [21]Melchiors R. D., Kleijn M. J.. Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes [J]. Journal of the Operational Research Society,2000,51:111-122.
    [22]Deshpande V., Cohen M. A., Donohue K.. A threshold inventory rationing policy for service-differentiated demand classes [J].Management Science, 2003,49(6):683-703.
    [23]Arslan H., Graves S. C., Roemer T. A.. A single-product inventory model for multiple demand classes [J]. Management Science,2007,53(9):1486-1500.
    [24]Dekker R., Hill R., Kleijn M.. On the (S-1, S) lost sales inventory model with priority demand classes [J]. Naval Research Logistics,2002,49:593-610.
    [25]Cattani K. D., Souza G. C Inventory rationing and shipment flexibility alternatives for direct market firms [J]. Production and Operations Management,2002,11(4):441-457.
    [26]Kranenburg A. A., Houtum G. Cost optimization in the (S-1, S) lost sales inventory model with multiple demand classes [J]. Operations Research Letters,2007,35:493-502.
    [27]Teunter R. H., Haneveld W. K. K... Dynamic inventory rationing strategies for inventory systems with two demand classes, poisson demand and backordering [J]. European Journal of Operational Research,2008,190:156-178.
    [28]Ha A.. Inventory rationing in a make-to-stock production system with several demand classes and lost sales [J]. Management Science,1997,43:1093-1103.
    [29]Xu J., Chen S., Lin B., et al. Optimal production and rationing policies of a make-to-stock production system with batch demand and backordering [J]. Operations Research Letters,2010,38:231-235.
    [30]Benjaafar S., Elhafsi M., Huang T.. Optimal control of a production-inventory system with both backorders and lost sales [J]. Naval Research Logistics,2010, 57:252-265.
    [31]Gayon J. P., Benjaafar S., Vericourt F.. Using imperfect demand information in production-inventory systems with multiple demand classes [J]. Manufacturing and Service Operations Management,2009,11:128-143.
    [32]Lozano A., Storchi G.. Shortest viable path algorithm in multimodal networks [J]. Transportation Research PartA,2001,35(3):225-241.
    [33]Beuthe M., Jourquin B., Geerts J. F., et al. Freight transportation demand elasticity's:a geographic multimodal transpitation network analysis [J]. Transportation Researeh Part E,2001,37(4):253-266.
    [34]张建勇,郭耀煌.一种多式联运网络的最优分配模式研究[J].铁道学报,2002,10:114-116.
    [35]王涛,王刚.一种多式联运网络运输方式的组合优化模式[J].中国工程学,2005,10:46-50.
    [36]万长云.集装箱运输成本控制决策[J].集装箱化,2008,04:27-29.
    [37]刘云忠,宣慧玉.车辆路径问题的模型及算法研究综述[J].管理工程学报,2005,19(1):124-130.
    [38]Park C. K., Lee S., Park S.. A label-setting algorithm for finding a quickest path [J]. Computer and Operations Research,2004,31(12):2405-2418.
    [39]Kohl N., Madsen O.. An optimization algorithm for the vehicle routing problem with time window based on Lagrangian relaxation [J]. Operations Research,1997,45(3):395-406.
    [40]何波,杨超.基于成本/服务权衡的逆向物流网络设计问题研究[J].中国管理科学,2008,16(4):90-95.
    [41]Du F., Evans G.. A bi-objective reverse logistics network analysis for post-sale service [J]. Computers and Operations Research,2008,35(8): 2617-2634.
    [42]苏顺虎,陈治亚,何世伟,等.基于服务水平的铁路货物运输网络能力计算方法[J].中国铁道科学,2009,30(2):113-118.
    [43]廖涛,艾兴政,唐小我.链与链基于价格和服务竞争的纵向结构选择[J].控制与决策,2009,24(10):1540-1544.
    [44]Bernstein F., Federgruen A., A general equilibrium model for industries with price and service competition [J]. Operations Research,2004,52(6):868-886.
    [45]Tsay A. A., Narendra A.. Channel dynamics under price and service competition [J]. Manufacturing and Service Operations Management,2000, 2(4):372-391.
    [46]Ruiz-Torresa A. J., Mahmoodi F.. A supplier allocation model considering delivery failure, maintenance and supplier cycle costs [J]. International Journal of Production Economics,2006,103:755-766.
    [47]Kawtummachai R., Hop N.. Order allocation in a multiple-supplier environment [J]. International Journal of Production Economics,2005,93: 231-238.
    [48]Aissaouia N., Haouaria M., Hassinib E.. Supplier selection and order lot sizing modelings review [J]. Computers and Operations Research,2007,34: 3516-3540.
    [49]余小川,季建华.物流系统的可靠度及其优化研究[J].管理工程学报,2007,2(1):67-70.
    [50]Dijkstra E. W.. A note on two problems in connection with graphs [J]. Numerische Mathematik,1959,1:269-271.
    [51]Ford L., Fulkerson D.. Flows in networks [M]. Princeton NJ:Princeton University Press,1962.
    [52]Floyd R. W.. Algorighm 97:Shortest path [J]. Communications of the ACM, 1962,5:345-350.
    [53]Goldberg A. V.. Scaling algorithms for the shortest path problem [J]. Society for Industrial and Applied Mathematics,1995,24(3):494-504.
    [54]Wang S. X.. The improved Dijkstra's shortest path algorithm and its application [J]. Procedia Engineering,2012,29:1186-1190
    [55]Han Y. J.. Improved algorithm for all pairs shortest paths [J]. Information Processing Letters,2004,91(5):245-250.
    [56]Duin C. W.. Two fast algorithms for all-pairs shortest paths [J]. Computers and Operations Research,2007,34(9):2824-2839.
    [57]Smith O. J., Boland N., WatererH.. Solving shortest path problems with a weight constraint and replenishment arcs [J]. Computers and Operations Research,2012,39(5):964-984.
    [58]何瑞春,李引珍.时间依赖网络路径模型及双层优化智能算法研究[J].铁道学报,2008,30(1):32-37.
    [59]Dehne F., Omran M. T., Sack J. R.. Shortest paths in time-dependent fifo networks [J]. Algorithmica,2012,62(1-2):416-435.
    [60]Hamacher H. W., Ruzika S., Tjandra S. A.. Algorithms for time-dependent bicriteria shortest path problems [J]. Discrete Optimization,2006,3(3): 238-254.
    [61]Santos L., Coutinho-Rodrigues J., Current J. R.. An improved solution algorithm for the constrained shortest path problem [J]. Transportation Research Part B,2007,41(7):756-771.
    [62]Ji X. Y.. Models and algorithm for stochastic shortest path problem [J]. Applied Mathematics and Computation,2005,170(1):503-514.
    [63]Polychronopoulos G. H., Tsitsiklis J. N.. Stochastic shortest path problems with recourse [J]. Networks,1996,27:133-143.
    [64]Waller S. T., Ziliaskopoulos A. K.. On the online shortest path problem with limited arc cost dependencies,2002,40:216-227.
    [65]Gao S., Chabini I.. Optimal routing policy problems in stochastic time-dependent networks [J]. Transportation Research Part B,2006,40(2): 93-122.
    [66]Peer S. K., Sharma D. K... Finding the shortest path in stochastic networks [J]. Computers and Mathematics with Applications,2007,53(5):729-740.
    [67]Lin Y. K... Time version of the shortest path problem in a stochastic-flow network [J]. Journal of Computational and Applied Mathematics,2009,228(1): 150-157.
    [68]Ohtsubo Y.. Stochastic shortest path problems with associative accumulative criteria [J]. Applied Mathematics and Computation,2008,198(1):198-208.
    [69]Fan Y. Y., Kalaba R. E., Moore J. E.. Shortest paths in stochastic networks with correlated link costs [J]. Computers and Mathematics with Applications, 2005,49(9-10):1549-1564.
    [70]Klein C. M.. Fuzzy shortest paths [J]. Fuzzy Sets and Systems,1991,39:27-41. shortest
    [71]Lin K., Chen M.. The fuzzy path problem and its most vital arcs [J]. Fuzzy Sets and Systems,1994,58:343-353.
    [72]Okada S., Gen M.. Fuzzy multiple choice knapsack problem [J]. Fuzzy Sets and Systems,1994,67:71-80.
    [73]Okada S., Soper T.. A method for solving shortest path problem on the network with fuzzy arc lengths [C]. Proceeding of Seventh International Fuzzy Systems Association World Congress, Academia, Prague, June 1997,3: 189-194.
    [74]Yao J. S., Lin F. T.. Fuzzy Shortest-path network problems with uncertain edge weights [J]. Journal of Information Science and Engineering,2003,19: 329-351.
    [75]Delgado M., Verdegay J. L., Vila M. A.. On valuation and optimization problems in fuzzy graghs:a general approach and some particular cases [J]. INFORMS Journal on Computing,1990,2(1):74-83.
    [76]Funikawa N.. A parametric total order on fuzzy numbers and a fuzzy shortest routs problem [J]. Optimization,1994,30:367-377.
    [77]Nayeem S. M. A., Pal M.. Shortest path problem on a network with imprecise edge weight [J]. Fuzzy Optimization and Decision Making,2005,4:293-312.
    [78]Okada S., Soper T.. A shortest path problem on a network with fuzzy arc lengths [J]. Fuzzy Sets and Systems,2000,109:129-140.
    [79]Chuang T. N., Kung J. Y.. The fuzzy shortest path length and the corresponding shortest path in a network [J], Computers and Operations Research,2005,32:1409-1428.
    [80]李引珍,郭耀煌.运输网络最短路径关键点问题研究[J].铁道学报,2004,26(6):106-111.
    [81]李引珍,郭耀煌.交通运输网络最短路径关键边问题研究[J].中国管理科学,2004,12(4):69-73.
    [82]魏航,李军,刘凝子.一种求解时变网络下多式联运最短路的算法[J].中国管理科学,2006,14(4):56-63.
    [83]郑龙,周经伦,易凡,陈玉教.大规模随机运输网络的路径优化[J].系统工程理论与实践,2009,29(10):85-93.
    [84]石玉峰,彭其渊.一类带有随机模糊损耗的运输路径优化[J].铁道学报,2005,27(1):14-17.
    [85]李引珍,何瑞春,郭耀煌.结点有约束的交通网络最短路径模型[J].运筹与管理,2005,14(4):40-43.
    [86]韩世莲,李旭宏,刘新旺.物流运输网络模糊最短路径的偏好解[J].交通运输工程学报,2005,5(2):122-126.
    [87]蒋琦玮,陈治亚.物流配送最短径路的动态规划方法研究[J].系统工程,2007,25(4):27-29.
    [88]郎茂祥,胡思继.用混合遗传算法求解物流配送路径优化问题的研究[J].中国管理科学,2002,10(5):51-56.
    [89]周程.物流配送路径优化策略研究[J].武汉理工大学学报(交通科学与工程版),2005,29(5):797-800.
    [90]Wang B. H., He S. W.. Robust Optimization Model and Algorithm for Logistics Center Location and Allocation under Uncertain Environment [J]. Journal of Transportation Systems Engineering and Information Technology, 2009,9(2):69-74.
    [91]Ishfaq R., Sox C. R.. Hub location-allocation in intermodal logistic networks [J]. European Journal of Operational Research,2011,210(2):213-230.
    [92]Kutanoglu E., Mahajan M.. An inventory sharing and allocation method for a multi-location service parts logisticsnetwork with time-based service levels [J]. European Journal of Operational Research,2009,194(3):728-742.
    [93]严冬梅,李敏强,寇纪淞.需求随时间变化的物流中心动态选址[J].系统工程,2005,23(6):30-33.
    [94]秦进,史峰.物流设施选址问题的双层模拟退火算法[J].系统工程,2007,25(2):36-40.
    [95]龚延成,郭晓汾,蔡团结,等.物流配送点选址模型及其算法研究[J].中国公路学报,2003,16(2):123-126.
    [96]陈松岩,今井昭夫.物流网络选址与路径优化问题的模型与启发式解法[J]. 交通运输工程学报,2006,6(3):118-121.
    [97]孙会君,高自友.一类有竞争的物流配送中心选址模型[J].交通运输工程学报,2002,2(4):54-57.
    [98]Kutanoglu E., Lohiya D.. Integrated inventory and transportation mode selection:A service parts logistics system [J], Transportation Research Part E, 2008,44(5):665-683.
    [99]Zhao Q. H., Chen S., Leung S. C. H., et al. Integration of inventory and transportation decisions in a logistics system [J]. Transportation Research Part E,2010,46(6):913-925.
    [100]Pan Z. D., Tang J. F., Fung R. Y. K... Synchronization of inventory and transportation under flexible vehicle constraint:A heuristics approach using sliding windows and hierarchical tree structure [J]. European Journal of Operational Research,2009,192(3):824-836.
    [101]Madadi A., Kurz M. E., Ashayeri J.. Multi-level inventory management decisions with transportation cost consideration [J]. Transportation Research Part E,2010,46(5):719-734.
    [102]Rieksts B. Q., Ventura J. A.. Two-stage inventory models with a bi-modal transportation cost [J]. Computers and Operations Research,2010, 37(1):20-31.
    [103]Huang H. C., Chew E. P., Goh K. H.. A two-echelon inventory system with transportation capacity constraint [J]. European Journal of Operational Research,2005,129-143.
    [104]张锦,马啸来,杜文.储运一体化的二级物流网非线性规划模型及算法[J].西南交通大学学报,2004,39(3):301-305.
    [105]王亮,孙绍荣,吴晓层.最小化运输与库存费用的两级分销策略分析[J].系统工程理论与实践,2005,10:33-38.
    [106]王勇,邓哲锋,徐鹏.基于多折扣价格报价的库存与运输整合优化模型[J].工业工程,2009,12(6):85-89.
    [107]刘立辉,钱燕云.一对多配送网络中ITIO问题的建模与算法研究[J].公路交通科技,2006,23(10):136-141.
    [108]刘立辉,叶春明.配送系统优化问题的分析与建模[J].系统工程,2009,27(4):1-6.
    [109]王亮,李世殉,孙绍荣.随机需求直接发运的运输与库存整合优化研究[J].管理工程学报,2007,21(2):130-133.
    [110]Liu S. C., Lee S. B.. A two-phase heuristic method for the multi-depot location-routing problem taking inventory control decisions into consideration [J]. The International Journal of Advanced Manu facturing Technology,2003, 22(11-12):941-950.
    [111]Lin S. C., Lin C. C. A heuristic method for the combined location routing and inventory problem [J]. The International Journal of Advanced Manufacturing Technology,2005,26(4):372-381.
    [112]崔广彬,李一军.基于双层规划的物流系统集成定位-运输路线安排-库存问题研究[J].系统工程理论与实践,2007,6:49-55.
    [113]秦绪伟,范玉顺,尹朝万.随机需求下的选址—库存配送系统集成规划模型及算法[J].控制理论与应用,2006,23(6):853-860.
    [114]刘宝碇,彭锦.不确定理论教程[M].北京: 清华大学出报社,2005.
    [115]刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998,12-14.
    [116]关志民,韩瑜.多周期多产品采购量分配优化模型[J].运筹与管理,2008,17(2):72-79.
    [117]王晓立,马士华.供应和需求不确定条件下物流服务供应链能力协调研究[J].运筹与管理,2011,20(2):44-49.
    [118]Hsieh C. C., Wu C. H.. Capacity allocation ordering and pricing decisions in a supply chain with demand and supply uncertainties [J]. European Journal of Operational Research,2008,184(2):667-684.
    [119]Shi J. M., Zhang G. Q., Sha J. C Optimal production planning for a multi-product closed loop system with uncertain demand and return [J]. Computers and Operations Research,2011,38(3):641-650.
    [120]张勇,蒋琦.不确定环境下的物流配送中心选址方法研究[J].兰州交通大学学报(自然科学版),2007,26(1):135-138.
    [121]戎晓霞,崔玉泉,马建华.不确定环境下的物流配送中心选址模型[J].山东大学学报(理学版),2004,39(6):72-77.
    [122]Reiman M. I., Rubio R., Wein L. M.. Heavy traffic analysis of the dynamic stochastic inventory-routing problem [J]. Transportation Science,1999,33(4): 361-380.
    [123]Cetinkaya S., Lee C. Y.. Stock replenishment and shipment scheduling for vendor managed inventory systems [J]. Management Science,2000,46(2): 217-232.
    [124]Jarugumilli S., Grasman S. E., Ramakrishnan S.. A simulation framework for real-time management and control of inventory routing decisions [C]. Proceedings of the Winter Simulation Conference WSC 2006, Monterey, California, USA, December 3-6,2006:1485-1492.
    [125]武秀焕,李延晖.马氏过程的随机库存路径问题模型与算法[J].工业工程与管理,2009,1:66-70.
    [126]赵达,李军,李妍峰,等.随机需求库存-路径问题:研究现状及展望,系统工程,2007,25(8):38-44.
    [127]周爱莲,李旭宏,毛海军.一类企业物流中心动态选址模型研究[J].系统工程学报,2011,26(3):360-366.
    [128]谢小良,符卓.模糊机会约束规划下的物流配送路径优化[J].计算机工程与应用,2009,45(18):215-219.
    [129]陈德良,陈治亚.物流网络可靠性优化的双目标机会约束规划模型与算法[J].中南林业科技大学学报,2011,31(9):160-164.
    [130]邵举平,徐向艺,孟祥华,等.不确定环境下分散控制供应链物流计划优化[J].管理科学学报,2011,14(12):38-49.
    [131]Kenyon A. S., Morton D. P.. Stochastic vehicle routing with random travel times [J]. Transportation Science,2003,37:69-82.
    [132]Laporte G., Louveaux F. V., Mercure H.. The vehicle routing problem with stochastic travel times [J]. Transportation Science,1992,26:161-170.
    [133]Djadane M., Goncalves G., Hsu T., et al. Dynamic vehicle routing problem under flexible time windows and fuzzy travel times [C].2006 Internatinal Conference on Service Systems and Sercice Management, Troyes, France, October 25-27,2006,2:1519-1524.
    [134]张建勇,李军.具有模糊旅行时间的VRP的一种混合遗传算法[J].管理工程学报,2006,20(4):13-16.
    [135]郭强,谢秉磊.随机旅行时间车辆路径问题的模型及其算法[J].系统工程学报,2003,18(3):244-247.
    [136]李相勇,田澎.带时间窗和随机时间车辆路径问题:模型和算法[J].系统工程理论与实践,2009,29(8):81-90.
    [137]张杨,黄庆,卜祥智.随机旅行时间局内车辆路径问题的模型及其算法[J].管理工程学报,2006,20(3):82-103.
    [138]谢秉磊.随机车辆路径问题研究[D].博士学位论文,成都:西南交通大学,2003.
    [139]李晋航,黄刚,贾艳.多模糊信息条件下的物料配送路径规划问题研究[J].机械工程学报,2011,47(1):124-131.
    [140]洪联系.带模糊时间依赖和时间窗口动态路径规划模型[J].系统仿真学报,2011,23(5):998-1004.
    [141]韩世莲.区间数多目标多模式运输问题的模糊规划方法[J].系统工程理论方法应用,2006,15(5):451-455.
    [142]狄卫民,马祖军,代颖.制造/再制造集成物流网络模糊优化设计方法[J].计算机集成制造系统,2008,14(8):1472-1480.
    [143]Chen A., Yang H., Lo H. K., et al. A capacity related reliability for transportation networks [J]. Journal of Advanced Transportation,1999,33(2): 183-200.
    [144]Yi C. G., Ju S. D.. Service reliability analysis on logistics network [C].2006 IEEE International Conference on Service Operations and Logistics, and Informatics, Shanghai, China, June 21-23,2006:57-61.
    [145]Wang N., Lu J. C., Kvam P.. Reliability modeling in spatially distributed logistics systems [J]. Reliability,2006,55(3):525-534.
    [146]Halldorsson A., Aastrup J.. Quality criteria for qualitative inquiries in logistics [J]. European Journal of Operational Researeh,2003,144(2): 321-332.
    [147]Thomas M. U.. Supply chain reliability for contingency operations [J]. The proeeeding of Reliability and Maintainability Symposium,2002:61-67.
    [148]Revelle C., Hogan K.. The maximum reliability location problem and a-reliable P-center problem:derivatives of the probabilistic location set covering problem [J]. Annals of Operation Research,1989,18:155-174.
    [149]Berman O., Drezner Z., Wesolowsky G. O.. Locating service facilities whose reliability is distance [J]. Computers and Operations Research,2003,30(11): 1683-1695.
    [150]张焱.基于可靠性的生鲜农产品物流网络优化[D].博士学位论文,成都:西南交通大学,2009.
    [151]陈德良.物流网络可靠性的关键问题与应用研究[D].博士学位论文,长沙:中南大学,2010.
    [152]张旭梅,吴捷.基于马尔可夫过程的配送服务可靠性评价[J].工业工程,2006,9:11-14.
    [153]张旭梅,吴捷.基于向量马尔可夫链的配送服务可靠性预测[J].系统工程学报,2007,6:300-304.
    [154]穆东,杜志平.供应链固有可靠性和运作可靠性研究[J].物流技术,2004,12:37-39.
    [155]Hwang C. L., Masud A. S. M.. Multiple objective decision making, methods and applications [M]. New York:Springer-Verlag,1979.
    [156]Miettinen K.. Introduction to multiobjective optimization:noninteractive approaches [J]. Multiobjective Optimization,2008,5252:1-26.
    [157]Zadeh L.. Optimality and non-scalar-valued performance criteria [J]. IEEE Transactions on Automatic Control,1963,8(1):59-60.
    [158]Geofrion A. M.. Proper efficiency and the theory of vector optimization [J]. Journal of Mathematical Analysis and Application,1968,41:491-502.
    [159]Haimes Y. Y., Lasdon L. S., Wismer D. A.. On a bicriterion formulation of the problems of integrated system identification and system optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics,1971,1(3):296-297.
    [160]Charnes A., Cooper W. W., Ferguson R. O.. Optimal estimation of executive compensation by linear programming [J]. Management Science,1955,1(2): 138-151.
    [161]Charnes A., Cooper W. W.. Management Models and Industrial Applications of Linear Programming [M]. NewYork, John Wiley and Sons,1961.
    [162]Ben-Tal A.. Characterization of Pareto and Lexicographic Optimal Solutions [J]. Multiple Criteria Decision Making:Theory and Application, Lecture Notes in Economics and Mathematical Systems, Springer Verlag,1979,17:1-11.
    [163]Coello Coello C. A.. Evolutionary multi-objective optimization:a historical view of the field [J]. Computational Intelligence Magazine, IEEE,2006,1(1): 28-36.
    [164]Goldberg D. E.. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Addison-Wesley,1989.
    [165]Srinivas N., Deb K.. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3): 221-248.
    [166]Horn J., Nafpliotis N., Goldberg D. E.. A niched Pareto genetic algorithm for multiobjective optimization. Evolutionary Computaton,1994.1994,1:82-87.
    [167]Fonseca C. M., Fleming P. J.. Genetic Algorithms for Multiobjective Optimization:Formulation Discussion and Generalization [C]. Proceedings of the 5th International Conference on Genetic Algorithms, San Francisco, CA, USA, July 1993:416-423.
    [168]Zitzler E., Laumanns M., Thiele L.. SPEA2:Improving the strength pareto evolutionary algorithm for multiobjective optimization [J]. Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems,2001:95-100.
    [169]Deb K., Pratap A., Agarwal S., et al. A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [170]Knowles J., Come D.. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization [C]. Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, July 6-9,1999: 98-105.
    [171]Sierra M. R., Coello Coello C. A.. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance [C].2005 Third International Conference on Evolutionary Multi-Criterion Optimazation, Guanajuato, Mexico, March 9-11,2005:505-519.
    [172]Nebro A. J., Durillo J. J., Garcia-Nieto J., et al. SMPSO:A new PSO-based metaheuristic for multi-objective optimization [C].2009 IEEE Symposium on Computational intelligence in Miulti-Criteria Decision-Making, Nashville, TN, USA, March 30-April 2,2009:66-73.
    [173]Kirkpatrick S., Gelatt C. D., Vecchi M. P.. Optimization by Simulated Annealing [J]. Science,1983,220(4598):671-680.
    [174]Bandyopadhyay S., Saha S., Maulik U., et al. A Simulated Annealing-Based Multiobjective Optimization Algorithm:AMOS A [J]. IEEE Transactions on Evolutionary Computation,2008,12(3):269-283.
    [175]Chaharsooghi S. K., Meimand Kermani A. H.. An intelligent multi-colony multi-objective ant colony optimization (ACO) for the 0-1 knapsack problem [C].2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, June 1-6,2008:1195-1202.
    [176]Glover F., Laguna M., Marti R... Scatter Search and Path Relinking:Advances and Applications [J]. Handbook of Metaheuristics,2003,57:1-35.
    [177]Nebro A. J., Luna F., Alba E., et al. AbYSS:Adapting Scatter Search to Multiobjective Optimization [J]. IEEE Transactions on Evolutionary Computation,2008,12(4):439-457.
    [178]Larranaga P., Lozano J. A.. Estimation of Distribution Algorithms:A New Tool for Evolutionary Computation [M]. Springer,2001.
    [179]Zhang Q. F., Zhou A., Jin Y. C. RM-MEDA:A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm [J]. IEEE Transactions on Evolutionary Computation,2008,12(1):41-63.
    [180]Candas M. F., Kutanoglu E.. Benefits of considering inventory in service parts logistics network design problems with time-based service constraints [J]. HE Transactions,2007,39(2):159-176.
    [181]Thanh P. N., Peton O., Bostel N.. A linear relaxation-based heuristic approach for logistics network design [J]. Computers and Industrial Engineering,2010, 59(4):964-975.
    [182]Ishfaq R., Sox C. R.. Hub location-allocation in intermodal logistic networks [J]. European Journal of Operational Research,2011,210(2):213-230.
    [183]王保华,何世伟,宋瑞,等.综合运输体系下快捷货运网络流量分配优化模型及算法[J].铁道学报,2009,31(2):12-16.
    [184]葛束,甘蜜.基于遗传算法的集成逆向物流的供应链网络设计[J].中国铁道科学,2008,29(6):116-120.
    [185]Dias J., Euqenia C. M., Climaco J.. Capacitated dynamic location problems with opening, closure and reopening of facilities [J]. IMA Journal of Management Mathematics,2006,17(4):317-348.
    [186]石琴,陈朝阳,覃运梅.多目标物流网络优化模型的研究[J].中国管理科学,2005,13(4):40-43.
    [187]韩世莲,刘新旺.多目标多模式模糊运输问题的最优折衷解[J].系统工程,2007,25(9):26-32.
    [188]汤希峰,毛海军,李旭宏.物流配送中心选址的多目标优化模型[J].东南大学学报,2009,39(2):404-407.
    [189]吕雄伟,李军,雷鸣,等.随机需求IRPTW的多目标优化[J].西南交通大学学报,2009,44(2):289-294.
    [190]高阳,詹沙磊.基于第三方物流的多周期多目标产品回收网络设计[J].控制与决策,2010,25(8):1164-1168.
    [191]詹沙磊,刘南.基于模糊目标规划的应急物流多目标随机规划模型[J].中国机械工程,22(23):2858-2862.
    [192]郑斌,马祖军,方涛.应急物流系统中的模糊多目标定位-路径问题[J].系统工程,27(8):21-25.
    [193]高更君,王震宇,黄卫.基于多目标模糊决策的公共物流中心选址研究[J].公路交通科技,2004,21(9):140-144.
    [194]Du F., Evans G. W.. A bi-objective reverse logistics network analysis for post-sale service [J]. Computers and Operations Research,2008,35(8): 2617-2634.
    [195]Pishvaee M. S., Farahani R. Z., Dullaert W.. A memetic algorithm for bi-objective integrated forward/reverse logistics network design [J]. Computers and Operations Research,2010,37(6):1100-1112.
    [196]Frota Neto J. Q., Bloemhof-Ruwaard J. M., van Nunen J. A. E. E., et al. Designing and evaluating sustainable logistics networks [J]. International Journal of Production Economics,2008,111(2):195-208.
    [197]Bachlaus M., Pandey M. K., Mahajan C., et al. Designing an integrated multi-echelon agile supply chain network:A hybrid taguchi-particle swarm optimization approach [J]. Journal of Intelligent Manufacturing,2008,19(6): 747-761.
    [198]汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社,1985.
    [199]李洪兴.因素空间理论与知识表示的数学框架(Ⅷ)[J].模糊系统与数学, 1995,9(3):1-9.
    [200]李德清,李洪兴.状态变权向量的性质与构造[J].北京师范大学学报(自然科学版),2002,38(4):455-461.
    [201]李洪兴.因素空间理论与知识表示的数学框架(Ⅸ)[J].模糊系统与数学,1996,10(2):12-19.
    [202]朱勇珍,李洪兴.状态变权的公理化体系和均衡函数的构造[J].系统工程理论与实践,1999,19(7):116-118.
    [203]刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践,1997,17(4):58-64.
    [204]李荣钧.模糊多准则决策理论与应用[M].北京:科学出版社,2002.
    [205]李德清,李洪兴.变权决策中变权效果分析与状态变权向量的确定[J].控制与决策,2004,19(11):1241-1244.
    [206]Kim J. R., Gen M., Ida K., et al. Bicriteria network desing using a spanning tree-based genetic algorithm [J]. Artificial Life and Robotics,1999,2(3): 65-72.
    [207]Hansen P.. Bicriterion path problems [C]. The Third Conference Multiple Criteria Decision Making Theory and Applications, Lecture Notes in Economics and Mathematical Systems, Spinger, Berlin,1979,117:109-127.
    [208]Goldberg D. E., Deb K.. A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms,1991:69-93.
    [209]Deb K., Agarwal R. B.. Simulated Binary Crossover for Continuous Search Space [J]. Complex Systems,1995,9:115-148.
    [210]Beyer H. G., Deb K.. On Self-Adaptive Features in Real-Parameter Evolutionary Algorithm [J]. IEEE Trabsactions on Evolutionary Computation, 2001,5(3):250-270.
    [211]Raghuwanshi M. M., Kakde O. G.. Survey on multiobjective evolutionary and real coded genetic algorithms [J]. Complexity International,2005,11: 150-161.
    [212]Deb K.. An efficient constraint handling method for genetic algorithms [J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 311-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700