OFDM系统中子载波间干扰的产生因素及消除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术作为一项多载波调制(Multi-Carrier Modulation,MCM)技术,在很多领域得到了广泛的应用,其最重要的优点是相比传统的频分复用技术具有更高的频谱利用率。这得益于它利用了子载波之间的正交性,使得不同子载波信号在频谱上相互重叠,却不影响它们各自的接收。但是,这一优点同时也给OFDM技术埋下了一个隐患,即子载波间干扰(Inter-Carrier Interference,ICI)。随着通信要求的不断提高,OFDM系统逐渐向子载波数更多,载波频率更高,移动速度更快的方向发展。这将导致子载波间隔更窄,ICI的程度更严重。此时,OFDM系统的正交性变得十分脆弱,ICI的影响将不可忽视。
     本文以无线移动环境下的OFDM系统为对象,围绕ICI的消除进行研究。主要内容分别涉及ICI自消除,时变信道估计,系统均衡和多成因ICI的联合消除等方面。具体而言,主要有以下七个方面的工作和创新点:
     (1)指出目前存在的基于多项式的ICI自消除编码方法并非最优且编码效率缺乏灵活性,提出了基于生成矩阵的可变编码效率的ICI自消除编码方法,并且,在编码效率给定的情况下,通过搜索算法设计出达到ICI消除效果最优的生成矩阵。
     (2)提出在OFDM系统中的脉冲成形技术应该遵从两个标准:ICI抑制效果和带外功率泄漏。并在滚降系数给定的情况下,给出了最佳脉冲波形的模型,以此设计出了在减少带外功率泄露和抑制ICI干扰两方面均具有很好表现的脉冲波形。
     (3)提出了基于粒子滤波的时变信道估计方法。首先,利用相邻OFDM符号周期内中间时刻的信道冲击响应进行自回归(Auto-Regressive,AR)建模,并在导频符号辅助情况下,建立起状态空间模型。通过对ICI干扰的统计分析,指出其不符合高斯分布。于是,采用粒子滤波对线性非高斯的状态空间模型进行信道估计。最后,利用三次样条插值逼近出完整的时变信道。
     (4)将ICI自消除的原理应用在了改善时变信道估计性能上。首先,指出BEM建模下基于导频符号辅助信道估计所存在的问题,即相邻非导频符号产生的ICI干扰,降低了估计的准确度。然后,分析发现子载波所产生的ICI系数具有渐变特性。于是,提出在接收端采用ICI自消除操作以减小ICI项,提高估计效果。
     (5)提出了OFDM系统中基于叠加训练(SuperimposedTraining)序列的时变信道估计方法。叠加序列具有不占用频谱资源的优点。但是,由于叠加序列方法利用了一阶统计量,则要求被估计值必须恒定,而单纯的时变信道是不可能满足这一要求的。所以,利用BEM建模将一个OFDM符号周期内的时变信道转化为恒定的BEM基系数,便可以实现利用叠加序列估计时变信道。
     (6)在复指数BEM(CE-BEM)信道建模的基础上,提出了低复杂度的判决反馈均衡器(Decision Feedback Equalizer,DFE)。该均衡器利用估计得到的CE-BEM基系数直接构造DFE,从而避免了恢复时变信道的运算,以及均衡中的大矩阵求逆运算,大大降低了复杂度。
     (7)提出了对时变信道和相位噪声同时产生ICI的消除方法。由于在时变信道和相位噪声混合的情况下,依然满足平稳窄带特性,因此,采用卡洛BEM(KL-BEM)对混合时变信道和相位噪声进行建模,从而完成了对时变信道和相位噪声的同时估计。
Orthogonal frequency division multiplexing (OFDM) is one kind of multi-carrier modulation (MCM), and has been used in many fields. Its top advantage is the much higher frequency spectrum efficiency than the conventional frequency division multiplexing, which benefit from the orthogonality between the sub-carriers. The different sub-carriers overlap each other, and don't affect the receiving respectively. But the advantage also brings a hidden trouble, i.e., inter-carrier interference (ICI). With the development of the communication requirement, the number of sub-carriers in OFDM becomes bigger and bigger; the carrier frequency becomes higher and the moving speed becomes more rapid. These result in the interval of sub-carriers narrower and the level of ICI more serious. In this case, the orthogonality in OFDM becomes quite fragile. So, the effect of ICI cannot be neglected.
     This paper researches on ICI cancellation in OFDM system of mobile environment. The contents involve ICI self-cancellation, time-varying channel estimation, system equalization and joint multi-origin ICI cancellation. Concretely, the author's research and contributions are listed as follows.
     (1) First, the current ICI self-cancellation coding scheme based on polynomial is not optimal and lack of flexibility in coding efficiency. An ICI self-cancellation coding scheme with variable coding efficiency based on generator matrix is presented. And, at the instance with given coding efficiency, an optimal generator matrix in ICI canceling is designed by a new algorithm.
     (2) Two standards of designing optimum pulse in OFDM systems are presented: the effect of ICI reducing and the out-of-band leakage power. An optimum pulse model is established with given roll-off factor, and a pulse which has good performance in reducing the out-of-band leakage power and ICI simultaneously, is designed.
     (3) A time-varying channel estimation scheme based on particle filter is presented here. Firstly, channel impulse responses at the middle time of the adjacent OFDM symbol period are expressed by an AR model. Then, a state space model is established with aid of the pilot symbols, in which the ICI term is pointed out to be non-Gaussian variable after statistical analysis. So, the particle filter is used to estimate the channel in a linear and non-Gaussian state space model. Finally, cubic spline interpolation method is adopted to approximate the whole time-varying channel.
     (4) The idea of ICI self-cancellation is used to improve the performance of time-varying channel estimation. Firstly, the problem on pilot-aided channel estimation with BEM modeling is pointed out that ICI term of adjacent non-pilot symbols will decrease the accuracy of estimation. And then, these ICI coefficients from the symbols on the adjacent sub-carriers are found to be approximate. So, an ICI self-cancellation operation is presented to reduce the ICI terms at the receiver, in order to improve the effect of estimation.
     (5) A time-varying channel estimation scheme using superimposed training in OFDM systems is presented. The superimposed training sequence has the advantage of saving spectrum resources. But this scheme requires that the estimated parameter must be constants due to the utilizing of first-order statistics, which is conflict with the feature of time-varying channel. So, the time-varying channel during an OFDM symbol period is transformed to a series of time-invariant BEM coefficients by BEM modeling, which makes it possible to estimate time-varying channel using superimposed training.
     (6) A low-complexity decision feedback equalizer (DFE) is presented based on CE-BEM modeling. This equalizer directly constructs DFE utilizing the estimated CE-BEM coefficients. It successfully avoids the computation of recovering the time-varying channel from the CE-BEM coefficients and inverting a large-scale matrix in equalization. So, it decreases the computational complexity greatly.
     (7) A scheme of reducing ICI generated by time-varying channels and phase noise together is presented. When the time-varying channel is mixed with the phase noise, it is still a stationary narrowband random process. So, KL-BEM is adopted to modeling the mixed channels and phase noise, which makes it possible to estimate the time-varying channel and the phase noise jointly.
引文
[1] Z. Wang, G. B. Giannakis. Wireless muticarrier communications where Fourier meets Shannon. IEEE Signal Processing Magazine, 2000, 17(3): 29-48
    [2] H. Sampath, S. Talwar, J. Tellado, et al. A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results. IEEE Communication Magazine, 2002,40(9): 143-149
    [3] S. Y. Hui, K. H. Yeung. Challenges in the migration to 4G mobile systems. IEEE Communication Magazine. 2003,41(12): 54-59
    [4] A. Pauraj, D. A. Gore, R. U. Nabar, et al. An overview of MIMO communications - a key to Gigabit wireless. Proceedings of the IEEE, 2004, 92(2): 198-218
    [5] J. A. C. Bingham. ADSL, VDSL, and multicarrier modulation. New York: Wiley-Interscience, 2000
    [6] ETSI. Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers. ETS 300 401 ed.2, May 1997
    [7] ETSI. Digital video broadcasting: Framing structure, channel coding, and modulation for digital terrestrial television. European Telecommunication Standard, EN 300 744, Aug. 1997
    [8] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE802.11a, 1999
    [9] Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions, ETSI TS 101 761-1
    [10] J. Chuang, N. Sollenburger. Beyond 3G: wideband wireless access based on OFDM and dynamic packet assignment. IEEE Communication Magazine, 2000, 38(7): 78-87
    [11] E. Sourour, H. El-Ghoroury, D. McNeill. Frequency offset estimation and correction in the IEEE 802.11a WLAN. 2004 60th IEEE Vehicular Technology Conference (VTC'04-Fall), Vol.7: 4923-4927
    [12] C. Chen, J. Li. Maximum likelihood method for integer frequency offset estimation of OFDM systems. Electronics Lett., 2004, 8(13): 813-814
    [13] P. H. Moose. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Communications, 1994,42(10): 2908-2914
    [14] F. Shu, Y. B. Han, R. H. Xie, et al. Proof of a simple formula for ICI caused by single frequency offset in wireless OFDM system. 2007 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS'07), 140-143
    [15] Y. P. Zhao, J. D. Leclercq, S. G Haggman. Intercarrier interference compression in OFDM communication systems by using correlative coding. IEEE Communications Lett., 1998, 2(8): 214-216
    [16] T. Pollet, P. Spruyt, M. Moeneclaey. The BER performance of OFDM systems using non-synchronized sampling. 1994 IEEE Global Telecommunications Conference (GLOBECOM'94), Vol.1: 253-257
    [17] M. Sliskovic. Sampling frequency offset estimation and correction in OFDM systems. 2001 8th IEEE International Conference on Electronics, Circuits and Systems (ICECS'01), Vol.1: 437-440
    [18] B. G. Yang, Z. X. Ma, Z. G Cao. ML-oriented DA sampling clock synchronization for OFDM systems. 2000 International Conference on Communication Technology (ICCT'00), Vol.1: 781-784
    [19] P. Robertson, S. Kaiser. The effects of Doppler spreads in OFDM(A) mobile radio systems. 1999 50th IEEE Vehicular Technology Conference (VTC'99-Fall), Vol.1: 329-333
    [20] M. Russell, G. L. Stuber. Interchannel interference analysis of OFDM in a mobile environment. 1995 IEEE 45th Vehicular Technology Conference (VTC'95), Vol.2: 820-824
    [21] W. C. Jakes. Microwave Mobile Communications. New York: Wiley-IEEE Press, 1994
    [22] L. Piazzo, P. Mandarini. Analysis of phase noise effects in OFDM modems. IEEE Trans. Communications, 2002, 50(10): 1696-1705
    [23] D. Petrovic, W. Rave, G Fettweis. Effects of phase noise on OFDM systems with and without PLL: characterization and compensation. IEEE Trans. Communications, 2007, 55(8): 1607-1616
    [24] A. Demir, A. Mehrotra, J. Roychowdhury. Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuits and Systems, 2000, 47(5):655-674
    [25]S.P.Wu, P.Liu, Y.Bar-Ness.Phase noise estimation and mitigation for OFDM systems.IEEE Trans.Wireless Communications, 2006, 5(12):3616-3625
    [26]D.Petrovic, W.Rave, G.Fettweis.Intercarrier interference due to phase noise in OFDM-estimation and suppression.2004 60th IEEE Vehicular Technology Conference (VTC'04-Fall),Vol.3: 2191-2195
    [27]D.Krep, O.Ziemann, R.Dietzel.Electronic simulation of phase noise.European Trans.Telecommunications, 1995, 6: 671-674
    [28]P.Liu, Y.Bar-Ness, J.Zhu.Effects of phase noise at both transmitter and receiver on the performance of OFDM systems.2006 40th Annual Conference on Information Sciences and Systems (CISS'06), 312-316
    [29]D.Petrovic, W.Rave, G.Fettweis.Properties of the intercarrier interference due to phase noise in OFDM.2005 IEEE International Conference on Communications (ICC'05), Vo1.4:2605-2610
    [30]D.Petrovic, W.Rave, G.Fettweis.Performance degradation of coded-OFDM due to phase noise.2003 57th IEEE Vehicular Technology Conference (VTC'03-Spring), Vol.2: 1168-1172
    [31]刘光辉.OFDM系统中相位噪声的影响与抑制研究:[博士学位论文].成都:电子科技大学,2005
    [32]J.Shentu, K.Panta, J.Armstrong.Effects of phase noise on performance of ofdm systems using an ICI cancellation scheme.IEEE Trans.Broadcasting, 2003, 49(2): 221-224
    [33]P.Robertson, S.Kaiser.Analysis of the effects of phase-noise in orthogonal frequency division multiplex (OFDM) systems.1995 IEEE International Conference on Gateway to Globalization (ICGG' 95 ), Vol.3: 1652-1657
    [34]J.H.Zhang, H.Rohling, P.Zhang.Analysis of ICI cancellation scheme in OFDM systems with phase noise.IEEE Trans.Broadcasting, 2004, 50(2): 97-106
    [35]H.K.Kim, K.S.Ahn, H.K.Baik.Phase noise suppression algorithm for OFDM-based 60 GHz WLANs.2006 1st International Symposium on Wireless Pervasive Computing (ISWPC'06), 1-4
    [36]A.Tarighat, R.Bagheri, A.H.Sayed.Compensation schemes and performance analysis of IQ imbalances in OFDM Receivers.IEEE Trans.Signal Processing, 2005, 53(8): 3257-3268
    [37]A.A.Abidi.Direct-conversion radio transceivers for digital communications.IEEE J.Solid-State Circuits, 1995, 30(12): 1399-1410
    [38] Z. Pengfei, N. Thai, C. Lam, et al. A direct conversion CMOS transceiver for IEEE 802.11a WLANs. 2003 IEEE International Solid-State Circuits Conference (ISSCC'03), Vol.1:354-498
    [39] Q. Zou, A. Tarighat, A. H. Sayed. Joint compensation of IQ imbalance and phase noise in OFDM systems. 2006 40th Asilomar Conference on Signals, Systems and Computers (ACSSC'06), 1435-1439
    [40] B. Razavi. RF microelectronics. Upper Saddle River, NJ: Prentice Hall PTR, 1998
    [41] M. Windisch, G. Fettweis. On the performance of standard-independent I-Q imbalance compensation in OFDM direct-conversion receivers. 2007 14th IEEE/SP Workshop on Statistical Signal Processing (SSP'07), 754-758
    [42] Y. P. Zhao, S. G. Haggman. Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions. 1996 46th IEEE Vehicular Technology Conference (VTC'96), Vol.3: 1564-1568
    [43] Y. P. Zhao, S. G. Haggman. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Trans. Communications, 2001,49(7): 1185-1191
    [44] H. G. Ryu, Y. S. Li, J. S. Park. An improved ICI reduction method in OFDM communication system. IEEE Trans. Broadcasting, 2005, 51(3): 395-400
    [45] H. C. Wu, X. Z. Huang, D. X. Xu. Pilot-free dynamic phase and amplitude estimations for wireless ICI self-cancellation coded OFDM systems. IEEE Trans. Broadcasting, 2005, 51(1): 94-105
    [46] S. H. Muller-Weinfurtner. Optimum Nyquist windowing in OFDM receivers. IEEE Trans. Communications, 2001,49(3): 417-420
    [47] P. Nickel, W. Gerstacker, C. Jonietz, et al. Window design for non-orthogonal interference reduction in OFDM receivers. 2006 7th IEEE Workshop on Signal Processing Advances for Wireless Communications (SPAWC06), 1-5
    [48] A Seyedi, G. J. Saulnier. General ICI self-cancellation scheme for OFDM systems. IEEE Trans. Vehicular Technology, 2005, 54(1): 198-210
    [49] J. Armstrong. Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM. IEEE Trans. Communicaions, 1999,47(3): 365-369
    [50] P. Tan, N. C. Beaulieu. Reduced ICI in OFDM systems using the 'better than' raised-cosine pulse. IEEE Communications Lett., 2004, 8(3): 135-137
    [51] R. Song, S. H. Leung. A novel OFDM receiver with second order polynomial Nyquist window function. IEEE Communications Lett., 2005, 9(5): 391-393
    [52] N. C. Beaulieu, P. Tan. On the effects of receiver windowing on OFDM performance in the presence of carrier frequency offset. IEEE Trans. Wireless Communications, 2007, 6(1):202-209
    [53] B. Maham, A. Hj(?)rungnes. ICI reduction in OFDM by using maximally flat windowing. 2007 IEEE International Conference on Signal Processing and Communication (ICSPC'07), 24-27
    [54] M. Huang, X. Chen, L. Xiao. Kalman-filter-based channel estimation for orthogonal frequency division multiplexing systems in time-varying channels. IET Communications, 2007, 1(4): 795-801
    [55] Y. J. Zheng. A novel channel estimation and tracking method for wireless OFDM systems based on pilots and Kalman filtering. IEEE Trans. Consumer Electronics, 2003, 49(2): 275-283
    [56] W. Chen, R. F. Zhang. Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), Vol.4: 377-380
    [57] K. Y. Han, S. W. Lee, J. S. Lim, et al. Channel estimation for OFDM with fast fading channels by modified Kalman filter. IEEE Trans. Consumer Electronics, 2004, 50(2): 443-449
    [58] P. Gupta, D. K. Mehra. Kalman filter based channel estimation and ICI suppression for high mobility OFDM systems. 2006 IEEE International Conference on Industrial Technology (ICIT'06), 612-615
    [59] W. H. Chin, D. B. Ward, A. G. Constantinides. Semi-blind MIMO channel tracking using auxiliary particle filtering. 2002 IEEE Global Telecommunications Conference (GLOBECOM' 02), Vol.1: 322-325
    [60] P. A. Bello. Characterization of randomly time-variant linear channels. IEEE Trans. Communications System, 1963, 11(4): 360-393
    [61] P. Hoeher. A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans. Vehicular Technology, 1992, 41(4): 461-468
    [62] U. Dersch, W.R. Braun. A physical mobile radio channel model. IEEE Trans. Vehicular Technology, 1991, 40(2): 472-482
    [63] P. Dent, G. E. Bottomley, T. E. Croft. Jakes fading model revisited. Electronics Lett., 1993, 19(13): 1162-1163
    [64] D. J. Young, N. C. Beaulieu. The generation of correlated Rayleigh random variates by inverse Fourier transform. IEEE Trans. Communications, 2000,48(7): 1114-1127
    [65] M. K. Tsatsanis, G. B. Giannakis, G. Zhou. Estimation and equalization of fading channels with random coefficients. Signal Processing, 1996, 53(2-3): 211-229
    [66] K. E. Baddour, N. C. Beaulieu. Autoregressive modeling for fading channel simulation. IEEE Trans. Wireless Communications, 2005,4(4): 1650-1662
    [67] H. Wang, P. Chang. On verifying the first-order markovian assumption for a Rayleigh fading channel model. IEEE Trans. Vehicular Technology, 1996,45(2): 353-357
    [68] K. Blackard, T. Rappaport, C. Bostian. Measurements and models of radio frequency impulsive noise for indoor wireless communications. IEEE J. Selected Areas Commun., 1993, 11(7): 991-1001
    [69] E. Punskaya, C. Andrieu, A. Doucet, et al. Particle filtering for demodulation in fading channels with non-gaussian additive noise. IEEE Trans. Communications, 2001, 49(4): 579-582
    [70] J. Carpenter, P. Clifford, P. Fearnhead. Improved particle filter for nonlinear problems. IEE Proc. Radar, Sonar and Navigation, 1999, 146(1): 2-7
    [71] M. S. Arulampalam, S. Maskell, N. Gordon, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Processing, 2002, 50(2): 174-188
    [72] T. J. Wang, J. G. Proakis, J. R. Zeidler. Performance analysis of high QAM OFDM system over frequency selective time-varying fading channel. 2003 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications (PIMRC'03), Vol.1: 793-798
    [73] T. J. Wang, J. G. Proakis, E. Masry, et al. Performance degradation of OFDM systems due to Doppler spreading. IEEE Trans. Wireless Communications, 2006, 5(6): 1422-1432
    [74] N. J. Gordon, D. J. Salmon, A. F. M. Smith. A novel approach to nonlinear /non-Gaussian Bayesian state estimation. IEEE Proc. Radar and Signal Processing, 1993, 140(2): 107-113
    [75] A. Doucet, S. godsill, C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10: 197-208
    [76] Y. Mostofi, D. C. Cox. ICI mitigation for pilot-aided OFDM mobile systems. IEEE Trans. Wireless Communications, 2005,4(2): 165-774
    [77] S. M. Zabin, H. V. Poor. Parameter estimation for Middleton Class A interference processes. IEEE Transactions on Communications, 1989,37(10): 1042-1051
    [78] V. P. Felix, V. Chander. Bispectrum based estimation of parameters of Middleton Class A noise. 1992 6th IEEE SP Workshop on Statistical Signal and Array Processing (SSAP'92), 160-163
    [79] M. C. Jeruchim, P. Balaban, K. S. Shanmugan. Simulation of communication systems. New York: Plenum Press, 1992
    [80] M. K. Tsatsanis, G. B. Giannakis. Adaptive methods for equalization of rapidly fading channels. 1993 IEEE Military Communications Conference (MILCOM'93). Vol.2: 639-643
    [81] G. B. Giannakis, C. Tepedelenlioglu. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proceedings of the IEEE, 1998, 86(10): 1969-1986
    [82] I. Barhumi, G. Leus, M. Moonen. Estimation and direct equalization of doubly selective channels, EURASIP J. Applied Signal Processing, 2006, Article ID 62831
    [83] J. Bhatti. Pilot-aided carrier synchronization using an approximate DCT-based phase noise model. 2007 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT'07), 1143-1148
    [84] D. K. Borah, B. D. Hart. Frequency-selective fading channel estimation with a polynomial time-varying channel model. IEEE Trans. Communications, 1999, 47(6): 862-873
    [85] S. Tomasin, A. Gorokhov, H. B. Yang, et al. Iterative interference cancellation and channel estimation for mobile OFDM. IEEE Trans. Wireless Communications, 2005, 4(1): 238-245
    [86] K. A. D. Teo, S. Ohno. Optimal MMSE finite parameter model for doubly- selective channels. 2005 IEEE Global Telecommunications Conference (GLOBECOM'05), Vol.6: 3503-3507
    [87] H. Senol, H. A. C(?)rpan, E. Panay(?)rc(?), et al. A low-complexity time-domain MMSE channel estimator for space-time frequency block-coded OFDM systems. EURASIP J. Applied Signal Processing, 2006, Article ID 39026
    [88] T. Zemen, C. F. Mecklenbrauker. Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Processing, 2005, 53(9): 3597-3607
    [89] I. Barhumi, G. Leus, M. Moonen. Time-domain and frequency-domain per-tone equalization for OFDM over doubly selective channels. Signal Processing, 2004, 84(11): 2055-2066
    [90] Z. J. Tang, R. C. Cannizzaro, G. Leus, et al. Pilot-assisted time-varying channel estimation for OFDM systems. IEEE Trans. Signal Processing, 2007, 55(5): 2226-2238
    [91] S. Thoen, L.t V. Perre, M. Engels, Modeling the channel time-variance for fixed wireless communications. IEEE Communications Lett., 2003, 6(8): 331-333
    [92] X. Zhao, J. Kivinen, P. Vainikainen, et al. Characterization of Doppler spectra for mobile communications at 5.3 GHz. IEEE Trans. Vehicular Technology, 2003, 52(1): 14-23
    [93] M. J. F. G. Garcia, S. Zazo, J. M. Paez-Borrallo. Pilot patterns for channel estimation in OFDM. Electronics Lett., 2000,36(12): 1049-1050
    [94] W. Zhang, X. G. Xia, P. C. Ching. On pilot pattern design for PSAM-OFDM system. 2004 IEEE International Symposium on Circuits and Systems (ISCAS'04), Vol.5: 417-420
    [95] Y. R. Zheng, C. Xiao. Simulation models with correct statistical properties for rayleigh fading channels. IEEE Trans. Communications, 2003, 51(6): 920-928
    [96] N. Chen, G. T. Zhou. A superimposed periodic pilot scheme for semi-blind channel estimation of OFDM systems. 2002 10th IEEE Digital Signal Processing Workshop (DSP'02) and 2nd IEEE Signal Processing Education Workshop (SPE'02), 362-365
    [97] N. Chen, G. T. Zhou. Superimposed training for OFDM: a peak-to-average power ratio analysis. IEEE Trans. Signal Processing, 2006, 54(6): 2277-2287
    [98] K. Josiam, D. Rajan. Bandwidth efficient channel estimation using super-imposed pilots in OFDM systems. IEEE Trans. Wireless Communications, 2007, 6(6): 2234-2245
    [99] Q. H. Yang, K. S. Kwak. Time-varying multipath channel estimation with superimposed training in CP-OFDM systems. ETRI Journal, 2006, 28(6): 822-825
    [100] G. T. Zhou, N. Chen. Superimposed training for doubly selective channels. 2003 IEEE Statistical Signal Processing Workshop (SSP'03), 82-85
    [101] J. K. Tugnait, X. H. Meng, S. C. He. Doubly selective channel estimation using superimposed training and exponential bases models. EURASIP J. Applied Signal Processing, 2006, Article ID 85303
    [102] M. Ghogho, A. Swami. Estimation of doubly selective channels using data-dependent superimposed training. 2006 40th Conference on Information Sciences and Systems(CISS'06), 375-380
    [103] M. Ghogho, A. Swami. Improved channel estimation using superimposed training. 2004 5th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC'04), 110-114
    [104] J. Rinne, M. Renfors. Equalization of orthogonal frequency division multiplexing signals. 1994 IEEE Global Telecommunications Conference (GLOBECOM'94), Vol.1: 415-419
    [105] T. Hrycak, G. Matz. Low-complexity time-domain ICI equalization for OFDM communications over rapidly varying channels. 2006 40th Asilomar Conference Signals, Systems and Computers (ACSSC'06), 1767-1771
    [106] I. Barhumi, G Leus, M. Moonen. Equalization for OFDM over doubly selective channels. IEEE Trans. Signal Processing, 2006, 54(4): 1445-1458
    [107] L. Rugini, P. Banelli, G. Leus. Simple equalization of time-varying channels for OFDM. IEEE Communications Lett., 2005,9(7): 619-621
    [108] X. D. Cai, G. B. Giannakis. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. IEEE Trans. Communications, 2003,51(12): 2047-2056
    [109] P. Schniter. Low-complexity equalization of OFDM in doubly selective channels. IEEE Trans. Signal Processing, 2004, 52(4): 1002-1011
    [110] M. A. Mohammadi, M. Ardabilipour, B.Moussakhani, et al. Serial equalization structure for channel compensation in OFDM systems. 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN'08), 1-4
    [111] L. Rugini, P. Banelli, G. Leus. Low-complexity banded equalizers for OFDM systems in Doppler spread channels. EURASIP J. Applied Signal Processing, 2006, Article ID 67404
    [112] S. P. Chen, G F. Dai, H. W. Tang. Low complexity DFE for OFDM systems over time-varying channels. IEEE Trans. Consumer Electronics, 2007, 53(2): 291-293
    [113] S. Ohno. Maximum likelihood inter-carrier interference suppression for wireless OFDM with subcarriers. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), Vol.3: 849-852
    [114] W. G Jeon, K. H. Chang, Y. S. Cho. An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Trans. Communications, 1999, 47(1): 27-32
    [115] F. Munier, T. Eriksson, A. Svensson. An ICI reduction scheme for OFDM system with phase noise over fading channels. IEEE Trans. Communications, 2008, 56(7): 1119-1126
    [116] J. H. Lee, J. S. Yang, S. C. Kim, et al. Joint channel estimation and phase noise suppression for OFDM systems. 2005 61st IEEE Vehicular Technology Conference (VTC'05-Spring), Vol.1: 467-470
    [117] Y. H. Kim, S. C. Kim. Joint channel estimation with phase noise suppression and soft decision decoding scheme for OFDM-based WLANs. 2005 62nd IEEE Vehicular Technology Conference (VTC'05-Fall), Vol.1: 161-165
    [118] J. Tubbax, B. Come, L.V. Perre, et al. Compensation of IQ Imbalance and phase noise in OFDM systems. IEEE Trans. Wireless Communications, 2005,4(3): 872-877
    [119] S. G. Tang, K. Gong, C. Y. Pan, et al. Phase noise suppression in OFDM systems in presence of IQ imbalance. 2006 International Conference on Communications, Circuits and Systems Proceedings (ICCCSP'06), 1184-1188
    [120] T. Yucek, M. K. Nezami. Joint channel and frequency offset estimation for OFDM systems. 2004 IEEE Military Communications Conference (MILCOM'04), Vol.2: 874-879
    [121] T. Roman, M. Enescu, V. Koivunen. Joint time-domain tracking of channel and frequency offset for OFDM systems. 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC03), 605-609
    [122] K. Sathananthan, C. R. N. Athaudaget, B. Qiu. A novel ICI cancellation scheme to reduce both frequency offset and IQ imbalance effects in OFDM. 2004 9th IEEE International Symposium on Computers and Communications (ISCC'04), Vol.2: 708-713
    [123] K. Sathananthan, C. Tellambura. Performance analysis of an OFDM system with carrier frequency offset and phase noise. 2001 54th IEEE Vehicular Technology Conference (VTC'01-Fall), Vol.4: 2329-2332
    [124] M. Melliti, S. Hasnaoui, R. Bouallegue. Analysis of frequency offsets and phase noise effects on an OFDM 802.11 g transceiver. International Journal of Computer Science and Network Security, 2007, 7(4): 87-91
    [125] D. D. Lin, R. A. Pacheco, T. J. Lim, et al. Joint estimation of channel response, frequency offset and phase noise in OFDM. IEEE Trans. Signal Processing, 2006, 54(9): 3542-3554
    [126] Y. H. Kim, J. H. Lee, S. C. Kim. Joint common phase error and channel estimation for OFDM-based WLANs in the presence of Wiener phase noise and residual frequency offset. 2006 IEEE International Conference on Communications (ICC'06), Vol.7: 3040-3045
    [127] Q. Zou, A. Tanghat, K. Y. Kim, et al. OFDM channel estimation in the presence of frequency offset, IQ Imbalance and phase noise. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), Vol.3: 273-276
    [128] Y. C. Liao, K. C. Chen. Estimation of stationary phase noise by the autocorrelation of the ICI weighting function in OFDM systems. IEEE Trans. Wireless Communications, 2006, 5(12): 3370-3374
    [129] D. Petrovic, W. Rave, G Fettweis. Phase noise suppression in OFDM including intercarrier interference. 2003 International OFDM Workshop (InOWo'03), 219-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700