集员估计理论、方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管集员估计理论、方法及其应用的研究已经取得了一定的成果,但是这方面的研究并非完善。本论文在分析现有研究成果的基础上,对集员估计理论、方法及其应用开展了进一步的研究。主要研究工作围绕现有集员估计方法的改进,新的集员估计方法的提出以及集员估计理论、方法在故障诊断领域的应用开展。本论文可分为以下几部分:
     第一部分,对椭球集员滤波算法进行了分析和改进。一方面,对线性系统最优椭球集员滤波算法进行了改进,给出了两种数值稳定性比较好的次优算法。两种算法分别采用Cholesky分解和奇异值分解技术使椭球形状矩阵保持正定性。同时,为了避免受病态矩阵求逆的影响,在量测更新过程中两种算法均采用求具有次最小容积椭球的方法。另一方面,提出了一种平方根非最优椭球集员滤波算法,并给出了实现滤波计算的心动阵列结构。平方根非最优椭球集员滤波算法能使椭球形状矩阵保持正定性,因而它也具有较好的数值稳定性。如果状态的维数为n,在心动阵列上的滤波计算的复杂度为O(n)。因此,滤波计算的效率得到显著提高。此外,由于处理单元在不同阶段完成不同的运算功能,因而处理器的利用率也比较高。
     第二部分,对全对称多胞形集员估计算法进行了分析和改进。在原始的全对称多胞形与带的交集的外界计算方法的基础上给出了改进外界计算方法。改进的外界计算方法给出了新的包含二者交集的全对称多胞形族,然后将此族中具有最小容积的全对称多胞形作为二者交集的外界。并且,根据全对称多胞形容积计算公式还可以证明改进外界计算方法得到的多胞形不会比原始方法大。在以上工作的基础上,得到了改进的全对称多胞形集员滤波算法和改进的全对称多胞形时变系统集员辨识算法。改进算法的精度比原始算法要高,尤其是当噪声服从重尾分布时,此优势更加明显。
     第三部分,系统化的研究了以先进模式分类器为基础的集员辨识算法。一方面,以提高参数可行集的近似描述效果为目的,对原有的基于最小二乘支持向量机的集员辨识算法进行了改进。改进算法采用加权最小二乘支持向量机建立逼近方程误差向量的加权l∞范数与参数向量之间的复杂函数关系的模型,然后根据所建模型和可行的方程误差向量的加权l∞范数导出近似参数可行集。为了评估集员辨识结果的优劣,给出了反映近似边界接近精确边界程度的指标。与原算法相比,改进算法具有更好的近似描述能力。另一方面,将集员辨识视为设计模式分类器对参数空间中的点进行分类的过程,构造了两种新的集员辨识算法。两种算法分别通过训练模式分类器有监督的局部线性嵌入+最近均值分类器和有监督的等距映射+k近邻分类器在参数空间建立决策函数。此决策函数对参数空间中的点按是否属于可行集进行分类。由于模式分类器具有较小的分类错误率,因而由所有被判为可行集内的点组成的集合可以很好的逼近可行集。
     第四部分,研究了两类带有未知但有界噪声的非线性系统的故障诊断问题。第一类问题为带有未知但有界噪声的非线性离散时间系统的建模与故障检测问题。针对这一问题,将集员辨识算法与智能模型(如径向基函数神经网络或Takagi-Sugeno模糊模型)相结合给出了非线性系统的建模与故障检测方法。在系统建模方面,此方法可以对系统进行鲁棒建模,并有效的预测实际系统的输出范围;在故障检测方面,此方法可以有效的检测突变故障和缓变故障,并且比阈值通过统计残差序列而设定的故障检测方法更具鲁棒性。第二类问题为在状态空间模型下带有未知但有界噪声的非线性离散时间系统传感器故障的检测与隔离问题。首先,提出一种非线性系统椭球集员滤波算法。此算法具有计算量小的特点,因此采用它估计状态可以实现在线故障检测与隔离。然后,给出了基于集员滤波的故障检测与隔离方法。其中包括一个故障检测方法和两个故障隔离方法。本方法可以有效的对传感器故障进行检测与隔离,并且比基于扩展卡尔曼滤波的方法更具鲁棒性。
Although the research work on set membership estimation theory, methods and their applications has achieved some results, there is a lot of work left to be done. Based on analyzing the existing results, further research work is carried out in this dissertation. The research work here focuses on existing methods improvement, new methods presentation, and applications of set membership estimation theory and methods to fault diagnosis. This dissertation is composed of four parts.
     In the first part, set membership state estimation algorithms by ellipsoids are analyzed and improved. On one hand, the optimal set membership state estimation algorithm by ellipsoids for linear systems is improved, and two numerically stable suboptimal algorithms are proposed. In order to keep the shape-defining matrixes of the ellipsoids positive definite, cholesky decomposition and singular value decomposition are used in their computation. Besides, a subminimal-volume ellipsoid in the observation update is computed to circumvent inverse of ill-conditioned matrix. On the other hand, a square root non-optimal set membership state estimation algorithm by ellipsoids is given, and the parallel computation of state estimation using systolic arrays is schemed. The square root non-optimal algorithm can keep the shape-defining matrixes of the ellipsoids positive definite, so it is also numerically stable. If the state dimension is n, the parallel computation of state estimation using systolic arrays is of O(n) complexity. So the efficiency of computation is improved. Since the processing elements are enabled different functions at different stages, high processor utilization is achieved.
     In the second part, set membership estimation algorithms by zonotopes are analyzed and improved. Improved outer bound computation methods of intersection of a zonotope and a strip are pointed out based on the original ones. They give new families of zontopes containing the intersection and select the minimal-volume one as the outer bound. And, it can be proved by zonotope volume formulas that the improved outer bound computation methods can give smaller zonotopes than the original ones. Based on the above work, an improved set membership state estimation algorithm by zonotopes and an improved set membership identification algorithm by zonotopes for time-varying parameterized systems are obtained. The improved algorithms are more accurate than the original ones especially in the presence of uniformly heavy-tailed noise.
     In the third part, set membership identification algorithms based on advanced pattern classifiers are studied systematically. On one hand, the original set membership identification algorithm by least squares support vector machines is improved for better characterization of the feasible parameter sets. In the improved algorithm, a weighted least squares support vector regression is solved to build a model which approximates the complex functional relationship between the weighted l∞norms of the equation-error vectors and the given parameter vectors, and then the approximate feasible parameter set is obtained according to this model and the feasible weighted l∞norms of the equation-error vectors. Besides, an index reflecting the closeness between the approximate boundary and the true boundary is also given to evaluate the results of the proposed algorithm. Comparing with the original algorithm, the improved algorithm has better performance. On the other hand, two new set membership identification algorithms are given by viewing set membership identification as construction a pattern classifier to decide which class a point belongs to. In the two algorithms, supervised locally linear embedding and supervised isomap are combined with nearest mean classifier and k-nearest neighbor classifier respectively to build decision functions in the parameter space. The points in the parameter space can be divided into two classes according to whether they are in the feasible parameter set or not by decision functions. Since the classification errors are small, the set of all the points that are decided to be in the feasible parameter set can well approximate the feasible parameter set.
     In the fourth part, two fault diagnosis problems for nonlinear systems with unknown but bounded noises are studied. The first problem is about modeling and fault detection for nonlinear discrete-time dynamical systems with unknown but bounded noises. For this problem, a modeling and fault detection method is proposed using set membership identification algorithms and intelligent models such as radial basis function neural networks and Takagi-Sugeno fuzzy models. From system modeling aspect, this method can model nonlinear systems robustly and predict the bounds of the actual system outputs easily. While from fault detection aspect this method can detect abrupt and incipient faults effectively and is more robust than the methods where the thresholds are determined by statistical properties of residual errors. The second problem is about sensor fault detection and isolation of nonlinear discrete-time dynamical systems based on state space models with unknown but bounded noises. First, a set membership state estimation algorithm by ellipsoids for nonlinear systems is proposed. Since the algorithm has light computational load, on-line fault detection and isolation can be realized when it is applied to state estimation. Then, one fault detection method and two fault isolation methods based on set membership state estimation are given. The methods can detect and isolate sensor faults effectively and are more robust than the methods based on extended Kalman filtering.
引文
[1] Kuntzevich V M, Lychak M. Guaranteed Estimates, Adaptation and Robustness in Control Systems[M]. Berlin; New York: Springer-Verlag, 1992
    [2] Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators[J]. IEEE Transactions on Automatic Control, 1982, 27(2): 408-414
    [3] Milanese M, Vicino A. Estimation theory for nonlinear models and set membership uncertainty[J]. Automatica, 1991, 27(2): 403-408
    [4] Belforte G, Bona B, Cerone V. Parameter estimation algorithms for a set-membership description of uncertainty[J]. Automatica, 1990, 26(5): 887-898
    [5] Walter E, Piet-Lahanier H. Estimation of parameter bounds from bounded-error data: a survey[J]. Mathematics and Computers in Simulation, 1990, 32(5-6): 449-468
    [6] Schweppe F C. Recursive state estimation: Unknown but bounded errors and system inputs[J]. IEEE Transactions on Automatic Control, 1968, 13(1): 22-28
    [7] Witsenhausen H S. Sets of possible states of linear systems given perturbed observations[J]. IEEE Transactions on Automatic Control, 1968, 13(5): 556-558
    [8] Milanese M, Vicino A. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview[J]. Automatica, 1991, 27(6): 997-1009
    [9] Schweppe F C. Uncertain dynamic systems[M]. Englewood Cliffs, NJ: Prentice-Hall, 1973
    [10] Kurzhanski A B. Control and observation under uncertainty[M]. Moscow: Nauka, 1977(in Russian)
    [11] Chernousko F L. State estimation for dynamic systems[M]. Boca Raton: CRC Press, 1994
    [12] Milanese M, Norton J, Piet-Lahanier H, Walter E. Bounding approaches to system identification[M]. New York: Plenum Press, 1996
    [13] Kurzhanski A B, Valyi I. Ellipsoidal calculus for estimation and control[M]. Laxenburg :IIASA; Boston: Birkh?user, 1997
    [14] Walter E, Pronzato L. Identification of parametric models from experimental data[M].Berlin; New York: Springer; Paris: Masson, 1997
    [15] Garulli A, Tesi A, Vicino A. Robustness in identification and control[M]. Berlin; New York: Springer, 1999
    [16] Jaulin L, Kieffer M, Didrit O, et al. Applied interval analysis, with examples in parameter and state estimation, robust control and robotics[M]. London; New York: Springer, 2001
    [17] Alamo T, Bravo J M, Redondo M J, et al. A set-membership state estimation algorithm based on DC programming[J]. Automatica, 2008, 44(1): 216-224
    [18] Bravo J M, Alamo T, Redondo M J, et al. An algorithm for bounded-error identification of nonlinear systems based on DC functions[J]. Automatica, 2008, 44(2): 437-444
    [19] Eldar Y C, Beck A, Teboulle, M. A minimax Chebyshev estimator for bounded error estimation[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1388-1397
    [20] Walter E, Kieffer M. Guaranteed nonlinear parameter estimation in knowledge-based models[J]. Journal of Computational and Applied Mathematics, 2007, 199(2): 277-285
    [21] Otanez P G, Campbell M E. Bounded switched linear estimator for smooth nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2007, 15(2): 358-368
    [22] Lin Y D, Stadtherr, M A. Guaranteed state and parameter estimation for nonlinear continuous-time systems with bounded-error measurements[J]. Industrial and Engineering Chemistry Research, 2007, 46(22): 7198-7207
    [23] Joachim D, Deller J R. Multiweight optimization in optimal bounding ellipsoid algorithms[J]. IEEE Transactions on Signal Processing, 2006, 54(2): 679-690
    [24] Chernousko F, Polyak B. Special issue on the set membership modelling of uncertainties in dynamical systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(2): 123-124
    [25] Chen J, Patton R. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 2000
    [26]孙先仿,范跃祖,宁文如.故障检测的集员辨识方法[J].航空学报, 1998, 19(3): 371-374
    [27] Sun X F, Fan Y Z. Guaranteed sensor fault detection and isolation via recursive rectangular parallelepiped bounding in state-set estimation[A]. Proc. 3rd ASCC[C]. 2000: 3041-3046
    [28]孙先仿.集员辨识:算法、收敛性和鲁棒性[D].北京:中国科学院自动化研究所,1994
    [29]王文正.集员辨识及在飞行器气动力参数辨识的应用[D].西安:西北工业大学,1996
    [30]何青.集员估计理论方法及其应用研究[D].长沙:湖南大学,2002
    [31] Garulli A, Vicino A, Zappa G. Optimal induced-norm and set membership state smoothing and filtering for linear systems with bounded disturbances[J]. Automatica, 1999, 35(5): 767-776
    [32] Garulli A, Vicino A, Zappa G. Conditional central algorithms for worst case set- membership identification and filtering[J]. IEEE Transactions on Automatic Control, 2000, 45(1): 14-23
    [33] Bai E W, Fu M Y, Tempo R, et al. Convergence results of the analytical center estimator[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 569-572
    [34] Fogel E, Huang Y F. On the value of information in system identification–bounded noise case[J]. Automatica, 1982, 18(2):229-238
    [35] Norton J P. Special issue on parameter identification with error bound I-II[J]. International Journal of Adaptive Control and Signal Processing, 1994, 8(1): 1-118, 1995, 9(1): 1-132
    [36] Chernousko F L, Rokityanskii, D Y. Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations[J]. Journal of Optimization Theory and Applications, 2000, 104(1): 1-19
    [37] Chernousko F L, Ovseevich A I. Properties of the optimal ellipsoids approximating the reachable sets of uncertain systems[J]. Journal of Optimization Theory and Applications. 2004, 120(2): 223-246
    [38] Chernousko F L. Ellipsoidal state estimation for dynamical systems[J]. Nonlinear Analysis, Theory, Methods and Applications, 2005, 63(5-7): 872-879
    [39] Chernousko F L. Properties of the optimal ellipsoids approximating reachable sets of uncertain systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(2): 135-147
    [40] Nazin S A. Ellipsoidal state estimates of linear dynamic systems: their limiting behavior[J]. Automation and Remote Control, 2001, 62(4): 590-596
    [41] Kurzhanski A B, Varaiya P. Ellipsoidal techniques for reachability analysis: internal approximation[J]. Systems and Control Letters, 2000, 41(3): 201-211
    [42] Kurzhanski A B, Varaiya P. On ellipsoidal techniques for reachability analysis. Part I: External approximations[J]. Optimization Methods and Software, 2002, 17(2): 117-206
    [43] Kurzhanski A B, Varaiya P. On ellipsoidal techniques for reachability analysis. Part II: Internal approximations box-valued constraints[J]. Optimization Methods and Software, 2002, 17(2): 207-237
    [44] Kurzhanski A B, Varaiya P. Reachability under uncertainty and measurement noise[J]. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(2): 183-194
    [45] Kurzhanski A B, Varaiya P. Ellipsoidal techniques for reachability analysis of discrete-time linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(1): 26-38
    [46] Vostrikov I V. Interior ellipsoidal bounds for the attainability sets of linear delay control systems[J]. Differential Equations, 2003, 39(8): 1082-1090
    [47] Chernousko F L. Optimal guaranteed estimates of the indeterminacies with the aid of ellipsoids, Parts I[J]. Engineering Cybernetics, 1980, 18(3): 1-9
    [48] Chernousko F L. Optimal guaranteed estimates of the indeterminacy with the aid of ellipsoids, Parts II[J]. Engineering Cybernetics, 1980, 18(4): 1-9
    [49] Maksarov D G, Norton J P. State bounding with ellipsoidal set description of the uncertainty[J]. International Journal of Control, 1996, 65(5): 847-866
    [50] Durieu C, Walter E, Polyak B. Multi-input multi-output ellipsoidal state bounding[J]. Journal of Optimization Theory and Applications, 2001,111(2): 273-303
    [51] Maksarov D G, Norton J P. Computationally efficient algorithms for state estimation with ellipsoidal approximations[J]. International Journal of Adaptive Control and Signal Processing, 2002, 16(6): 411-434
    [52] Gollamudi S, Nagaraj S, Kapoor S, et al. Set-membership state estimation with optimal bounding ellipsoids[A]. Proceedings of the International Symposium on Information Theory and Its Applications[C]. 1996: 262-265
    [53]何青,王耀南,姜燕,等.基于OBE算法的自适应集员状态估计[J].自动化学报, 2003, 29(2): 312-317
    [54] Boyd S, El Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia, PA: SIAM, 1994
    [55] Henrion D, Tarbouriech S, Arzelier D. LMI approximations for the radius of the intersection of ellipsoids: survey[J]. Journal of Optimization Theory and Applications, 2001, 108(1): 1-28
    [56] El Ghaoui L, Calafiore G. Robust filtering for discrete-time systems with bounded noise and parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2001, 46(7): 1084-1089
    [57] Polyak B T, Nazin S A, Durieu C, et al. Ellipsoidal parameter or state estimation under model uncertainty[J]. Automatica, 2004, 40(7): 1171-1179
    [58] Calafiore G, El Ghaoui L. Ellipsoidal bounds for uncertain linear equations and dynamical systems[J]. Automatica, 2004, 40(5): 773-787
    [59] Broman V, Shensa M J. A compact algorithm for the intersection and approximation of N-dimensional polytopes[J]. Mathematics and Computers in Simulation, 1990, 32(5-6): 469-480
    [60] Walter E, Piet-Lahanier H. Exact recursive polyhedral description of the feasible parameter set for bounded-error models[J]. IEEE Transactions on Automatic Control, 1989, 34(8): 911-915
    [61] Spathopoulos M P, Grobov I D. A state-set estimation algorithm for linear systems in the presence of bounded disturbances[J]. International Journal of Control, 1996, 63(4): 799-811
    [62] Vicino A, Zappa G. Sequential approximation of feasible parameter sets for identification with set membership uncertainty[J]. IEEE Transactions on Automatic Control, 1996, 41(6): 774-785
    [63] Chisci L, Garulli A, Zappa G. Recursive state bounding by parallelotopes[J]. Automatica, 1996, 32(7): 1049-1055
    [64] Chisci L, Garulli A, Vicino A, et al. Block recursive parallelotopic bounding in set membership identification[J]. Automatica, 1998, 34(1): 15-22
    [65] Moore R E. Interval analysis[M]. Englewood Cliffs, NJ: PrenticeHall, 1966
    [66] Jaulin L, Walter E. Set inversion via interval analysis for nonlinear bounded-errorestimation[J]. Automatica, 1993, 29(4): 1053-1064
    [67] Jaulin L. Nonlinear bounded-error state estimation of continuous-time systems[J]. Automatica, 2002, 38(6): 1079-1082
    [68] Kieffer M, Jaulin L, Walter E. Guaranteed recursive non-linear state bounding using interval analysis[J]. International Journal of Adaptive Control and Signal Processing, 2002, 16(3): 193-218
    [69] Kieffer M, Walter E. Guaranteed nonlinear state estimator for cooperative systems[J]. Numerical Algorithms, 2004, 37(1-4): 187-198
    [70] Ra?ssi T, Ramdani N, Candau Y. Set membership state and parameter estimation for systems described by nonlinear differential equations[J]. Automatica, 2004, 40(10): 1771-1777
    [71] Jaulin L. Interval constraint propagation with application to bounded-error estimation[J]. Automatica, 2000, 36(10): 1547-1552
    [72] Jaulin L, Kieffer M, Braems I, et al. Guaranteed non-linear estimation using constraint propagation on sets[J]. International Journal of Control, 2001, 74(18): 1772-1782
    [73]数学百科全书编译委员会.数学百科全书[M].北京:科学出版社, 2000
    [74] Kühn W. Rigorously computed orbits of dynamical systems without the wrapping effect[J]. Computing, 1998, 61(1): 47-67
    [75] Puig V, CugueróP, Quevedo J. Worst-case estimation and simulation of uncertain discrete-time systems using zonotopes[A]. Proceedings of European Control Conference[C]. Portugal, 2001
    [76] Combastel C. A state bounding observer based on zonotopes[A]. Proceedings of European Control Conference[C]. Cambridge, UK, 2003
    [77] Alamo T, Bravo J M, Camacho E F. Guaranteed state estimation by zonotopes[J]. Automatica, 2005, 41(6): 1035-1043
    [78] Combastel C. A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[A]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference[C]. Piscataway, NJ: IEEE, 2005: 7228-7234
    [79] Bravo J M, Alamo T, Camacho E F. Bounded error identification of systems withtime-varying parameters[J]. IEEE Transactions on Automatic Control, 2006, 51(7): 1144-1150
    [80] Keesman K J, Stappers R. Nonlinear set-membership estimation: A support vector machine approach[J]. Journal of Inverse and Ill-Posed Problems, 2004, 12(1): 27-41
    [81] Bemporad A, Garulli A. Output-feedback predictive control of constrained linear systems via set-membership state estimation[J]. International Journal of Control, 2000, 73(8): 655-665
    [82] Angeli D, Casavola A, Mosca E. On feasible set-membership state estimators in constrained command governor control[J]. Automatica, 2001, 37(1): 151-156
    [83] Bravo J M, Limon D, Alamo T, et al. On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach[J]. Automatica, 2005, 41(9): 1583-1589
    [84] Joachim D, Deller J R. Active machine learning using adaptive set estimation[A]. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers[C]. Piscataway, NJ: IEEE, 2003: 596-599
    [85] Gokcen I, Joachim D, Deller J R. Comparing optimal bounding ellipsoid and support vector machine active learning[A]. Proceedings of the 17th International Conference on Pattern Recognition[C]. Piscataway, NJ: IEEE, 2004: 172-175
    [86]范永全,张家树.基于集员估计的混沌通信窄带干扰抑制技术[J].物理学报, 2008, 57(5): 2714-2721
    [87] Di Marco M, Garulli A, Giannitrapani A, et al. Simultaneous localization and map building for a team of cooperating robots: A set membership approach[J]. IEEE Transactions on Robotics and Automation, 2003, 19(2): 238-249
    [88] Calafiore G. Reliable localization using set-valued nonlinear filters[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2005, 35(2): 189-197
    [89] Caiti A, Garulli A, Livide F, et al. Localization of autonomous underwater vehicles by floating acoustic buoys: A set-membership approach[J]. IEEE Journal of Oceanic Engineering, 2005, 30(1): 140-152
    [90] Renault S, Meizel D. GPS/GIS localization using a set membership method[A]. 2006 IEEE 12th Digital Signal Processing Workshop and 4th IEEE Signal ProcessingEducation Workshop[C]. Piscataway, NJ: IEEE, 2006: 168-172
    [91] Di Marco M, Garulli A, Prattichizzo D, et al. A set theoretic approach for time-to-contact estimation in dynamic vision[J]. Automatica, 2003, 39(6): 1037-1044
    [92] Sanyal A K, Lee T, Leok M, et al. Global optimal attitude estimation using uncertainty ellipsoids[J]. Systems and Control Letters, 2008, 57(3): 236-245
    [93] Rokityanskiy D Y, Veres S M. Application of ellipsoidal estimation to satellite control design[J]. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(2): 239-249
    [94] Raissi T, Ramdani N, Candau Y. Bounded error moving horizon state estimator for non-linear continuous-time systems: Application to a bioprocess system[J]. Journal of Process Control, 2005, 15(5): 537-545
    [95] Herrero J M, Blasco X, Martinez M, et al. Robust identification of non-linear greenhouse model using evolutionary algorithms[J]. Control Engineering Practice, 2008, 16(5): 515-530
    [96]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000
    [97]张萍,王桂增,周东华.动态系统的故障诊断方法[J].控制理论与应用, 2000, 17(2): 153-158
    [98]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社, 1998
    [99] Tzes A, Le K. Fault detection for jump discrete systems[A]. Proceedings of the American Control Conference[C]. Piscataway, NJ: IEEE, 1999: 4496-4500
    [100] Reppa V, Vagia M, Tzes A. Fault detection using set membership identification for micro-electrostatic actuators[A]. 16th IEEE International Conference on Control Applications, CCA 2007. Part of IEEE Multi-conference on Systems and Control[C]. Piscataway, NJ: IEEE, 2007: 789-794
    [101] Reppa V, Tzes A. Application of set membership identification for fault detection of MEMS[A]. Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006[C]. Piscataway, NJ: IEEE, 2006: 643-648
    [102] Ingimundarson A, Bravo J M, Puig V, et al. Robust fault diagnosis using parallelotope-based set-membership consistency tests[A]. Proceedings of the 44th IEEEConference on Decision and Control, and the European Control Conference, CDC-ECC '05 [C]. Piscataway, NJ: IEEE, 2005: 993-998
    [103] Kesavan P, Lee J H. A set based approach to detection and isolation of faults in multivariable systems[J]. Computers and Chemical Engineering, 2001, 25(7-8): 925-940
    [104] Fagarasan I, Ploix S, Gentil S. Causal fault detection and isolation based on a set-membership approach[J]. Automatica, 2004, 40(12): 2099-2110
    [105] Sun X F, Fan Y Z, Zhang F Z. Fault detection using an adaptive fuzzy system[J]. International Journal of Systems Science, 2002, 33(7): 599-609
    [106] Janati Idrissi H, Kratz F, Ragot J. Fault detection and isolation for uncertain systems[A]. Proceedings of the 41st IEEE Conference on Decision and Control[C]. Piscataway, NJ: IEEE, 2002: 4748-4753
    [107] Morf M, Kailath T. Square-root algorithms for least-squares estimation[J]. IEEE Transactions on Automatic Control, 1975, 20(4): 487-497
    [108] Wang L, Libert G, Manneback P. Kalman filter algorithm based on singular value decomposition[A].Proceedings of the 31st IEEE Conference on Decision and Control[C]. Piscataway, NJ: IEEE, 1992: 1224-1229
    [109] Kung H T. Why systolic architectures?[J]. Computer, 1982, 15(1): 37-46
    [110]陈国良,陈崚. VLSI计算理论与并行算法[M].合肥:中国科学技术大学出版社, 1991
    [111] Deller J R, Odeh S F. Adaptive set-membership identification in O(m) time for linear-in-parameters models[J]. IEEE Transactions on Signal Processing, 1993, 41(5): 1906-1924
    [112] Deller J R. A‘systolic array’formulation of the optimal bounding ellipsoid algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(9): 1432-1436
    [113] Odeh S F, Deller J R. A systolic algorithm for adaptive set membership identification[A]. Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing [C]. Piscataway, NJ: IEEE, 1990: 2419-2422
    [114] Gaston F M F, Irwin G W. Systolic Kalman filtering: an overview[J]. IEE Proceedings, Part D: Control Theory and Applications, 1990, 137(4): 235-244
    [115] Vapnik V. Statistical Learning Theory[M]. New York: John Wiley and Sons, 1998
    [116] Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(7): 1109-1114
    [117] Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1-4): 85-105
    [118] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326
    [119] Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2004, 4(2): 119-155
    [120] Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323
    [121] de Ridder D, Duin R P W. Locally linear embedding for classification[R]. Delft: Delft University of Technology, 2002
    [122] de Ridder D, Kouropteva O, Okun O, et al. Supervised locally linear embedding[A]. Artificial Neural Networks and Neural Information Processing-ICANN/ICONIP 2003, LNCS 2714[C]. Berlin: Springer, 2003: 333-341
    [123] Kouropteva O, Okun O, Pietik?inen M. Supervised locally linear embedding algorithm for pattern recognition[A]. Pattern Recognition and Image Analysis, Proceedings, LNCS 2652[C]. Berlin: Springer, 2003: 386-394
    [124] Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2005, 35(6): 1098-1107
    [125] Liang D, Yang J, Zheng Z L, et al. A facial expression recognition system based on supervised locally linear embedding[J]. Pattern Recognition Letters, 2005, 26(15): 2374-2389
    [126] Wang M, Yang H, Xu Z H, et al. SLLE for predicting membrane protein types[J]. Journal of Theoretical Biology, 2005, 232(1): 7-15
    [127] Duda R O, Hart P E, Stork D G. Pattern classification[M]. 2nd edition. New York:John Wiley and Sons, 2001
    [128] Haykin S.神经网络原理[M].第二版.叶世伟,史忠植译.北京:机械工业出版社, 2004: 213-218
    [129] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man and Cybernetics, 1985, 15(1): 116-132
    [130]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社, 1997
    [131] Park J, Sandberg I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257
    [132] Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814
    [133]刘慧林,冯汝鹏,胡瑞栋,等.模糊系统作为通用逼近器的10年历程[J].控制与决策, 2004, 19(4): 367-371
    [134]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社, 1994
    [135] Scholte E, Campbell M E. A nonlinear set-membership filter for on-line applications[J]. International Journal of Robust and Nonlinear Control, 2003, 13(15): 1337-1358
    [136] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700